|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, List, NamedTuple, Optional, Union |
|
|
|
from .charsetprober import CharSetProber |
|
from .enums import CharacterCategory, ProbingState, SequenceLikelihood |
|
|
|
|
|
class SingleByteCharSetModel(NamedTuple): |
|
charset_name: str |
|
language: str |
|
char_to_order_map: Dict[int, int] |
|
language_model: Dict[int, Dict[int, int]] |
|
typical_positive_ratio: float |
|
keep_ascii_letters: bool |
|
alphabet: str |
|
|
|
|
|
class SingleByteCharSetProber(CharSetProber): |
|
SAMPLE_SIZE = 64 |
|
SB_ENOUGH_REL_THRESHOLD = 1024 |
|
POSITIVE_SHORTCUT_THRESHOLD = 0.95 |
|
NEGATIVE_SHORTCUT_THRESHOLD = 0.05 |
|
|
|
def __init__( |
|
self, |
|
model: SingleByteCharSetModel, |
|
is_reversed: bool = False, |
|
name_prober: Optional[CharSetProber] = None, |
|
) -> None: |
|
super().__init__() |
|
self._model = model |
|
|
|
self._reversed = is_reversed |
|
|
|
self._name_prober = name_prober |
|
self._last_order = 255 |
|
self._seq_counters: List[int] = [] |
|
self._total_seqs = 0 |
|
self._total_char = 0 |
|
self._control_char = 0 |
|
self._freq_char = 0 |
|
self.reset() |
|
|
|
def reset(self) -> None: |
|
super().reset() |
|
|
|
self._last_order = 255 |
|
self._seq_counters = [0] * SequenceLikelihood.get_num_categories() |
|
self._total_seqs = 0 |
|
self._total_char = 0 |
|
self._control_char = 0 |
|
|
|
self._freq_char = 0 |
|
|
|
@property |
|
def charset_name(self) -> Optional[str]: |
|
if self._name_prober: |
|
return self._name_prober.charset_name |
|
return self._model.charset_name |
|
|
|
@property |
|
def language(self) -> Optional[str]: |
|
if self._name_prober: |
|
return self._name_prober.language |
|
return self._model.language |
|
|
|
def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState: |
|
|
|
if not self._model.keep_ascii_letters: |
|
byte_str = self.filter_international_words(byte_str) |
|
else: |
|
byte_str = self.remove_xml_tags(byte_str) |
|
if not byte_str: |
|
return self.state |
|
char_to_order_map = self._model.char_to_order_map |
|
language_model = self._model.language_model |
|
for char in byte_str: |
|
order = char_to_order_map.get(char, CharacterCategory.UNDEFINED) |
|
|
|
|
|
|
|
|
|
|
|
if order < CharacterCategory.CONTROL: |
|
self._total_char += 1 |
|
if order < self.SAMPLE_SIZE: |
|
self._freq_char += 1 |
|
if self._last_order < self.SAMPLE_SIZE: |
|
self._total_seqs += 1 |
|
if not self._reversed: |
|
lm_cat = language_model[self._last_order][order] |
|
else: |
|
lm_cat = language_model[order][self._last_order] |
|
self._seq_counters[lm_cat] += 1 |
|
self._last_order = order |
|
|
|
charset_name = self._model.charset_name |
|
if self.state == ProbingState.DETECTING: |
|
if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD: |
|
confidence = self.get_confidence() |
|
if confidence > self.POSITIVE_SHORTCUT_THRESHOLD: |
|
self.logger.debug( |
|
"%s confidence = %s, we have a winner", charset_name, confidence |
|
) |
|
self._state = ProbingState.FOUND_IT |
|
elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD: |
|
self.logger.debug( |
|
"%s confidence = %s, below negative shortcut threshold %s", |
|
charset_name, |
|
confidence, |
|
self.NEGATIVE_SHORTCUT_THRESHOLD, |
|
) |
|
self._state = ProbingState.NOT_ME |
|
|
|
return self.state |
|
|
|
def get_confidence(self) -> float: |
|
r = 0.01 |
|
if self._total_seqs > 0: |
|
r = ( |
|
( |
|
self._seq_counters[SequenceLikelihood.POSITIVE] |
|
+ 0.25 * self._seq_counters[SequenceLikelihood.LIKELY] |
|
) |
|
/ self._total_seqs |
|
/ self._model.typical_positive_ratio |
|
) |
|
|
|
|
|
|
|
r = r * (self._total_char - self._control_char) / self._total_char |
|
r = r * self._freq_char / self._total_char |
|
if r >= 1.0: |
|
r = 0.99 |
|
return r |
|
|