|
Using BigQuery with Pandas |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
|
|
Retrieve BigQuery data as a Pandas DataFrame |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
|
|
As of version 0.29.0, you can use the |
|
:func:`~google.cloud.bigquery.table.RowIterator.to_dataframe` function to |
|
retrieve query results or table rows as a :class:`pandas.DataFrame`. |
|
|
|
First, ensure that the :mod:`pandas` library is installed by running: |
|
|
|
.. code-block:: bash |
|
|
|
pip install --upgrade pandas |
|
|
|
Alternatively, you can install the BigQuery Python client library with |
|
:mod:`pandas` by running: |
|
|
|
.. code-block:: bash |
|
|
|
pip install --upgrade 'google-cloud-bigquery[pandas]' |
|
|
|
To retrieve query results as a :class:`pandas.DataFrame`: |
|
|
|
.. literalinclude:: ../snippets.py |
|
:language: python |
|
:dedent: 4 |
|
:start-after: [START bigquery_query_results_dataframe] |
|
:end-before: [END bigquery_query_results_dataframe] |
|
|
|
To retrieve table rows as a :class:`pandas.DataFrame`: |
|
|
|
.. literalinclude:: ../snippets.py |
|
:language: python |
|
:dedent: 4 |
|
:start-after: [START bigquery_list_rows_dataframe] |
|
:end-before: [END bigquery_list_rows_dataframe] |
|
|
|
The following data types are used when creating a pandas DataFrame. |
|
|
|
.. list-table:: Pandas Data Type Mapping |
|
:header-rows: 1 |
|
|
|
* - BigQuery |
|
- pandas |
|
- Notes |
|
* - BOOL |
|
- boolean |
|
- |
|
* - DATETIME |
|
- datetime64[ns], object |
|
- The object dtype is used when there are values not representable in a |
|
pandas nanosecond-precision timestamp. |
|
* - DATE |
|
- dbdate, object |
|
- The object dtype is used when there are values not representable in a |
|
pandas nanosecond-precision timestamp. |
|
|
|
Requires the ``db-dtypes`` package. See the `db-dtypes usage guide |
|
<https://googleapis.dev/python/db-dtypes/latest/usage.html>`_ |
|
* - FLOAT64 |
|
- float64 |
|
- |
|
* - INT64 |
|
- Int64 |
|
- |
|
* - TIME |
|
- dbtime |
|
- Requires the ``db-dtypes`` package. See the `db-dtypes usage guide |
|
<https://googleapis.dev/python/db-dtypes/latest/usage.html>`_ |
|
|
|
Retrieve BigQuery GEOGRAPHY data as a GeoPandas GeoDataFrame |
|
------------------------------------------------------------ |
|
|
|
`GeoPandas <https://geopandas.org/>`_ adds geospatial analytics |
|
capabilities to Pandas. To retrieve query results containing |
|
GEOGRAPHY data as a :class:`geopandas.GeoDataFrame`: |
|
|
|
.. literalinclude:: ../samples/geography/to_geodataframe.py |
|
:language: python |
|
:dedent: 4 |
|
:start-after: [START bigquery_query_results_geodataframe] |
|
:end-before: [END bigquery_query_results_geodataframe] |
|
|
|
|
|
Load a Pandas DataFrame to a BigQuery Table |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
|
|
As of version 1.3.0, you can use the |
|
:func:`~google.cloud.bigquery.client.Client.load_table_from_dataframe` function |
|
to load data from a :class:`pandas.DataFrame` to a |
|
:class:`~google.cloud.bigquery.table.Table`. To use this function, in addition |
|
to :mod:`pandas`, you will need to install the :mod:`pyarrow` library. You can |
|
install the BigQuery Python client library with :mod:`pandas` and |
|
:mod:`pyarrow` by running: |
|
|
|
.. code-block:: bash |
|
|
|
pip install --upgrade google-cloud-bigquery[pandas,pyarrow] |
|
|
|
The following example demonstrates how to create a :class:`pandas.DataFrame` |
|
and load it into a new table: |
|
|
|
.. literalinclude:: ../samples/load_table_dataframe.py |
|
:language: python |
|
:dedent: 4 |
|
:start-after: [START bigquery_load_table_dataframe] |
|
:end-before: [END bigquery_load_table_dataframe] |
|
|