Asib27's picture
try 1
065fee7 verified
raw
history blame
74.7 kB
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import datetime
import decimal
import functools
import operator
import queue
from unittest import mock
import warnings
try:
import importlib.metadata as metadata
except ImportError:
import importlib_metadata as metadata
try:
import pandas
import pandas.api.types
import pandas.testing
except ImportError:
pandas = None
try:
import geopandas
except ImportError:
geopandas = None
import pytest
from google import api_core
from google.cloud.bigquery import exceptions
from google.cloud.bigquery import _pyarrow_helpers
from google.cloud.bigquery import _versions_helpers
from google.cloud.bigquery import schema
pyarrow = _versions_helpers.PYARROW_VERSIONS.try_import()
if pyarrow:
import pyarrow.parquet
import pyarrow.types
_BIGNUMERIC_SUPPORT = True
else:
# Mock out pyarrow when missing, because methods from pyarrow.types are
# used in test parameterization.
pyarrow = mock.Mock()
_BIGNUMERIC_SUPPORT = False
bigquery_storage = _versions_helpers.BQ_STORAGE_VERSIONS.try_import()
if pandas is not None:
PANDAS_INSTALLED_VERSION = metadata.version("pandas")
else:
PANDAS_INSTALLED_VERSION = "0.0.0"
skip_if_no_bignumeric = pytest.mark.skipif(
not _BIGNUMERIC_SUPPORT,
reason="BIGNUMERIC support requires pyarrow>=3.0.0",
)
@pytest.fixture
def module_under_test():
from google.cloud.bigquery import _pandas_helpers
return _pandas_helpers
def is_none(value):
return value is None
def is_datetime(type_):
# See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#datetime-type
return all_(
pyarrow.types.is_timestamp,
lambda type_: type_.unit == "us",
lambda type_: type_.tz is None,
)(type_)
def is_numeric(type_):
# See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#numeric-type
return all_(
pyarrow.types.is_decimal,
lambda type_: type_.precision == 38,
lambda type_: type_.scale == 9,
)(type_)
def is_bignumeric(type_):
# See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#numeric-type
return all_(
pyarrow.types.is_decimal,
lambda type_: type_.precision == 76,
lambda type_: type_.scale == 38,
)(type_)
def is_timestamp(type_):
# See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#timestamp-type
return all_(
pyarrow.types.is_timestamp,
lambda type_: type_.unit == "us",
lambda type_: type_.tz == "UTC",
)(type_)
def do_all(functions, value):
return all((func(value) for func in functions))
def all_(*functions):
return functools.partial(do_all, functions)
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_is_datetime():
assert is_datetime(pyarrow.timestamp("us", tz=None))
assert not is_datetime(pyarrow.timestamp("ms", tz=None))
assert not is_datetime(pyarrow.timestamp("us", tz="UTC"))
assert not is_datetime(pyarrow.timestamp("ns", tz="UTC"))
assert not is_datetime(pyarrow.string())
def test_do_all():
assert do_all((lambda _: True, lambda _: True), None)
assert not do_all((lambda _: True, lambda _: False), None)
assert not do_all((lambda _: False,), None)
def test_all_():
assert all_(lambda _: True, lambda _: True)(None)
assert not all_(lambda _: True, lambda _: False)(None)
@pytest.mark.parametrize(
"bq_type,bq_mode,is_correct_type",
[
("STRING", "NULLABLE", pyarrow.types.is_string),
("STRING", None, pyarrow.types.is_string),
("string", "NULLABLE", pyarrow.types.is_string),
("StRiNg", "NULLABLE", pyarrow.types.is_string),
("BYTES", "NULLABLE", pyarrow.types.is_binary),
("INTEGER", "NULLABLE", pyarrow.types.is_int64),
("INT64", "NULLABLE", pyarrow.types.is_int64),
("FLOAT", "NULLABLE", pyarrow.types.is_float64),
("FLOAT64", "NULLABLE", pyarrow.types.is_float64),
("NUMERIC", "NULLABLE", is_numeric),
pytest.param(
"BIGNUMERIC",
"NULLABLE",
is_bignumeric,
marks=skip_if_no_bignumeric,
),
("BOOLEAN", "NULLABLE", pyarrow.types.is_boolean),
("BOOL", "NULLABLE", pyarrow.types.is_boolean),
("TIMESTAMP", "NULLABLE", is_timestamp),
("DATE", "NULLABLE", pyarrow.types.is_date32),
("TIME", "NULLABLE", pyarrow.types.is_time64),
("DATETIME", "NULLABLE", is_datetime),
("GEOGRAPHY", "NULLABLE", pyarrow.types.is_string),
("UNKNOWN_TYPE", "NULLABLE", is_none),
# Use pyarrow.list_(item_type) for repeated (array) fields.
(
"STRING",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_string(type_.value_type),
),
),
(
"STRING",
"repeated",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_string(type_.value_type),
),
),
(
"STRING",
"RePeAtEd",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_string(type_.value_type),
),
),
(
"BYTES",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_binary(type_.value_type),
),
),
(
"INTEGER",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_int64(type_.value_type),
),
),
(
"INT64",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_int64(type_.value_type),
),
),
(
"FLOAT",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_float64(type_.value_type),
),
),
(
"FLOAT64",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_float64(type_.value_type),
),
),
(
"NUMERIC",
"REPEATED",
all_(pyarrow.types.is_list, lambda type_: is_numeric(type_.value_type)),
),
pytest.param(
"BIGNUMERIC",
"REPEATED",
all_(pyarrow.types.is_list, lambda type_: is_bignumeric(type_.value_type)),
marks=skip_if_no_bignumeric,
),
(
"BOOLEAN",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_boolean(type_.value_type),
),
),
(
"BOOL",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_boolean(type_.value_type),
),
),
(
"TIMESTAMP",
"REPEATED",
all_(pyarrow.types.is_list, lambda type_: is_timestamp(type_.value_type)),
),
(
"DATE",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_date32(type_.value_type),
),
),
(
"TIME",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_time64(type_.value_type),
),
),
(
"DATETIME",
"REPEATED",
all_(pyarrow.types.is_list, lambda type_: is_datetime(type_.value_type)),
),
(
"GEOGRAPHY",
"REPEATED",
all_(
pyarrow.types.is_list,
lambda type_: pyarrow.types.is_string(type_.value_type),
),
),
("RECORD", "REPEATED", is_none),
("UNKNOWN_TYPE", "REPEATED", is_none),
],
)
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_data_type(module_under_test, bq_type, bq_mode, is_correct_type):
field = schema.SchemaField("ignored_name", bq_type, mode=bq_mode)
actual = module_under_test.bq_to_arrow_data_type(field)
assert is_correct_type(actual)
@pytest.mark.parametrize("bq_type", ["RECORD", "record", "STRUCT", "struct"])
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_data_type_w_struct(module_under_test, bq_type):
fields = (
schema.SchemaField("field01", "STRING"),
schema.SchemaField("field02", "BYTES"),
schema.SchemaField("field03", "INTEGER"),
schema.SchemaField("field04", "INT64"),
schema.SchemaField("field05", "FLOAT"),
schema.SchemaField("field06", "FLOAT64"),
schema.SchemaField("field07", "NUMERIC"),
schema.SchemaField("field08", "BIGNUMERIC"),
schema.SchemaField("field09", "BOOLEAN"),
schema.SchemaField("field10", "BOOL"),
schema.SchemaField("field11", "TIMESTAMP"),
schema.SchemaField("field12", "DATE"),
schema.SchemaField("field13", "TIME"),
schema.SchemaField("field14", "DATETIME"),
schema.SchemaField("field15", "GEOGRAPHY"),
)
field = schema.SchemaField("ignored_name", bq_type, mode="NULLABLE", fields=fields)
actual = module_under_test.bq_to_arrow_data_type(field)
expected = (
pyarrow.field("field01", pyarrow.string()),
pyarrow.field("field02", pyarrow.binary()),
pyarrow.field("field03", pyarrow.int64()),
pyarrow.field("field04", pyarrow.int64()),
pyarrow.field("field05", pyarrow.float64()),
pyarrow.field("field06", pyarrow.float64()),
pyarrow.field("field07", _pyarrow_helpers.pyarrow_numeric()),
pyarrow.field("field08", _pyarrow_helpers.pyarrow_bignumeric()),
pyarrow.field("field09", pyarrow.bool_()),
pyarrow.field("field10", pyarrow.bool_()),
pyarrow.field("field11", _pyarrow_helpers.pyarrow_timestamp()),
pyarrow.field("field12", pyarrow.date32()),
pyarrow.field("field13", _pyarrow_helpers.pyarrow_time()),
pyarrow.field("field14", _pyarrow_helpers.pyarrow_datetime()),
pyarrow.field("field15", pyarrow.string()),
)
expected = pyarrow.struct(expected)
assert pyarrow.types.is_struct(actual)
assert actual.num_fields == len(fields)
assert actual.equals(expected)
@pytest.mark.parametrize("bq_type", ["RECORD", "record", "STRUCT", "struct"])
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_data_type_w_array_struct(module_under_test, bq_type):
fields = (
schema.SchemaField("field01", "STRING"),
schema.SchemaField("field02", "BYTES"),
schema.SchemaField("field03", "INTEGER"),
schema.SchemaField("field04", "INT64"),
schema.SchemaField("field05", "FLOAT"),
schema.SchemaField("field06", "FLOAT64"),
schema.SchemaField("field07", "NUMERIC"),
schema.SchemaField("field08", "BIGNUMERIC"),
schema.SchemaField("field09", "BOOLEAN"),
schema.SchemaField("field10", "BOOL"),
schema.SchemaField("field11", "TIMESTAMP"),
schema.SchemaField("field12", "DATE"),
schema.SchemaField("field13", "TIME"),
schema.SchemaField("field14", "DATETIME"),
schema.SchemaField("field15", "GEOGRAPHY"),
)
field = schema.SchemaField("ignored_name", bq_type, mode="REPEATED", fields=fields)
actual = module_under_test.bq_to_arrow_data_type(field)
expected = (
pyarrow.field("field01", pyarrow.string()),
pyarrow.field("field02", pyarrow.binary()),
pyarrow.field("field03", pyarrow.int64()),
pyarrow.field("field04", pyarrow.int64()),
pyarrow.field("field05", pyarrow.float64()),
pyarrow.field("field06", pyarrow.float64()),
pyarrow.field("field07", _pyarrow_helpers.pyarrow_numeric()),
pyarrow.field("field08", _pyarrow_helpers.pyarrow_bignumeric()),
pyarrow.field("field09", pyarrow.bool_()),
pyarrow.field("field10", pyarrow.bool_()),
pyarrow.field("field11", _pyarrow_helpers.pyarrow_timestamp()),
pyarrow.field("field12", pyarrow.date32()),
pyarrow.field("field13", _pyarrow_helpers.pyarrow_time()),
pyarrow.field("field14", _pyarrow_helpers.pyarrow_datetime()),
pyarrow.field("field15", pyarrow.string()),
)
expected_value_type = pyarrow.struct(expected)
assert pyarrow.types.is_list(actual)
assert pyarrow.types.is_struct(actual.value_type)
assert actual.value_type.num_fields == len(fields)
assert actual.value_type.equals(expected_value_type)
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_data_type_w_struct_unknown_subfield(module_under_test):
fields = (
schema.SchemaField("field1", "STRING"),
schema.SchemaField("field2", "INTEGER"),
# Don't know what to convert UNKNOWN_TYPE to, let type inference work,
# instead.
schema.SchemaField("field3", "UNKNOWN_TYPE"),
)
field = schema.SchemaField("ignored_name", "RECORD", mode="NULLABLE", fields=fields)
with warnings.catch_warnings(record=True) as warned:
actual = module_under_test.bq_to_arrow_data_type(field)
assert actual is None
assert len(warned) == 1
warning = warned[0]
assert "field3" in str(warning)
@pytest.mark.parametrize(
"bq_type,rows",
[
("STRING", ["abc", None, "def", None]),
("BYTES", [b"abc", None, b"def", None]),
("INTEGER", [123, None, 456, None]),
("INT64", [-9223372036854775808, None, 9223372036854775807, 123]),
("FLOAT", [1.25, None, 3.5, None]),
(
"NUMERIC",
[
decimal.Decimal("-99999999999999999999999999999.999999999"),
None,
decimal.Decimal("99999999999999999999999999999.999999999"),
decimal.Decimal("999.123456789"),
],
),
pytest.param(
"BIGNUMERIC",
[
decimal.Decimal("-{d38}.{d38}".format(d38="9" * 38)),
None,
decimal.Decimal("{d38}.{d38}".format(d38="9" * 38)),
decimal.Decimal("3.141592653589793238462643383279"),
],
),
("BOOLEAN", [True, None, False, None]),
("BOOL", [False, None, True, None]),
(
"TIMESTAMP",
[
datetime.datetime(1, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
None,
datetime.datetime(
9999, 12, 31, 23, 59, 59, 999999, tzinfo=datetime.timezone.utc
),
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
],
),
(
"DATE",
[
datetime.date(1, 1, 1),
None,
datetime.date(9999, 12, 31),
datetime.date(1970, 1, 1),
],
),
(
"TIME",
[
datetime.time(0, 0, 0),
None,
datetime.time(23, 59, 59, 999999),
datetime.time(12, 0, 0),
],
),
(
"DATETIME",
[
datetime.datetime(1, 1, 1, 0, 0, 0),
datetime.datetime(9999, 12, 31, 23, 59, 59, 999999),
None,
datetime.datetime(1970, 1, 1, 0, 0, 0),
datetime.datetime(1999, 3, 14, 15, 9, 26, 535898),
],
),
(
"GEOGRAPHY",
[
"POINT(30 10)",
None,
"LINESTRING (30 10, 10 30, 40 40)",
"POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))",
],
),
],
)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_array_w_nullable_scalars(module_under_test, bq_type, rows):
series = pandas.Series(rows, dtype="object")
bq_field = schema.SchemaField("field_name", bq_type)
arrow_array = module_under_test.bq_to_arrow_array(series, bq_field)
roundtrip = arrow_array.to_pylist()
assert rows == roundtrip
@pytest.mark.parametrize(
"bq_type,rows",
[
(
"TIMESTAMP",
[
"1971-09-28T23:59:07+00:00",
"1975-04-09T23:59:02+00:00",
"1979-08-17T23:59:05+00:00",
"NaT",
"1983-05-09T13:00:00+00:00",
],
),
(
"DATETIME",
[
"1971-09-28T23:59:07",
"1975-04-09T23:59:02",
"1979-08-17T23:59:05",
"NaT",
"1983-05-09T13:00:00",
],
),
],
)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(PANDAS_INSTALLED_VERSION[0:2] not in ["0.", "1."], reason="")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_array_w_pandas_timestamp(module_under_test, bq_type, rows):
rows = [pandas.Timestamp(row) for row in rows]
series = pandas.Series(rows)
bq_field = schema.SchemaField("field_name", bq_type)
arrow_array = module_under_test.bq_to_arrow_array(series, bq_field)
roundtrip = arrow_array.to_pandas()
assert series.equals(roundtrip)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_array_w_arrays(module_under_test):
rows = [[1, 2, 3], [], [4, 5, 6]]
series = pandas.Series(rows, name="test_col", dtype="object")
bq_field = schema.SchemaField("field_name", "INTEGER", mode="REPEATED")
arrow_array = module_under_test.bq_to_arrow_array(series, bq_field)
roundtrip = arrow_array.to_pylist()
assert rows == roundtrip
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(pyarrow is None, reason="Requires `pyarrow`")
def test_bq_to_arrow_array_w_conversion_fail(module_under_test): # pragma: NO COVER
rows = [[1, 2, 3], [], [4, 5, 6]]
series = pandas.Series(rows, name="test_col", dtype="object")
bq_field = schema.SchemaField("field_name", "STRING", mode="REPEATED")
exc_msg = f"""Error converting Pandas column with name: "{series.name}" and datatype: "{series.dtype}" to an appropriate pyarrow datatype: Array, ListArray, or StructArray"""
with pytest.raises(pyarrow.ArrowTypeError, match=exc_msg):
module_under_test.bq_to_arrow_array(series, bq_field)
raise pyarrow.ArrowTypeError(exc_msg)
@pytest.mark.parametrize("bq_type", ["RECORD", "record", "STRUCT", "struct"])
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_array_w_structs(module_under_test, bq_type):
rows = [
{"int_col": 123, "string_col": "abc"},
None,
{"int_col": 456, "string_col": "def"},
]
series = pandas.Series(rows, name="test_col", dtype="object")
bq_field = schema.SchemaField(
"field_name",
bq_type,
fields=(
schema.SchemaField("int_col", "INTEGER"),
schema.SchemaField("string_col", "STRING"),
),
)
arrow_array = module_under_test.bq_to_arrow_array(series, bq_field)
roundtrip = arrow_array.to_pylist()
assert rows == roundtrip
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_array_w_special_floats(module_under_test):
bq_field = schema.SchemaField("field_name", "FLOAT64")
rows = [float("-inf"), float("nan"), float("inf"), None]
series = pandas.Series(rows, dtype="object")
arrow_array = module_under_test.bq_to_arrow_array(series, bq_field)
roundtrip = arrow_array.to_pylist()
assert len(rows) == len(roundtrip)
assert roundtrip[0] == float("-inf")
# Since we are converting from pandas, NaN is treated as NULL in pyarrow
# due to pandas conventions.
# https://arrow.apache.org/docs/python/data.html#none-values-and-nan-handling
assert roundtrip[1] is None
assert roundtrip[2] == float("inf")
assert roundtrip[3] is None
@pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`")
def test_bq_to_arrow_array_w_geography_dtype(module_under_test):
from shapely import wkb, wkt
bq_field = schema.SchemaField("field_name", "GEOGRAPHY")
series = geopandas.GeoSeries([None, wkt.loads("point(0 0)")])
array = module_under_test.bq_to_arrow_array(series, bq_field)
# The result is binary, because we use wkb format
assert array.type == pyarrow.binary()
assert array.to_pylist() == [None, wkb.dumps(series[1])]
# All na:
series = geopandas.GeoSeries([None, None])
array = module_under_test.bq_to_arrow_array(series, bq_field)
assert array.type == pyarrow.string()
assert array.to_pylist() == list(series)
@pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`")
def test_bq_to_arrow_array_w_geography_type_shapely_data(module_under_test):
from shapely import wkb, wkt
bq_field = schema.SchemaField("field_name", "GEOGRAPHY")
series = pandas.Series([None, wkt.loads("point(0 0)")])
array = module_under_test.bq_to_arrow_array(series, bq_field)
# The result is binary, because we use wkb format
assert array.type == pyarrow.binary()
assert array.to_pylist() == [None, wkb.dumps(series[1])]
# All na:
series = pandas.Series([None, None])
array = module_under_test.bq_to_arrow_array(series, bq_field)
assert array.type == pyarrow.string()
assert array.to_pylist() == list(series)
@pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`")
def test_bq_to_arrow_array_w_geography_type_wkb_data(module_under_test):
from shapely import wkb, wkt
bq_field = schema.SchemaField("field_name", "GEOGRAPHY")
series = pandas.Series([None, wkb.dumps(wkt.loads("point(0 0)"))])
array = module_under_test.bq_to_arrow_array(series, bq_field)
# The result is binary, because we use wkb format
assert array.type == pyarrow.binary()
assert array.to_pylist() == list(series)
@pytest.mark.parametrize(
"bq_schema,expected",
[
(
schema.SchemaField(
"field1",
"RANGE",
range_element_type=schema.FieldElementType("DATE"),
mode="NULLABLE",
),
pyarrow.struct(
[
("start", pyarrow.date32()),
("end", pyarrow.date32()),
]
),
),
(
schema.SchemaField(
"field2",
"RANGE",
range_element_type=schema.FieldElementType("DATETIME"),
mode="NULLABLE",
),
pyarrow.struct(
[
("start", pyarrow.timestamp("us", tz=None)),
("end", pyarrow.timestamp("us", tz=None)),
]
),
),
(
schema.SchemaField(
"field3",
"RANGE",
range_element_type=schema.FieldElementType("TIMESTAMP"),
mode="NULLABLE",
),
pyarrow.struct(
[
("start", pyarrow.timestamp("us", tz="UTC")),
("end", pyarrow.timestamp("us", tz="UTC")),
]
),
),
],
)
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_bq_to_arrow_data_type_w_range(module_under_test, bq_schema, expected):
actual = module_under_test.bq_to_arrow_data_type(bq_schema)
assert actual.equals(expected)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_bq_to_arrow_data_type_w_range_no_element(module_under_test):
field = schema.SchemaField("field1", "RANGE", mode="NULLABLE")
with pytest.raises(ValueError, match="Range element type cannot be None"):
module_under_test.bq_to_arrow_data_type(field)
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_schema_w_unknown_type(module_under_test):
fields = (
schema.SchemaField("field1", "STRING"),
schema.SchemaField("field2", "INTEGER"),
# Don't know what to convert UNKNOWN_TYPE to, let type inference work,
# instead.
schema.SchemaField("field3", "UNKNOWN_TYPE"),
)
with warnings.catch_warnings(record=True) as warned:
actual = module_under_test.bq_to_arrow_schema(fields)
assert actual is None
assert len(warned) == 1
warning = warned[0]
assert "field3" in str(warning)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_get_column_or_index_not_found(module_under_test):
dataframe = pandas.DataFrame({"not_the_column_youre_looking_for": [1, 2, 3]})
with pytest.raises(ValueError, match="col_is_missing"):
module_under_test.get_column_or_index(dataframe, "col_is_missing")
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_get_column_or_index_with_multiindex_not_found(module_under_test):
dataframe = pandas.DataFrame(
{"column_name": [1, 2, 3, 4, 5, 6]},
index=pandas.MultiIndex.from_tuples(
[("a", 0), ("a", 1), ("b", 0), ("b", 1), ("c", 0), ("c", 1)]
),
)
with pytest.raises(ValueError, match="not_in_df"):
module_under_test.get_column_or_index(dataframe, "not_in_df")
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_get_column_or_index_with_both_prefers_column(module_under_test):
dataframe = pandas.DataFrame(
{"some_name": [1, 2, 3]}, index=pandas.Index([0, 1, 2], name="some_name")
)
series = module_under_test.get_column_or_index(dataframe, "some_name")
expected = pandas.Series([1, 2, 3], name="some_name")
pandas.testing.assert_series_equal(series, expected)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_get_column_or_index_with_column(module_under_test):
dataframe = pandas.DataFrame({"column_name": [1, 2, 3], "other_column": [4, 5, 6]})
series = module_under_test.get_column_or_index(dataframe, "column_name")
expected = pandas.Series([1, 2, 3], name="column_name")
pandas.testing.assert_series_equal(series, expected)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_get_column_or_index_with_named_index(module_under_test):
dataframe = pandas.DataFrame(
{"column_name": [1, 2, 3]}, index=pandas.Index([4, 5, 6], name="index_name")
)
series = module_under_test.get_column_or_index(dataframe, "index_name")
expected = pandas.Series([4, 5, 6], name="index_name")
pandas.testing.assert_series_equal(series, expected)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_get_column_or_index_with_datetimeindex(module_under_test):
datetimes = [
datetime.datetime(2000, 1, 2, 3, 4, 5, 101),
datetime.datetime(2006, 7, 8, 9, 10, 11, 202),
datetime.datetime(2012, 1, 14, 15, 16, 17, 303),
]
dataframe = pandas.DataFrame(
{"column_name": [1, 2, 3]},
index=pandas.DatetimeIndex(datetimes, name="index_name"),
)
series = module_under_test.get_column_or_index(dataframe, "index_name")
expected = pandas.Series(datetimes, name="index_name")
pandas.testing.assert_series_equal(series, expected)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_get_column_or_index_with_multiindex(module_under_test):
dataframe = pandas.DataFrame(
{"column_name": [1, 2, 3, 4, 5, 6]},
index=pandas.MultiIndex.from_tuples(
[("a", 0), ("a", 1), ("b", 0), ("b", 1), ("c", 0), ("c", 1)],
names=["letters", "numbers"],
),
)
series = module_under_test.get_column_or_index(dataframe, "letters")
expected = pandas.Series(["a", "a", "b", "b", "c", "c"], name="letters")
pandas.testing.assert_series_equal(series, expected)
series = module_under_test.get_column_or_index(dataframe, "numbers")
expected = pandas.Series([0, 1, 0, 1, 0, 1], name="numbers")
pandas.testing.assert_series_equal(series, expected)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_list_columns_and_indexes_without_named_index(module_under_test):
df_data = collections.OrderedDict(
[
("a_series", [1, 2, 3, 4]),
("b_series", [0.1, 0.2, 0.3, 0.4]),
("c_series", ["a", "b", "c", "d"]),
]
)
dataframe = pandas.DataFrame(df_data)
columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
expected = [
("a_series", pandas.api.types.pandas_dtype("int64")),
("b_series", pandas.api.types.pandas_dtype("float64")),
("c_series", pandas.api.types.pandas_dtype("object")),
]
assert columns_and_indexes == expected
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_list_columns_and_indexes_with_named_index_same_as_column_name(
module_under_test,
):
df_data = collections.OrderedDict(
[
("a_series", [1, 2, 3, 4]),
("b_series", [0.1, 0.2, 0.3, 0.4]),
("c_series", ["a", "b", "c", "d"]),
]
)
dataframe = pandas.DataFrame(
df_data,
# Use same name as an integer column but a different datatype so that
# we can verify that the column is listed but the index isn't.
index=pandas.Index([0.1, 0.2, 0.3, 0.4], name="a_series"),
)
columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
expected = [
("a_series", pandas.api.types.pandas_dtype("int64")),
("b_series", pandas.api.types.pandas_dtype("float64")),
("c_series", pandas.api.types.pandas_dtype("object")),
]
assert columns_and_indexes == expected
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_json_generator(module_under_test):
utcnow = datetime.datetime.utcnow()
dataframe = pandas.DataFrame(
{
"a_series": [1, 2, 3, 4],
"b_series": [0.1, float("NaN"), 0.3, 0.4],
"c_series": ["a", "b", pandas.NA, "d"],
"d_series": [utcnow, utcnow, utcnow, pandas.NaT],
"e_series": [True, False, True, None],
# Support nullable dtypes.
# https://github.com/googleapis/python-bigquery/issues/1815
"boolean_series": pandas.Series(
[True, False, pandas.NA, False], dtype="boolean"
),
"int64_series": pandas.Series([-1, pandas.NA, -3, -4], dtype="Int64"),
}
)
# Index is not included, even if it is not the default and has a name.
dataframe = dataframe.rename(index=lambda idx: idx + 4)
dataframe.index.name = "a_index"
rows = list(module_under_test.dataframe_to_json_generator(dataframe))
expected = [
{
"a_series": 1,
"b_series": 0.1,
"c_series": "a",
"d_series": utcnow,
"e_series": True,
"boolean_series": True,
"int64_series": -1,
},
{
"a_series": 2,
"c_series": "b",
"d_series": utcnow,
"e_series": False,
"boolean_series": False,
},
{
"a_series": 3,
"b_series": 0.3,
"d_series": utcnow,
"e_series": True,
"int64_series": -3,
},
{
"a_series": 4,
"b_series": 0.4,
"c_series": "d",
"boolean_series": False,
"int64_series": -4,
},
]
assert rows == expected
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_json_generator_repeated_field(module_under_test):
df_data = [
collections.OrderedDict(
[("repeated_col", [pandas.NA, 2, None, 4]), ("not_repeated_col", "first")]
),
collections.OrderedDict(
[
("repeated_col", ["a", "b", mock.sentinel.foo, "d"]),
("not_repeated_col", "second"),
]
),
]
dataframe = pandas.DataFrame(df_data)
rows = module_under_test.dataframe_to_json_generator(dataframe)
expected = [
{"repeated_col": [pandas.NA, 2, None, 4], "not_repeated_col": "first"},
{
"repeated_col": ["a", "b", mock.sentinel.foo, "d"],
"not_repeated_col": "second",
},
]
assert list(rows) == expected
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_list_columns_and_indexes_with_named_index(module_under_test):
df_data = collections.OrderedDict(
[
("a_series", [1, 2, 3, 4]),
("b_series", [0.1, 0.2, 0.3, 0.4]),
("c_series", ["a", "b", "c", "d"]),
]
)
dataframe = pandas.DataFrame(
df_data, index=pandas.Index([4, 5, 6, 7], name="a_index")
)
columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
expected = [
("a_index", pandas.api.types.pandas_dtype("int64")),
("a_series", pandas.api.types.pandas_dtype("int64")),
("b_series", pandas.api.types.pandas_dtype("float64")),
("c_series", pandas.api.types.pandas_dtype("object")),
]
assert columns_and_indexes == expected
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_list_columns_and_indexes_with_multiindex(module_under_test):
df_data = collections.OrderedDict(
[
("a_series", [1, 2, 3, 4]),
("b_series", [0.1, 0.2, 0.3, 0.4]),
("c_series", ["a", "b", "c", "d"]),
]
)
dataframe = pandas.DataFrame(
df_data,
index=pandas.MultiIndex.from_tuples(
[(0, 0, 41), (0, 0, 42), (1, 0, 41), (1, 1, 41)],
names=[
"a_index",
# Use same name as column, but different dtype so we can verify
# the column type is included.
"b_series",
"c_index",
],
),
)
columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
expected = [
("a_index", pandas.api.types.pandas_dtype("int64")),
("c_index", pandas.api.types.pandas_dtype("int64")),
("a_series", pandas.api.types.pandas_dtype("int64")),
("b_series", pandas.api.types.pandas_dtype("float64")),
("c_series", pandas.api.types.pandas_dtype("object")),
]
assert columns_and_indexes == expected
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_arrow_with_multiindex(module_under_test):
bq_schema = (
schema.SchemaField("str_index", "STRING"),
# int_index is intentionally omitted, to verify that it's okay to be
# missing indexes from the schema.
schema.SchemaField("dt_index", "DATETIME"),
schema.SchemaField("int_col", "INTEGER"),
schema.SchemaField("nullable_int_col", "INTEGER"),
schema.SchemaField("str_col", "STRING"),
)
df_data = collections.OrderedDict(
[
("int_col", [1, 2, 3, 4, 5, 6]),
("nullable_int_col", [6.0, float("nan"), 7.0, float("nan"), 8.0, 9.0]),
("str_col", ["apple", "banana", "cherry", "durian", "etrog", "fig"]),
]
)
df_index = pandas.MultiIndex.from_tuples(
[
("a", 0, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)),
("a", 0, datetime.datetime(2000, 1, 1, 0, 0, 0)),
("a", 1, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)),
("b", 1, datetime.datetime(2000, 1, 1, 0, 0, 0)),
("b", 0, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)),
("b", 0, datetime.datetime(2000, 1, 1, 0, 0, 0)),
],
names=["str_index", "int_index", "dt_index"],
)
dataframe = pandas.DataFrame(df_data, index=df_index)
arrow_table = module_under_test.dataframe_to_arrow(dataframe, bq_schema)
assert arrow_table.schema.names == [
"str_index",
"dt_index",
"int_col",
"nullable_int_col",
"str_col",
]
arrow_data = arrow_table.to_pydict()
assert arrow_data["str_index"] == ["a", "a", "a", "b", "b", "b"]
expected_dt_index = [
pandas.Timestamp(dt)
for dt in (
datetime.datetime(1999, 12, 31, 23, 59, 59, 999999),
datetime.datetime(2000, 1, 1, 0, 0, 0),
datetime.datetime(1999, 12, 31, 23, 59, 59, 999999),
datetime.datetime(2000, 1, 1, 0, 0, 0),
datetime.datetime(1999, 12, 31, 23, 59, 59, 999999),
datetime.datetime(2000, 1, 1, 0, 0, 0),
)
]
assert arrow_data["dt_index"] == expected_dt_index
assert arrow_data["int_col"] == [1, 2, 3, 4, 5, 6]
assert arrow_data["nullable_int_col"] == [6, None, 7, None, 8, 9]
assert arrow_data["str_col"] == [
"apple",
"banana",
"cherry",
"durian",
"etrog",
"fig",
]
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_arrow_with_required_fields(module_under_test):
bq_schema = (
schema.SchemaField("field01", "STRING", mode="REQUIRED"),
schema.SchemaField("field02", "BYTES", mode="REQUIRED"),
schema.SchemaField("field03", "INTEGER", mode="REQUIRED"),
schema.SchemaField("field04", "INT64", mode="REQUIRED"),
schema.SchemaField("field05", "FLOAT", mode="REQUIRED"),
schema.SchemaField("field06", "FLOAT64", mode="REQUIRED"),
schema.SchemaField("field07", "NUMERIC", mode="REQUIRED"),
schema.SchemaField("field08", "BIGNUMERIC", mode="REQUIRED"),
schema.SchemaField("field09", "BOOLEAN", mode="REQUIRED"),
schema.SchemaField("field10", "BOOL", mode="REQUIRED"),
schema.SchemaField("field11", "TIMESTAMP", mode="REQUIRED"),
schema.SchemaField("field12", "DATE", mode="REQUIRED"),
schema.SchemaField("field13", "TIME", mode="REQUIRED"),
schema.SchemaField("field14", "DATETIME", mode="REQUIRED"),
schema.SchemaField("field15", "GEOGRAPHY", mode="REQUIRED"),
)
data = {
"field01": ["hello", None, "world"],
"field02": [b"abd", b"efg", b"hij"],
"field03": [1, 2, 3],
"field04": [4, None, 5],
"field05": [1.25, 0.0, 9.75],
"field06": [-1.75, None, -3.5],
"field07": [
decimal.Decimal("1.2345"),
decimal.Decimal("6.7891"),
-decimal.Decimal("10.111213"),
],
"field08": [
decimal.Decimal("-{d38}.{d38}".format(d38="9" * 38)),
None,
decimal.Decimal("{d38}.{d38}".format(d38="9" * 38)),
],
"field09": [True, False, True],
"field10": [False, True, None],
"field11": [
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
datetime.datetime(2012, 12, 21, 9, 7, 42, tzinfo=datetime.timezone.utc),
datetime.datetime(2022, 7, 14, 23, 59, 59, tzinfo=datetime.timezone.utc),
],
"field12": [datetime.date(9999, 12, 31), None, datetime.date(1970, 1, 1)],
"field13": [datetime.time(23, 59, 59, 999999), None, datetime.time(12, 0, 0)],
"field14": [
datetime.datetime(1970, 1, 1, 0, 0, 0),
None,
datetime.datetime(2012, 12, 21, 9, 7, 42),
],
"field15": [
None,
"POINT(30 10)",
"POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))",
],
}
dataframe = pandas.DataFrame(data)
arrow_table = module_under_test.dataframe_to_arrow(dataframe, bq_schema)
arrow_schema = arrow_table.schema
assert len(arrow_schema) == len(bq_schema)
for arrow_field in arrow_schema:
# Even if the remote schema is REQUIRED, there's a chance there's
# local NULL values. Arrow will gladly interpret these NULL values
# as non-NULL and give you an arbitrary value. See:
# https://github.com/googleapis/python-bigquery/issues/1692
assert arrow_field.nullable
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_arrow_with_unknown_type(module_under_test):
bq_schema = (
schema.SchemaField("field00", "UNKNOWN_TYPE"),
schema.SchemaField("field01", "STRING"),
schema.SchemaField("field02", "BYTES"),
schema.SchemaField("field03", "INTEGER"),
)
dataframe = pandas.DataFrame(
{
"field00": ["whoami", "whatami"],
"field01": ["hello", "world"],
"field02": [b"abd", b"efg"],
"field03": [1, 2],
}
)
with warnings.catch_warnings(record=True) as warned:
arrow_table = module_under_test.dataframe_to_arrow(dataframe, bq_schema)
arrow_schema = arrow_table.schema
assert len(warned) == 1
warning = warned[0]
assert "field00" in str(warning)
assert len(arrow_schema) == len(bq_schema)
assert arrow_schema[0].name == "field00"
assert arrow_schema[1].name == "field01"
assert arrow_schema[2].name == "field02"
assert arrow_schema[3].name == "field03"
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_arrow_dict_sequence_schema(module_under_test):
dict_schema = [
{"name": "field01", "type": "STRING", "mode": "REQUIRED"},
{"name": "field02", "type": "BOOL", "mode": "NULLABLE"},
]
dataframe = pandas.DataFrame(
{"field01": ["hello", "world"], "field02": [True, False]}
)
arrow_table = module_under_test.dataframe_to_arrow(dataframe, dict_schema)
arrow_schema = arrow_table.schema
expected_fields = [
# Even if the remote schema is REQUIRED, there's a chance there's
# local NULL values. Arrow will gladly interpret these NULL values
# as non-NULL and give you an arbitrary value. See:
# https://github.com/googleapis/python-bigquery/issues/1692
pyarrow.field("field01", "string", nullable=True),
pyarrow.field("field02", "bool", nullable=True),
]
assert list(arrow_schema) == expected_fields
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_parquet_without_pyarrow(module_under_test, monkeypatch):
mock_pyarrow_import = mock.Mock()
mock_pyarrow_import.side_effect = exceptions.LegacyPyarrowError(
"pyarrow not installed"
)
monkeypatch.setattr(
_versions_helpers.PYARROW_VERSIONS, "try_import", mock_pyarrow_import
)
with pytest.raises(exceptions.LegacyPyarrowError):
module_under_test.dataframe_to_parquet(pandas.DataFrame(), (), None)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_parquet_w_extra_fields(module_under_test):
with pytest.raises(ValueError) as exc_context:
module_under_test.dataframe_to_parquet(
pandas.DataFrame(), (schema.SchemaField("not_in_df", "STRING"),), None
)
message = str(exc_context.value)
assert "bq_schema contains fields not present in dataframe" in message
assert "not_in_df" in message
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_parquet_w_missing_fields(module_under_test):
with pytest.raises(ValueError) as exc_context:
module_under_test.dataframe_to_parquet(
pandas.DataFrame({"not_in_bq": [1, 2, 3]}), (), None
)
message = str(exc_context.value)
assert "bq_schema is missing fields from dataframe" in message
assert "not_in_bq" in message
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_parquet_compression_method(module_under_test):
bq_schema = (schema.SchemaField("field00", "STRING"),)
dataframe = pandas.DataFrame({"field00": ["foo", "bar"]})
write_table_patch = mock.patch.object(
module_under_test.pyarrow.parquet, "write_table", autospec=True
)
with write_table_patch as fake_write_table:
module_under_test.dataframe_to_parquet(
dataframe, bq_schema, None, parquet_compression="ZSTD"
)
call_args = fake_write_table.call_args
assert call_args is not None
assert call_args[1].get("compression") == "ZSTD"
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_w_named_index(module_under_test):
df_data = collections.OrderedDict(
[
("str_column", ["hello", "world"]),
("int_column", [42, 8]),
("bool_column", [True, False]),
]
)
index = pandas.Index(["a", "b"], name="str_index")
dataframe = pandas.DataFrame(df_data, index=index)
returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, [])
expected_schema = (
schema.SchemaField("str_index", "STRING", "NULLABLE"),
schema.SchemaField("str_column", "STRING", "NULLABLE"),
schema.SchemaField("int_column", "INTEGER", "NULLABLE"),
schema.SchemaField("bool_column", "BOOLEAN", "NULLABLE"),
)
assert returned_schema == expected_schema
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_w_multiindex(module_under_test):
df_data = collections.OrderedDict(
[
("str_column", ["hello", "world"]),
("int_column", [42, 8]),
("bool_column", [True, False]),
]
)
index = pandas.MultiIndex.from_tuples(
[
("a", 0, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)),
("a", 0, datetime.datetime(2000, 1, 1, 0, 0, 0)),
],
names=["str_index", "int_index", "dt_index"],
)
dataframe = pandas.DataFrame(df_data, index=index)
returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, [])
expected_schema = (
schema.SchemaField("str_index", "STRING", "NULLABLE"),
schema.SchemaField("int_index", "INTEGER", "NULLABLE"),
schema.SchemaField("dt_index", "DATETIME", "NULLABLE"),
schema.SchemaField("str_column", "STRING", "NULLABLE"),
schema.SchemaField("int_column", "INTEGER", "NULLABLE"),
schema.SchemaField("bool_column", "BOOLEAN", "NULLABLE"),
)
assert returned_schema == expected_schema
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_w_bq_schema(module_under_test):
df_data = collections.OrderedDict(
[
("str_column", ["hello", "world"]),
("int_column", [42, 8]),
("bool_column", [True, False]),
]
)
dataframe = pandas.DataFrame(df_data)
dict_schema = [
{"name": "str_column", "type": "STRING", "mode": "NULLABLE"},
{"name": "bool_column", "type": "BOOL", "mode": "REQUIRED"},
]
returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, dict_schema)
expected_schema = (
schema.SchemaField("str_column", "STRING", "NULLABLE"),
schema.SchemaField("int_column", "INTEGER", "NULLABLE"),
schema.SchemaField("bool_column", "BOOL", "REQUIRED"),
)
assert returned_schema == expected_schema
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_fallback_needed_wo_pyarrow(module_under_test):
dataframe = pandas.DataFrame(
data=[
{"id": 10, "status": "FOO", "execution_date": datetime.date(2019, 5, 10)},
{"id": 20, "status": "BAR", "created_at": datetime.date(2018, 9, 12)},
]
)
no_pyarrow_patch = mock.patch(module_under_test.__name__ + ".pyarrow", None)
with no_pyarrow_patch, warnings.catch_warnings(record=True) as warned:
detected_schema = module_under_test.dataframe_to_bq_schema(
dataframe, bq_schema=[]
)
assert detected_schema is None
# a warning should also be issued
expected_warnings = [
warning for warning in warned if "could not determine" in str(warning).lower()
]
assert len(expected_warnings) == 1
msg = str(expected_warnings[0])
assert "execution_date" in msg and "created_at" in msg
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_bq_schema_fallback_needed_w_pyarrow(module_under_test):
dataframe = pandas.DataFrame(
data=[
{"id": 10, "status": "FOO", "created_at": datetime.date(2019, 5, 10)},
{"id": 20, "status": "BAR", "created_at": datetime.date(2018, 9, 12)},
]
)
with warnings.catch_warnings(record=True) as warned:
detected_schema = module_under_test.dataframe_to_bq_schema(
dataframe, bq_schema=[]
)
expected_schema = (
schema.SchemaField("id", "INTEGER", mode="NULLABLE"),
schema.SchemaField("status", "STRING", mode="NULLABLE"),
schema.SchemaField("created_at", "DATE", mode="NULLABLE"),
)
by_name = operator.attrgetter("name")
assert sorted(detected_schema, key=by_name) == sorted(expected_schema, key=by_name)
# there should be no relevant warnings
unwanted_warnings = [
warning for warning in warned if "could not determine" in str(warning).lower()
]
assert not unwanted_warnings
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_bq_schema_pyarrow_fallback_fails(module_under_test):
dataframe = pandas.DataFrame(
data=[
{"struct_field": {"one": 2}, "status": "FOO"},
{"struct_field": {"two": "222"}, "status": "BAR"},
]
)
with warnings.catch_warnings(record=True) as warned:
detected_schema = module_under_test.dataframe_to_bq_schema(
dataframe, bq_schema=[]
)
assert detected_schema is None
# a warning should also be issued
expected_warnings = [
warning for warning in warned if "could not determine" in str(warning).lower()
]
assert len(expected_warnings) == 1
assert "struct_field" in str(expected_warnings[0])
@pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`")
def test_dataframe_to_bq_schema_geography(module_under_test):
from shapely import wkt
df = geopandas.GeoDataFrame(
pandas.DataFrame(
dict(
name=["foo", "bar"],
geo1=[None, None],
geo2=[None, wkt.loads("Point(1 1)")],
)
),
geometry="geo1",
)
bq_schema = module_under_test.dataframe_to_bq_schema(df, [])
assert bq_schema == (
schema.SchemaField("name", "STRING"),
schema.SchemaField("geo1", "GEOGRAPHY"),
schema.SchemaField("geo2", "GEOGRAPHY"),
)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test__first_array_valid_no_valid_items(module_under_test):
series = pandas.Series([None, pandas.NA, float("NaN")])
result = module_under_test._first_array_valid(series)
assert result is None
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test__first_array_valid_valid_item_exists(module_under_test):
series = pandas.Series([None, [0], [1], None])
result = module_under_test._first_array_valid(series)
assert result == 0
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test__first_array_valid_all_nan_items_in_first_valid_candidate(module_under_test):
import numpy
series = pandas.Series(
[
None,
[None, float("NaN"), pandas.NA, pandas.NaT, numpy.nan],
None,
[None, None],
[None, float("NaN"), pandas.NA, pandas.NaT, numpy.nan, 42, None],
[1, 2, 3],
None,
]
)
result = module_under_test._first_array_valid(series)
assert result == 42
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test__first_array_valid_no_arrays_with_valid_items(module_under_test):
series = pandas.Series([[None, None], [None, None]])
result = module_under_test._first_array_valid(series)
assert result is None
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_augment_schema_type_detection_succeeds(module_under_test):
dataframe = pandas.DataFrame(
data=[
{
"bool_field": False,
"int_field": 123,
"float_field": 3.141592,
"time_field": datetime.time(17, 59, 47),
"timestamp_field": datetime.datetime(2005, 5, 31, 14, 25, 55),
"date_field": datetime.date(2005, 5, 31),
"bytes_field": b"some bytes",
"string_field": "some characters",
"numeric_field": decimal.Decimal("123.456"),
"bignumeric_field": decimal.Decimal("{d38}.{d38}".format(d38="9" * 38)),
}
]
)
# NOTE: In Pandas dataframe, the dtype of Python's datetime instances is
# set to "datetime64[ns]", and pyarrow converts that to pyarrow.TimestampArray.
# We thus cannot expect to get a DATETIME date when converting back to the
# BigQuery type.
current_schema = (
schema.SchemaField("bool_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("int_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("float_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("time_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("timestamp_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("date_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("bytes_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("string_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("numeric_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("bignumeric_field", field_type=None, mode="NULLABLE"),
)
with warnings.catch_warnings(record=True) as warned:
augmented_schema = module_under_test.augment_schema(dataframe, current_schema)
# there should be no relevant warnings
unwanted_warnings = [
warning for warning in warned if "Pyarrow could not" in str(warning)
]
assert not unwanted_warnings
# the augmented schema must match the expected
expected_schema = (
schema.SchemaField("bool_field", field_type="BOOL", mode="NULLABLE"),
schema.SchemaField("int_field", field_type="INT64", mode="NULLABLE"),
schema.SchemaField("float_field", field_type="FLOAT64", mode="NULLABLE"),
schema.SchemaField("time_field", field_type="TIME", mode="NULLABLE"),
schema.SchemaField("timestamp_field", field_type="TIMESTAMP", mode="NULLABLE"),
schema.SchemaField("date_field", field_type="DATE", mode="NULLABLE"),
schema.SchemaField("bytes_field", field_type="BYTES", mode="NULLABLE"),
schema.SchemaField("string_field", field_type="STRING", mode="NULLABLE"),
schema.SchemaField("numeric_field", field_type="NUMERIC", mode="NULLABLE"),
schema.SchemaField(
"bignumeric_field", field_type="BIGNUMERIC", mode="NULLABLE"
),
)
by_name = operator.attrgetter("name")
assert sorted(augmented_schema, key=by_name) == sorted(expected_schema, key=by_name)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_augment_schema_repeated_fields(module_under_test):
dataframe = pandas.DataFrame(
data=[
# Include some values useless for type detection to make sure the logic
# indeed finds the value that is suitable.
{"string_array": None, "timestamp_array": None, "datetime_array": None},
{
"string_array": [None],
"timestamp_array": [None],
"datetime_array": [None],
},
{"string_array": None, "timestamp_array": None, "datetime_array": None},
{
"string_array": [None, "foo"],
"timestamp_array": [
None,
datetime.datetime(
2005, 5, 31, 14, 25, 55, tzinfo=datetime.timezone.utc
),
],
"datetime_array": [None, datetime.datetime(2005, 5, 31, 14, 25, 55)],
},
{"string_array": None, "timestamp_array": None, "datetime_array": None},
]
)
current_schema = (
schema.SchemaField("string_array", field_type=None, mode="NULLABLE"),
schema.SchemaField("timestamp_array", field_type=None, mode="NULLABLE"),
schema.SchemaField("datetime_array", field_type=None, mode="NULLABLE"),
)
with warnings.catch_warnings(record=True) as warned:
augmented_schema = module_under_test.augment_schema(dataframe, current_schema)
# there should be no relevant warnings
unwanted_warnings = [
warning for warning in warned if "Pyarrow could not" in str(warning)
]
assert not unwanted_warnings
# the augmented schema must match the expected
expected_schema = (
schema.SchemaField("string_array", field_type="STRING", mode="REPEATED"),
schema.SchemaField("timestamp_array", field_type="TIMESTAMP", mode="REPEATED"),
schema.SchemaField("datetime_array", field_type="DATETIME", mode="REPEATED"),
)
by_name = operator.attrgetter("name")
assert sorted(augmented_schema, key=by_name) == sorted(expected_schema, key=by_name)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_augment_schema_type_detection_fails(module_under_test):
dataframe = pandas.DataFrame(
data=[
{
"status": "FOO",
"struct_field": {"one": 1},
"struct_field_2": {"foo": "123"},
},
{
"status": "BAR",
"struct_field": {"two": "111"},
"struct_field_2": {"bar": 27},
},
]
)
current_schema = [
schema.SchemaField("status", field_type="STRING", mode="NULLABLE"),
schema.SchemaField("struct_field", field_type=None, mode="NULLABLE"),
schema.SchemaField("struct_field_2", field_type=None, mode="NULLABLE"),
]
with warnings.catch_warnings(record=True) as warned:
augmented_schema = module_under_test.augment_schema(dataframe, current_schema)
assert augmented_schema is None
expected_warnings = [
warning for warning in warned if "could not determine" in str(warning)
]
assert len(expected_warnings) == 1
warning_msg = str(expected_warnings[0])
assert "pyarrow" in warning_msg.lower()
assert "struct_field" in warning_msg and "struct_field_2" in warning_msg
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_augment_schema_type_detection_fails_array_data(module_under_test):
dataframe = pandas.DataFrame(
data=[{"all_none_array": [None, float("NaN")], "empty_array": []}]
)
current_schema = [
schema.SchemaField("all_none_array", field_type=None, mode="NULLABLE"),
schema.SchemaField("empty_array", field_type=None, mode="NULLABLE"),
]
with warnings.catch_warnings(record=True) as warned:
augmented_schema = module_under_test.augment_schema(dataframe, current_schema)
assert augmented_schema is None
expected_warnings = [
warning for warning in warned if "could not determine" in str(warning)
]
assert len(expected_warnings) == 1
warning_msg = str(expected_warnings[0])
assert "pyarrow" in warning_msg.lower()
assert "all_none_array" in warning_msg and "empty_array" in warning_msg
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_dataframe_to_parquet_dict_sequence_schema(module_under_test):
pandas = pytest.importorskip("pandas")
dict_schema = [
{"name": "field01", "type": "STRING", "mode": "REQUIRED"},
{"name": "field02", "type": "BOOL", "mode": "NULLABLE"},
]
dataframe = pandas.DataFrame(
{"field01": ["hello", "world"], "field02": [True, False]}
)
write_table_patch = mock.patch.object(
module_under_test.pyarrow.parquet, "write_table", autospec=True
)
to_arrow_patch = mock.patch.object(
module_under_test, "dataframe_to_arrow", autospec=True
)
with write_table_patch, to_arrow_patch as fake_to_arrow:
module_under_test.dataframe_to_parquet(dataframe, dict_schema, None)
expected_schema_arg = [
schema.SchemaField("field01", "STRING", mode="REQUIRED"),
schema.SchemaField("field02", "BOOL", mode="NULLABLE"),
]
schema_arg = fake_to_arrow.call_args[0][1]
assert schema_arg == expected_schema_arg
@pytest.mark.skipif(
bigquery_storage is None, reason="Requires `google-cloud-bigquery-storage`"
)
def test__download_table_bqstorage_stream_includes_read_session(
monkeypatch, module_under_test
):
import google.cloud.bigquery_storage_v1.reader
import google.cloud.bigquery_storage_v1.types
monkeypatch.setattr(
_versions_helpers.BQ_STORAGE_VERSIONS, "_installed_version", None
)
monkeypatch.setattr(bigquery_storage, "__version__", "2.5.0")
bqstorage_client = mock.create_autospec(
bigquery_storage.BigQueryReadClient, instance=True
)
reader = mock.create_autospec(
google.cloud.bigquery_storage_v1.reader.ReadRowsStream, instance=True
)
bqstorage_client.read_rows.return_value = reader
session = google.cloud.bigquery_storage_v1.types.ReadSession()
module_under_test._download_table_bqstorage_stream(
module_under_test._DownloadState(),
bqstorage_client,
session,
google.cloud.bigquery_storage_v1.types.ReadStream(name="test"),
queue.Queue(),
mock.Mock(),
)
reader.rows.assert_called_once_with(session)
@pytest.mark.skipif(
bigquery_storage is None
or not _versions_helpers.BQ_STORAGE_VERSIONS.is_read_session_optional,
reason="Requires `google-cloud-bigquery-storage` >= 2.6.0",
)
def test__download_table_bqstorage_stream_omits_read_session(
monkeypatch, module_under_test
):
import google.cloud.bigquery_storage_v1.reader
import google.cloud.bigquery_storage_v1.types
monkeypatch.setattr(
_versions_helpers.BQ_STORAGE_VERSIONS, "_installed_version", None
)
monkeypatch.setattr(bigquery_storage, "__version__", "2.6.0")
bqstorage_client = mock.create_autospec(
bigquery_storage.BigQueryReadClient, instance=True
)
reader = mock.create_autospec(
google.cloud.bigquery_storage_v1.reader.ReadRowsStream, instance=True
)
bqstorage_client.read_rows.return_value = reader
session = google.cloud.bigquery_storage_v1.types.ReadSession()
module_under_test._download_table_bqstorage_stream(
module_under_test._DownloadState(),
bqstorage_client,
session,
google.cloud.bigquery_storage_v1.types.ReadStream(name="test"),
queue.Queue(),
mock.Mock(),
)
reader.rows.assert_called_once_with()
@pytest.mark.parametrize(
"stream_count,maxsize_kwarg,expected_call_count,expected_maxsize",
[
(3, {"max_queue_size": 2}, 3, 2), # custom queue size
(4, {}, 4, 4), # default queue size
(7, {"max_queue_size": None}, 7, 0), # infinite queue size
],
)
@pytest.mark.skipif(
bigquery_storage is None, reason="Requires `google-cloud-bigquery-storage`"
)
def test__download_table_bqstorage(
module_under_test,
stream_count,
maxsize_kwarg,
expected_call_count,
expected_maxsize,
):
from google.cloud.bigquery import dataset
from google.cloud.bigquery import table
queue_used = None # A reference to the queue used by code under test.
bqstorage_client = mock.create_autospec(
bigquery_storage.BigQueryReadClient, instance=True
)
fake_session = mock.Mock(streams=["stream/s{i}" for i in range(stream_count)])
bqstorage_client.create_read_session.return_value = fake_session
table_ref = table.TableReference(
dataset.DatasetReference("project-x", "dataset-y"),
"table-z",
)
def fake_download_stream(
download_state, bqstorage_client, session, stream, worker_queue, page_to_item
):
nonlocal queue_used
queue_used = worker_queue
try:
worker_queue.put_nowait("result_page")
except queue.Full: # pragma: NO COVER
pass
download_stream = mock.Mock(side_effect=fake_download_stream)
with mock.patch.object(
module_under_test, "_download_table_bqstorage_stream", new=download_stream
):
result_gen = module_under_test._download_table_bqstorage(
"some-project", table_ref, bqstorage_client, **maxsize_kwarg
)
list(result_gen)
# Timing-safe, as the method under test should block until the pool shutdown is
# complete, at which point all download stream workers have already been submitted
# to the thread pool.
assert download_stream.call_count == stream_count # once for each stream
assert queue_used.maxsize == expected_maxsize
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_download_arrow_row_iterator_unknown_field_type(module_under_test):
fake_page = api_core.page_iterator.Page(
parent=mock.Mock(),
items=[{"page_data": "foo"}],
item_to_value=api_core.page_iterator._item_to_value_identity,
)
fake_page._columns = [[1, 10, 100], [2.2, 22.22, 222.222]]
pages = [fake_page]
bq_schema = [
schema.SchemaField("population_size", "INTEGER"),
schema.SchemaField("alien_field", "ALIEN_FLOAT_TYPE"),
]
results_gen = module_under_test.download_arrow_row_iterator(pages, bq_schema)
with warnings.catch_warnings(record=True) as warned:
result = next(results_gen)
unwanted_warnings = [
warning
for warning in warned
if "please pass schema= explicitly" in str(warning).lower()
]
assert not unwanted_warnings
assert len(result.columns) == 2
col = result.columns[0]
assert type(col) is pyarrow.lib.Int64Array
assert col.to_pylist() == [1, 10, 100]
col = result.columns[1]
assert type(col) is pyarrow.lib.DoubleArray
assert col.to_pylist() == [2.2, 22.22, 222.222]
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_download_arrow_row_iterator_known_field_type(module_under_test):
fake_page = api_core.page_iterator.Page(
parent=mock.Mock(),
items=[{"page_data": "foo"}],
item_to_value=api_core.page_iterator._item_to_value_identity,
)
fake_page._columns = [[1, 10, 100], ["2.2", "22.22", "222.222"]]
pages = [fake_page]
bq_schema = [
schema.SchemaField("population_size", "INTEGER"),
schema.SchemaField("non_alien_field", "STRING"),
]
results_gen = module_under_test.download_arrow_row_iterator(pages, bq_schema)
with warnings.catch_warnings(record=True) as warned:
result = next(results_gen)
unwanted_warnings = [
warning
for warning in warned
if "please pass schema= explicitly" in str(warning).lower()
]
assert not unwanted_warnings
assert len(result.columns) == 2
col = result.columns[0]
assert type(col) is pyarrow.lib.Int64Array
assert col.to_pylist() == [1, 10, 100]
col = result.columns[1]
assert type(col) is pyarrow.lib.StringArray
assert col.to_pylist() == ["2.2", "22.22", "222.222"]
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_download_arrow_row_iterator_dict_sequence_schema(module_under_test):
fake_page = api_core.page_iterator.Page(
parent=mock.Mock(),
items=[{"page_data": "foo"}],
item_to_value=api_core.page_iterator._item_to_value_identity,
)
fake_page._columns = [[1, 10, 100], ["2.2", "22.22", "222.222"]]
pages = [fake_page]
dict_schema = [
{"name": "population_size", "type": "INTEGER", "mode": "NULLABLE"},
{"name": "non_alien_field", "type": "STRING", "mode": "NULLABLE"},
]
results_gen = module_under_test.download_arrow_row_iterator(pages, dict_schema)
result = next(results_gen)
assert len(result.columns) == 2
col = result.columns[0]
assert type(col) is pyarrow.lib.Int64Array
assert col.to_pylist() == [1, 10, 100]
col = result.columns[1]
assert type(col) is pyarrow.lib.StringArray
assert col.to_pylist() == ["2.2", "22.22", "222.222"]
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_download_dataframe_row_iterator_dict_sequence_schema(module_under_test):
fake_page = api_core.page_iterator.Page(
parent=mock.Mock(),
items=[{"page_data": "foo"}],
item_to_value=api_core.page_iterator._item_to_value_identity,
)
fake_page._columns = [[1, 10, 100], ["2.2", "22.22", "222.222"]]
pages = [fake_page]
dict_schema = [
{"name": "population_size", "type": "INTEGER", "mode": "NULLABLE"},
{"name": "non_alien_field", "type": "STRING", "mode": "NULLABLE"},
]
results_gen = module_under_test.download_dataframe_row_iterator(
pages, dict_schema, dtypes={}
)
result = next(results_gen)
expected_result = pandas.DataFrame(
collections.OrderedDict(
[
("population_size", [1, 10, 100]),
("non_alien_field", ["2.2", "22.22", "222.222"]),
]
)
)
assert result.equals(expected_result)
with pytest.raises(StopIteration):
result = next(results_gen)
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_table_data_listpage_to_dataframe_skips_stop_iteration(module_under_test):
dataframe = module_under_test._row_iterator_page_to_dataframe([], [], {})
assert isinstance(dataframe, pandas.DataFrame)
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_field_type_override(module_under_test):
# When loading pandas data, we may need to override the type
# decision based on data contents, because GEOGRAPHY data can be
# stored as either text or binary.
assert (
module_under_test.bq_to_arrow_field(schema.SchemaField("g", "GEOGRAPHY")).type
== pyarrow.string()
)
assert (
module_under_test.bq_to_arrow_field(
schema.SchemaField("g", "GEOGRAPHY"),
pyarrow.binary(),
).type
== pyarrow.binary()
)
@pytest.mark.parametrize(
"field_type, metadata",
[
("datetime", {b"ARROW:extension:name": b"google:sqlType:datetime"}),
(
"geography",
{
b"ARROW:extension:name": b"google:sqlType:geography",
b"ARROW:extension:metadata": b'{"encoding": "WKT"}',
},
),
],
)
@pytest.mark.skipif(isinstance(pyarrow, mock.Mock), reason="Requires `pyarrow`")
def test_bq_to_arrow_field_metadata(module_under_test, field_type, metadata):
assert (
module_under_test.bq_to_arrow_field(
schema.SchemaField("g", field_type)
).metadata
== metadata
)
def test_verify_pandas_imports_no_pandas(module_under_test, monkeypatch):
monkeypatch.setattr(module_under_test, "pandas", None)
with pytest.raises(ValueError, match="Please install the 'pandas' package"):
module_under_test.verify_pandas_imports()
@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_verify_pandas_imports_no_db_dtypes(module_under_test, monkeypatch):
monkeypatch.setattr(module_under_test, "db_dtypes", None)
with pytest.raises(ValueError, match="Please install the 'db-dtypes' package"):
module_under_test.verify_pandas_imports()