.. _aiohttp-web-advanced: Web Server Advanced =================== .. currentmodule:: aiohttp.web Unicode support --------------- *aiohttp* does :term:`requoting` of incoming request path. Unicode (non-ASCII) symbols are processed transparently on both *route adding* and *resolving* (internally everything is converted to :term:`percent-encoding` form by :term:`yarl` library). But in case of custom regular expressions for :ref:`aiohttp-web-variable-handler` please take care that URL is *percent encoded*: if you pass Unicode patterns they don't match to *requoted* path. .. _aiohttp-web-peer-disconnection: Peer disconnection ------------------ *aiohttp* has 2 approaches to handling client disconnections. If you are familiar with asyncio, or scalability is a concern for your application, we recommend using the handler cancellation method. Raise on read/write (default) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ When a client peer is gone, a subsequent reading or writing raises :exc:`OSError` or a more specific exception like :exc:`ConnectionResetError`. This behavior is similar to classic WSGI frameworks like Flask and Django. The reason for disconnection varies; it can be a network issue or explicit socket closing on the peer side without reading the full server response. *aiohttp* handles disconnection properly but you can handle it explicitly, e.g.:: async def handler(request): try: text = await request.text() except OSError: # disconnected .. _web-handler-cancellation: Web handler cancellation ^^^^^^^^^^^^^^^^^^^^^^^^ This method can be enabled using the ``handler_cancellation`` parameter to :func:`run_app`. When a client disconnects, the web handler task will be cancelled. This is recommended as it can reduce the load on your server when there is no client to receive a response. It can also help make your application more resilient to DoS attacks (by requiring an attacker to keep a connection open in order to waste server resources). This behavior is very different from classic WSGI frameworks like Flask and Django. It requires a reasonable level of asyncio knowledge to use correctly without causing issues in your code. We provide some examples here to help understand the complexity and methods needed to deal with them. .. warning:: :term:`web-handler` execution could be canceled on every ``await`` or ``async with`` if client drops connection without reading entire response's BODY. Sometimes it is a desirable behavior: on processing ``GET`` request the code might fetch data from a database or other web resource, the fetching is potentially slow. Canceling this fetch is a good idea: the client dropped the connection already, so there is no reason to waste time and resources (memory etc) by getting data from a DB without any chance to send it back to the client. But sometimes the cancellation is bad: on ``POST`` requests very often it is needed to save data to a DB regardless of connection closing. Cancellation prevention could be implemented in several ways: * Applying :func:`aiojobs.aiohttp.shield` to a coroutine that saves data. * Using aiojobs_ or another third party library to run a task in the background. :func:`aiojobs.aiohttp.shield` can work well. The only disadvantage is you need to split the web handler into two async functions: one for the handler itself and another for protected code. .. warning:: We don't recommend using :func:`asyncio.shield` for this because the shielded task cannot be tracked by the application and therefore there is a risk that the task will get cancelled during application shutdown. The function provided by aiojobs_ operates in the same way except the inner task will be tracked by the Scheduler and will get waited on during the cleanup phase. For example the following snippet is not safe:: from aiojobs.aiohttp import shield async def handler(request): await shield(request, write_to_redis(request)) await shield(request, write_to_postgres(request)) return web.Response(text="OK") Cancellation might occur while saving data in REDIS, so the ``write_to_postgres`` function will not be called, potentially leaving your data in an inconsistent state. Instead, you would need to write something like:: async def write_data(request): await write_to_redis(request) await write_to_postgres(request) async def handler(request): await shield(request, write_data(request)) return web.Response(text="OK") Alternatively, if you want to spawn a task without waiting for its completion, you can use aiojobs_ which provides an API for spawning new background jobs. It stores all scheduled activity in internal data structures and can terminate them gracefully:: from aiojobs.aiohttp import setup, spawn async def handler(request): await spawn(request, write_data()) return web.Response() app = web.Application() setup(app) app.router.add_get("/", handler) .. warning:: Don't use :func:`asyncio.create_task` for this. All tasks should be awaited at some point in your code (``aiojobs`` handles this for you), otherwise you will hide legitimate exceptions and result in warnings being emitted. A good case for using :func:`asyncio.create_task` is when you want to run something while you are processing other data, but still want to ensure the task is complete before returning:: async def handler(request): t = asyncio.create_task(get_some_data()) ... # Do some other things, while data is being fetched. data = await t return web.Response(text=data) One more approach would be to use :func:`aiojobs.aiohttp.atomic` decorator to execute the entire handler as a new job. Essentially restoring the default disconnection behavior only for specific handlers:: from aiojobs.aiohttp import atomic @atomic async def handler(request): await write_to_db() return web.Response() app = web.Application() setup(app) app.router.add_post("/", handler) It prevents all of the ``handler`` async function from cancellation, so ``write_to_db`` will never be interrupted. .. _aiojobs: http://aiojobs.readthedocs.io/en/latest/ Passing a coroutine into run_app and Gunicorn --------------------------------------------- :func:`run_app` accepts either application instance or a coroutine for making an application. The coroutine based approach allows to perform async IO before making an app:: async def app_factory(): await pre_init() app = web.Application() app.router.add_get(...) return app web.run_app(app_factory()) Gunicorn worker supports a factory as well. For Gunicorn the factory should accept zero parameters:: async def my_web_app(): app = web.Application() app.router.add_get(...) return app Start gunicorn: .. code-block:: shell $ gunicorn my_app_module:my_web_app --bind localhost:8080 --worker-class aiohttp.GunicornWebWorker .. versionadded:: 3.1 Custom Routing Criteria ----------------------- Sometimes you need to register :ref:`handlers ` on more complex criteria than simply a *HTTP method* and *path* pair. Although :class:`UrlDispatcher` does not support any extra criteria, routing based on custom conditions can be accomplished by implementing a second layer of routing in your application. The following example shows custom routing based on the *HTTP Accept* header:: class AcceptChooser: def __init__(self): self._accepts = {} async def do_route(self, request): for accept in request.headers.getall('ACCEPT', []): acceptor = self._accepts.get(accept) if acceptor is not None: return (await acceptor(request)) raise HTTPNotAcceptable() def reg_acceptor(self, accept, handler): self._accepts[accept] = handler async def handle_json(request): # do json handling async def handle_xml(request): # do xml handling chooser = AcceptChooser() app.add_routes([web.get('/', chooser.do_route)]) chooser.reg_acceptor('application/json', handle_json) chooser.reg_acceptor('application/xml', handle_xml) .. _aiohttp-web-static-file-handling: Static file handling -------------------- The best way to handle static files (images, JavaScripts, CSS files etc.) is using `Reverse Proxy`_ like `nginx`_ or `CDN`_ services. .. _Reverse Proxy: https://en.wikipedia.org/wiki/Reverse_proxy .. _nginx: https://nginx.org/ .. _CDN: https://en.wikipedia.org/wiki/Content_delivery_network But for development it's very convenient to handle static files by aiohttp server itself. To do it just register a new static route by :meth:`RouteTableDef.static` or :func:`static` calls:: app.add_routes([web.static('/prefix', path_to_static_folder)]) routes.static('/prefix', path_to_static_folder) When a directory is accessed within a static route then the server responses to client with ``HTTP/403 Forbidden`` by default. Displaying folder index instead could be enabled with ``show_index`` parameter set to ``True``:: web.static('/prefix', path_to_static_folder, show_index=True) When a symlink that leads outside the static directory is accessed, the server responds to the client with ``HTTP/404 Not Found`` by default. To allow the server to follow symlinks that lead outside the static root, the parameter ``follow_symlinks`` should be set to ``True``:: web.static('/prefix', path_to_static_folder, follow_symlinks=True) .. caution:: Enabling ``follow_symlinks`` can be a security risk, and may lead to a directory transversal attack. You do NOT need this option to follow symlinks which point to somewhere else within the static directory, this option is only used to break out of the security sandbox. Enabling this option is highly discouraged, and only expected to be used for edge cases in a local development setting where remote users do not have access to the server. When you want to enable cache busting, parameter ``append_version`` can be set to ``True`` Cache busting is the process of appending some form of file version hash to the filename of resources like JavaScript and CSS files. The performance advantage of doing this is that we can tell the browser to cache these files indefinitely without worrying about the client not getting the latest version when the file changes:: web.static('/prefix', path_to_static_folder, append_version=True) Template Rendering ------------------ :mod:`aiohttp.web` does not support template rendering out-of-the-box. However, there is a third-party library, :mod:`aiohttp_jinja2`, which is supported by the *aiohttp* authors. Using it is rather simple. First, setup a *jinja2 environment* with a call to :func:`aiohttp_jinja2.setup`:: app = web.Application() aiohttp_jinja2.setup(app, loader=jinja2.FileSystemLoader('/path/to/templates/folder')) After that you may use the template engine in your :ref:`handlers `. The most convenient way is to simply wrap your handlers with the :func:`aiohttp_jinja2.template` decorator:: @aiohttp_jinja2.template('tmpl.jinja2') async def handler(request): return {'name': 'Andrew', 'surname': 'Svetlov'} If you prefer the `Mako`_ template engine, please take a look at the `aiohttp_mako`_ library. .. warning:: :func:`aiohttp_jinja2.template` should be applied **before** :meth:`RouteTableDef.get` decorator and family, e.g. it must be the *first* (most *down* decorator in the chain):: @routes.get('/path') @aiohttp_jinja2.template('tmpl.jinja2') async def handler(request): return {'name': 'Andrew', 'surname': 'Svetlov'} .. _Mako: http://www.makotemplates.org/ .. _aiohttp_mako: https://github.com/aio-libs/aiohttp_mako .. _aiohttp-web-websocket-read-same-task: Reading from the same task in WebSockets ---------------------------------------- Reading from the *WebSocket* (``await ws.receive()``) **must only** be done inside the request handler *task*; however, writing (``ws.send_str(...)``) to the *WebSocket*, closing (``await ws.close()``) and canceling the handler task may be delegated to other tasks. See also :ref:`FAQ section `. :mod:`aiohttp.web` creates an implicit :class:`asyncio.Task` for handling every incoming request. .. note:: While :mod:`aiohttp.web` itself only supports *WebSockets* without downgrading to *LONG-POLLING*, etc., our team supports SockJS_, an aiohttp-based library for implementing SockJS-compatible server code. .. _SockJS: https://github.com/aio-libs/sockjs .. warning:: Parallel reads from websocket are forbidden, there is no possibility to call :meth:`WebSocketResponse.receive` from two tasks. See :ref:`FAQ section ` for instructions how to solve the problem. .. _aiohttp-web-data-sharing: Data Sharing aka No Singletons Please ------------------------------------- :mod:`aiohttp.web` discourages the use of *global variables*, aka *singletons*. Every variable should have its own context that is *not global*. Global variables are generally considered bad practice due to the complexity they add in keeping track of state changes to variables. *aiohttp* does not use globals by design, which will reduce the number of bugs and/or unexpected behaviors for its users. For example, an i18n translated string being written for one request and then being served to another. So, :class:`Application` and :class:`Request` support a :class:`collections.abc.MutableMapping` interface (i.e. they are dict-like objects), allowing them to be used as data stores. .. _aiohttp-web-data-sharing-app-config: Application's config ^^^^^^^^^^^^^^^^^^^^ For storing *global-like* variables, feel free to save them in an :class:`Application` instance:: app['my_private_key'] = data and get it back in the :term:`web-handler`:: async def handler(request): data = request.app['my_private_key'] Rather than using :class:`str` keys, we recommend using :class:`AppKey`. This is required for type safety (e.g. when checking with mypy):: my_private_key = web.AppKey("my_private_key", str) app[my_private_key] = data async def handler(request: web.Request): data = request.app[my_private_key] # reveal_type(data) -> str In case of :ref:`nested applications ` the desired lookup strategy could be the following: 1. Search the key in the current nested application. 2. If the key is not found continue searching in the parent application(s). For this please use :attr:`Request.config_dict` read-only property:: async def handler(request): data = request.config_dict[my_private_key] The app object can be used in this way to reuse a database connection or anything else needed throughout the application. See this reference section for more detail: :ref:`aiohttp-web-app-and-router`. Request's storage ^^^^^^^^^^^^^^^^^ Variables that are only needed for the lifetime of a :class:`Request`, can be stored in a :class:`Request`:: async def handler(request): request['my_private_key'] = "data" ... This is mostly useful for :ref:`aiohttp-web-middlewares` and :ref:`aiohttp-web-signals` handlers to store data for further processing by the next handlers in the chain. Response's storage ^^^^^^^^^^^^^^^^^^ :class:`StreamResponse` and :class:`Response` objects also support :class:`collections.abc.MutableMapping` interface. This is useful when you want to share data with signals and middlewares once all the work in the handler is done:: async def handler(request): [ do all the work ] response['my_metric'] = 123 return response Naming hint ^^^^^^^^^^^ To avoid clashing with other *aiohttp* users and third-party libraries, please choose a unique key name for storing data. If your code is published on PyPI, then the project name is most likely unique and safe to use as the key. Otherwise, something based on your company name/url would be satisfactory (i.e. ``org.company.app``). .. _aiohttp-web-contextvars: ContextVars support ------------------- Asyncio has :mod:`Context Variables ` as a context-local storage (a generalization of thread-local concept that works with asyncio tasks also). *aiohttp* server supports it in the following way: * A server inherits the current task's context used when creating it. :func:`aiohttp.web.run_app()` runs a task for handling all underlying jobs running the app, but alternatively :ref:`aiohttp-web-app-runners` can be used. * Application initialization / finalization events (:attr:`Application.cleanup_ctx`, :attr:`Application.on_startup` and :attr:`Application.on_shutdown`, :attr:`Application.on_cleanup`) are executed inside the same context. E.g. all context modifications made on application startup are visible on teardown. * On every request handling *aiohttp* creates a context copy. :term:`web-handler` has all variables installed on initialization stage. But the context modification made by a handler or middleware is invisible to another HTTP request handling call. An example of context vars usage:: from contextvars import ContextVar from aiohttp import web VAR = ContextVar('VAR', default='default') async def coro(): return VAR.get() async def handler(request): var = VAR.get() VAR.set('handler') ret = await coro() return web.Response(text='\n'.join([var, ret])) async def on_startup(app): print('on_startup', VAR.get()) VAR.set('on_startup') async def on_cleanup(app): print('on_cleanup', VAR.get()) VAR.set('on_cleanup') async def init(): print('init', VAR.get()) VAR.set('init') app = web.Application() app.router.add_get('/', handler) app.on_startup.append(on_startup) app.on_cleanup.append(on_cleanup) return app web.run_app(init()) print('done', VAR.get()) .. versionadded:: 3.5 .. _aiohttp-web-middlewares: Middlewares ----------- :mod:`aiohttp.web` provides a powerful mechanism for customizing :ref:`request handlers` via *middlewares*. A *middleware* is a coroutine that can modify either the request or response. For example, here's a simple *middleware* which appends ``' wink'`` to the response:: from aiohttp.web import middleware @middleware async def middleware(request, handler): resp = await handler(request) resp.text = resp.text + ' wink' return resp .. note:: The example won't work with streamed responses or websockets Every *middleware* should accept two parameters, a :class:`request ` instance and a *handler*, and return the response or raise an exception. If the exception is not an instance of :exc:`HTTPException` it is converted to ``500`` :exc:`HTTPInternalServerError` after processing the middlewares chain. .. warning:: Second argument should be named *handler* exactly. When creating an :class:`Application`, these *middlewares* are passed to the keyword-only ``middlewares`` parameter:: app = web.Application(middlewares=[middleware_1, middleware_2]) Internally, a single :ref:`request handler ` is constructed by applying the middleware chain to the original handler in reverse order, and is called by the :class:`~aiohttp.web.RequestHandler` as a regular *handler*. Since *middlewares* are themselves coroutines, they may perform extra ``await`` calls when creating a new handler, e.g. call database etc. *Middlewares* usually call the handler, but they may choose to ignore it, e.g. displaying *403 Forbidden page* or raising :exc:`HTTPForbidden` exception if the user does not have permissions to access the underlying resource. They may also render errors raised by the handler, perform some pre- or post-processing like handling *CORS* and so on. The following code demonstrates middlewares execution order:: from aiohttp import web async def test(request): print('Handler function called') return web.Response(text="Hello") @web.middleware async def middleware1(request, handler): print('Middleware 1 called') response = await handler(request) print('Middleware 1 finished') return response @web.middleware async def middleware2(request, handler): print('Middleware 2 called') response = await handler(request) print('Middleware 2 finished') return response app = web.Application(middlewares=[middleware1, middleware2]) app.router.add_get('/', test) web.run_app(app) Produced output:: Middleware 1 called Middleware 2 called Handler function called Middleware 2 finished Middleware 1 finished Example ^^^^^^^ A common use of middlewares is to implement custom error pages. The following example will render 404 errors using a JSON response, as might be appropriate a JSON REST service:: from aiohttp import web @web.middleware async def error_middleware(request, handler): try: response = await handler(request) if response.status != 404: return response message = response.message except web.HTTPException as ex: if ex.status != 404: raise message = ex.reason return web.json_response({'error': message}) app = web.Application(middlewares=[error_middleware]) Middleware Factory ^^^^^^^^^^^^^^^^^^ A *middleware factory* is a function that creates a middleware with passed arguments. For example, here's a trivial *middleware factory*:: def middleware_factory(text): @middleware async def sample_middleware(request, handler): resp = await handler(request) resp.text = resp.text + text return resp return sample_middleware Remember that contrary to regular middlewares you need the result of a middleware factory not the function itself. So when passing a middleware factory to an app you actually need to call it:: app = web.Application(middlewares=[middleware_factory(' wink')]) .. _aiohttp-web-signals: Signals ------- Although :ref:`middlewares ` can customize :ref:`request handlers` before or after a :class:`Response` has been prepared, they can't customize a :class:`Response` **while** it's being prepared. For this :mod:`aiohttp.web` provides *signals*. For example, a middleware can only change HTTP headers for *unprepared* responses (see :meth:`StreamResponse.prepare`), but sometimes we need a hook for changing HTTP headers for streamed responses and WebSockets. This can be accomplished by subscribing to the :attr:`Application.on_response_prepare` signal, which is called after default headers have been computed and directly before headers are sent:: async def on_prepare(request, response): response.headers['My-Header'] = 'value' app.on_response_prepare.append(on_prepare) Additionally, the :attr:`Application.on_startup` and :attr:`Application.on_cleanup` signals can be subscribed to for application component setup and tear down accordingly. The following example will properly initialize and dispose an asyncpg connection engine:: from sqlalchemy.ext.asyncio import AsyncEngine, create_async_engine pg_engine = web.AppKey("pg_engine", AsyncEngine) async def create_pg(app): app[pg_engine] = await create_async_engine( "postgresql+asyncpg://postgre:@localhost:5432/postgre" ) async def dispose_pg(app): await app[pg_engine].dispose() app.on_startup.append(create_pg) app.on_cleanup.append(dispose_pg) Signal handlers should not return a value but may modify incoming mutable parameters. Signal handlers will be run sequentially, in order they were added. All handlers must be asynchronous since *aiohttp* 3.0. .. _aiohttp-web-cleanup-ctx: Cleanup Context --------------- Bare :attr:`Application.on_startup` / :attr:`Application.on_cleanup` pair still has a pitfall: signals handlers are independent on each other. E.g. we have ``[create_pg, create_redis]`` in *startup* signal and ``[dispose_pg, dispose_redis]`` in *cleanup*. If, for example, ``create_pg(app)`` call fails ``create_redis(app)`` is not called. But on application cleanup both ``dispose_pg(app)`` and ``dispose_redis(app)`` are still called: *cleanup signal* has no knowledge about startup/cleanup pairs and their execution state. The solution is :attr:`Application.cleanup_ctx` usage:: async def pg_engine(app: web.Application): app[pg_engine] = await create_async_engine( "postgresql+asyncpg://postgre:@localhost:5432/postgre" ) yield await app[pg_engine].dispose() app.cleanup_ctx.append(pg_engine) The attribute is a list of *asynchronous generators*, a code *before* ``yield`` is an initialization stage (called on *startup*), a code *after* ``yield`` is executed on *cleanup*. The generator must have only one ``yield``. *aiohttp* guarantees that *cleanup code* is called if and only if *startup code* was successfully finished. .. versionadded:: 3.1 .. _aiohttp-web-nested-applications: Nested applications ------------------- Sub applications are designed for solving the problem of the big monolithic code base. Let's assume we have a project with own business logic and tools like administration panel and debug toolbar. Administration panel is a separate application by its own nature but all toolbar URLs are served by prefix like ``/admin``. Thus we'll create a totally separate application named ``admin`` and connect it to main app with prefix by :meth:`Application.add_subapp`:: admin = web.Application() # setup admin routes, signals and middlewares app.add_subapp('/admin/', admin) Middlewares and signals from ``app`` and ``admin`` are chained. It means that if URL is ``'/admin/something'`` middlewares from ``app`` are applied first and ``admin.middlewares`` are the next in the call chain. The same is going for :attr:`Application.on_response_prepare` signal -- the signal is delivered to both top level ``app`` and ``admin`` if processing URL is routed to ``admin`` sub-application. Common signals like :attr:`Application.on_startup`, :attr:`Application.on_shutdown` and :attr:`Application.on_cleanup` are delivered to all registered sub-applications. The passed parameter is sub-application instance, not top-level application. Third level sub-applications can be nested into second level ones -- there are no limitation for nesting level. Url reversing for sub-applications should generate urls with proper prefix. But for getting URL sub-application's router should be used:: admin = web.Application() admin.add_routes([web.get('/resource', handler, name='name')]) app.add_subapp('/admin/', admin) url = admin.router['name'].url_for() The generated ``url`` from example will have a value ``URL('/admin/resource')``. If main application should do URL reversing for sub-application it could use the following explicit technique:: admin = web.Application() admin_key = web.AppKey('admin_key', web.Application) admin.add_routes([web.get('/resource', handler, name='name')]) app.add_subapp('/admin/', admin) app[admin_key] = admin async def handler(request: web.Request): # main application's handler admin = request.app[admin_key] url = admin.router['name'].url_for() .. _aiohttp-web-expect-header: *Expect* Header --------------- :mod:`aiohttp.web` supports *Expect* header. By default it sends ``HTTP/1.1 100 Continue`` line to client, or raises :exc:`HTTPExpectationFailed` if header value is not equal to "100-continue". It is possible to specify custom *Expect* header handler on per route basis. This handler gets called if *Expect* header exist in request after receiving all headers and before processing application's :ref:`aiohttp-web-middlewares` and route handler. Handler can return *None*, in that case the request processing continues as usual. If handler returns an instance of class :class:`StreamResponse`, *request handler* uses it as response. Also handler can raise a subclass of :exc:`HTTPException`. In this case all further processing will not happen and client will receive appropriate http response. .. note:: A server that does not understand or is unable to comply with any of the expectation values in the Expect field of a request MUST respond with appropriate error status. The server MUST respond with a 417 (Expectation Failed) status if any of the expectations cannot be met or, if there are other problems with the request, some other 4xx status. http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.20 If all checks pass, the custom handler *must* write a *HTTP/1.1 100 Continue* status code before returning. The following example shows how to setup a custom handler for the *Expect* header:: async def check_auth(request): if request.version != aiohttp.HttpVersion11: return if request.headers.get('EXPECT') != '100-continue': raise HTTPExpectationFailed(text="Unknown Expect: %s" % expect) if request.headers.get('AUTHORIZATION') is None: raise HTTPForbidden() request.transport.write(b"HTTP/1.1 100 Continue\r\n\r\n") async def hello(request): return web.Response(body=b"Hello, world") app = web.Application() app.add_routes([web.add_get('/', hello, expect_handler=check_auth)]) .. _aiohttp-web-custom-resource: Custom resource implementation ------------------------------ To register custom resource use :meth:`~aiohttp.web.UrlDispatcher.register_resource`. Resource instance must implement `AbstractResource` interface. .. _aiohttp-web-app-runners: Application runners ------------------- :func:`run_app` provides a simple *blocking* API for running an :class:`Application`. For starting the application *asynchronously* or serving on multiple HOST/PORT :class:`AppRunner` exists. The simple startup code for serving HTTP site on ``'localhost'``, port ``8080`` looks like:: runner = web.AppRunner(app) await runner.setup() site = web.TCPSite(runner, 'localhost', 8080) await site.start() while True: await asyncio.sleep(3600) # sleep forever To stop serving call :meth:`AppRunner.cleanup`:: await runner.cleanup() .. versionadded:: 3.0 .. _aiohttp-web-graceful-shutdown: Graceful shutdown ------------------ Stopping *aiohttp web server* by just closing all connections is not always satisfactory. When aiohttp is run with :func:`run_app`, it will attempt a graceful shutdown by following these steps (if using a :ref:`runner `, then calling :meth:`AppRunner.cleanup` will perform these steps, excluding step 7). 1. Stop each site listening on sockets, so new connections will be rejected. 2. Close idle keep-alive connections (and set active ones to close upon completion). 3. Call the :attr:`Application.on_shutdown` signal. This should be used to shutdown long-lived connections, such as websockets (see below). 4. Wait a short time for running handlers to complete. This allows any pending handlers to complete successfully. The timeout can be adjusted with ``shutdown_timeout`` in :func:`run_app`. 5. Close any remaining connections and cancel their handlers. It will wait on the canceling handlers for a short time, again adjustable with ``shutdown_timeout``. 6. Call the :attr:`Application.on_cleanup` signal. This should be used to cleanup any resources (such as DB connections). This includes completing the :ref:`cleanup contexts` which may be used to ensure background tasks are completed successfully (see :ref:`handler cancellation` or aiojobs_ for examples). 7. Cancel any remaining tasks and wait on them to complete. Websocket shutdown ^^^^^^^^^^^^^^^^^^ One problem is if the application supports :term:`websockets ` or *data streaming* it most likely has open connections at server shutdown time. The *library* has no knowledge how to close them gracefully but a developer can help by registering an :attr:`Application.on_shutdown` signal handler. A developer should keep a list of opened connections (:class:`Application` is a good candidate). The following :term:`websocket` snippet shows an example of a websocket handler:: from aiohttp import web import weakref app = web.Application() websockets = web.AppKey("websockets", weakref.WeakSet) app[websockets] = weakref.WeakSet() async def websocket_handler(request): ws = web.WebSocketResponse() await ws.prepare(request) request.app[websockets].add(ws) try: async for msg in ws: ... finally: request.app[websockets].discard(ws) return ws Then the signal handler may look like:: from aiohttp import WSCloseCode async def on_shutdown(app): for ws in set(app[websockets]): await ws.close(code=WSCloseCode.GOING_AWAY, message="Server shutdown") app.on_shutdown.append(on_shutdown) .. _aiohttp-web-ceil-absolute-timeout: Ceil of absolute timeout value ------------------------------ *aiohttp* **ceils** internal timeout values if the value is equal or greater than 5 seconds. The timeout expires at the next integer second greater than ``current_time + timeout``. More details about ceiling absolute timeout values is available here :ref:`aiohttp-client-timeouts`. The default threshold can be configured at :class:`aiohttp.web.Application` level using the ``handler_args`` parameter. .. code-block:: python3 app = web.Application(handler_args={"timeout_ceil_threshold": 1}) .. _aiohttp-web-background-tasks: Background tasks ----------------- Sometimes there's a need to perform some asynchronous operations just after application start-up. Even more, in some sophisticated systems there could be a need to run some background tasks in the event loop along with the application's request handler. Such as listening to message queue or other network message/event sources (e.g. ZeroMQ, Redis Pub/Sub, AMQP, etc.) to react to received messages within the application. For example the background task could listen to ZeroMQ on ``zmq.SUB`` socket, process and forward retrieved messages to clients connected via WebSocket that are stored somewhere in the application (e.g. in the ``application['websockets']`` list). To run such short and long running background tasks aiohttp provides an ability to register :attr:`Application.on_startup` signal handler(s) that will run along with the application's request handler. For example there's a need to run one quick task and two long running tasks that will live till the application is alive. The appropriate background tasks could be registered as an :attr:`Application.on_startup` signal handler or :attr:`Application.cleanup_ctx` as shown in the example below:: async def listen_to_redis(app: web.Application): client = redis.from_url("redis://localhost:6379") channel = "news" async with client.pubsub() as pubsub: await pubsub.subscribe(channel) while True: try: msg = await pubsub.get_message(ignore_subscribe_messages=True) if msg is not None: for ws in app["websockets"]: await ws.send_str("{}: {}".format(channel, msg)) except asyncio.CancelledError: break async def background_tasks(app): app[redis_listener] = asyncio.create_task(listen_to_redis(app)) yield app[redis_listener].cancel() await app[redis_listener] app = web.Application() redis_listener = web.AppKey("redis_listener", asyncio.Task[None]) app.cleanup_ctx.append(background_tasks) web.run_app(app) The task ``listen_to_redis`` will run forever. To shut it down correctly :attr:`Application.on_cleanup` signal handler may be used to send a cancellation to it. .. _aiohttp-web-complex-applications: Complex Applications ^^^^^^^^^^^^^^^^^^^^ Sometimes aiohttp is not the sole part of an application and additional tasks/processes may need to be run alongside the aiohttp :class:`Application`. Generally, the best way to achieve this is to use :func:`aiohttp.web.run_app` as the entry point for the program. Other tasks can then be run via :attr:`Application.startup` and :attr:`Application.on_cleanup`. By having the :class:`Application` control the lifecycle of the entire program, the code will be more robust and ensure that the tasks are started and stopped along with the application. For example, running a long-lived task alongside the :class:`Application` can be done with a :ref:`aiohttp-web-cleanup-ctx` function like:: async def run_other_task(_app): task = asyncio.create_task(other_long_task()) yield task.cancel() with suppress(asyncio.CancelledError): await task # Ensure any exceptions etc. are raised. app.cleanup_ctx.append(run_other_task) Or a separate process can be run with something like:: async def run_process(_app): proc = await asyncio.create_subprocess_exec(path) yield if proc.returncode is None: proc.terminate() await proc.wait() app.cleanup_ctx.append(run_process) Handling error pages -------------------- Pages like *404 Not Found* and *500 Internal Error* could be handled by custom middleware, see :ref:`polls demo ` for example. .. _aiohttp-web-forwarded-support: Deploying behind a Proxy ------------------------ As discussed in :ref:`aiohttp-deployment` the preferable way is deploying *aiohttp* web server behind a *Reverse Proxy Server* like :term:`nginx` for production usage. In this way properties like :attr:`BaseRequest.scheme` :attr:`BaseRequest.host` and :attr:`BaseRequest.remote` are incorrect. Real values should be given from proxy server, usually either ``Forwarded`` or old-fashion ``X-Forwarded-For``, ``X-Forwarded-Host``, ``X-Forwarded-Proto`` HTTP headers are used. *aiohttp* does not take *forwarded* headers into account by default because it produces *security issue*: HTTP client might add these headers too, pushing non-trusted data values. That's why *aiohttp server* should setup *forwarded* headers in custom middleware in tight conjunction with *reverse proxy configuration*. For changing :attr:`BaseRequest.scheme` :attr:`BaseRequest.host` :attr:`BaseRequest.remote` and :attr:`BaseRequest.client_max_size` the middleware might use :meth:`BaseRequest.clone`. .. seealso:: https://github.com/aio-libs/aiohttp-remotes provides secure helpers for modifying *scheme*, *host* and *remote* attributes according to ``Forwarded`` and ``X-Forwarded-*`` HTTP headers. Swagger support --------------- `aiohttp-swagger `_ is a library that allow to add Swagger documentation and embed the Swagger-UI into your :mod:`aiohttp.web` project. CORS support ------------ :mod:`aiohttp.web` itself does not support `Cross-Origin Resource Sharing `_, but there is an aiohttp plugin for it: `aiohttp_cors `_. Debug Toolbar ------------- `aiohttp-debugtoolbar`_ is a very useful library that provides a debugging toolbar while you're developing an :mod:`aiohttp.web` application. Install it with ``pip``: .. code-block:: shell $ pip install aiohttp_debugtoolbar Just call :func:`aiohttp_debugtoolbar.setup`:: import aiohttp_debugtoolbar from aiohttp_debugtoolbar import toolbar_middleware_factory app = web.Application() aiohttp_debugtoolbar.setup(app) The toolbar is ready to use. Enjoy!!! .. _aiohttp-debugtoolbar: https://github.com/aio-libs/aiohttp_debugtoolbar Dev Tools --------- `aiohttp-devtools`_ provides a couple of tools to simplify development of :mod:`aiohttp.web` applications. Install with ``pip``: .. code-block:: shell $ pip install aiohttp-devtools * ``runserver`` provides a development server with auto-reload, live-reload, static file serving. * ``start`` is a `cookiecutter command which does the donkey work of creating new :mod:`aiohttp.web` Applications. Documentation and a complete tutorial of creating and running an app locally are available at `aiohttp-devtools`_. .. _aiohttp-devtools: https://github.com/aio-libs/aiohttp-devtools