# Copyright 2016 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testable usage examples for Google BigQuery API wrapper Each example function takes a ``client`` argument (which must be an instance of :class:`google.cloud.bigquery.client.Client`) and uses it to perform a task with the API. To facilitate running the examples as system tests, each example is also passed a ``to_delete`` list; the function adds to the list any objects created which need to be deleted during teardown. """ import os import time import pytest try: import pandas except (ImportError, AttributeError): pandas = None try: import pyarrow except (ImportError, AttributeError): pyarrow = None from google.api_core.exceptions import InternalServerError from google.api_core.exceptions import ServiceUnavailable from google.api_core.exceptions import TooManyRequests from google.cloud import bigquery from google.cloud import storage from test_utils.retry import RetryErrors ORIGINAL_FRIENDLY_NAME = "Original friendly name" ORIGINAL_DESCRIPTION = "Original description" LOCALLY_CHANGED_FRIENDLY_NAME = "Locally-changed friendly name" LOCALLY_CHANGED_DESCRIPTION = "Locally-changed description" UPDATED_FRIENDLY_NAME = "Updated friendly name" UPDATED_DESCRIPTION = "Updated description" SCHEMA = [ bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"), bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"), ] ROWS = [ ("Phred Phlyntstone", 32), ("Bharney Rhubble", 33), ("Wylma Phlyntstone", 29), ("Bhettye Rhubble", 27), ] QUERY = ( "SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` " 'WHERE state = "TX"' ) retry_429 = RetryErrors(TooManyRequests) retry_storage_errors = RetryErrors( (TooManyRequests, InternalServerError, ServiceUnavailable) ) @pytest.fixture(scope="module") def client(): return bigquery.Client() @pytest.fixture def to_delete(client): doomed = [] yield doomed for item in doomed: if isinstance(item, (bigquery.Dataset, bigquery.DatasetReference)): retry_429(client.delete_dataset)(item, delete_contents=True) elif isinstance(item, storage.Bucket): retry_storage_errors(item.delete)() else: retry_429(item.delete)() def _millis(): return int(time.time() * 1000) class _CloseOnDelete(object): def __init__(self, wrapped): self._wrapped = wrapped def delete(self): self._wrapped.close() def test_create_client_default_credentials(): """Create a BigQuery client with Application Default Credentials""" # [START bigquery_client_default_credentials] from google.cloud import bigquery # If you don't specify credentials when constructing the client, the # client library will look for credentials in the environment. client = bigquery.Client() # [END bigquery_client_default_credentials] assert client is not None @pytest.mark.skip( reason=( "update_table() is flaky " "https://github.com/GoogleCloudPlatform/google-cloud-python/issues/5589" ) ) def test_update_table_description(client, to_delete): """Update a table's description.""" dataset_id = "update_table_description_dataset_{}".format(_millis()) table_id = "update_table_description_table_{}".format(_millis()) project = client.project dataset_ref = bigquery.DatasetReference(project, dataset_id) dataset = bigquery.Dataset(dataset_ref) client.create_dataset(dataset) to_delete.append(dataset) table = bigquery.Table(dataset.table(table_id), schema=SCHEMA) table.description = "Original description." table = client.create_table(table) # [START bigquery_update_table_description] # from google.cloud import bigquery # client = bigquery.Client() # project = client.project # dataset_ref = bigquery.DatasetReference(project, dataset_id) # table_ref = dataset_ref.table('my_table') # table = client.get_table(table_ref) # API request assert table.description == "Original description." table.description = "Updated description." table = client.update_table(table, ["description"]) # API request assert table.description == "Updated description." # [END bigquery_update_table_description] @pytest.mark.skip( reason=( "update_table() is flaky " "https://github.com/GoogleCloudPlatform/google-cloud-python/issues/5589" ) ) def test_update_table_cmek(client, to_delete): """Patch a table's metadata.""" dataset_id = "update_table_cmek_{}".format(_millis()) table_id = "update_table_cmek_{}".format(_millis()) project = client.project dataset_ref = bigquery.DatasetReference(project, dataset_id) dataset = bigquery.Dataset(dataset_ref) client.create_dataset(dataset) to_delete.append(dataset) table = bigquery.Table(dataset.table(table_id)) original_kms_key_name = "projects/{}/locations/{}/keyRings/{}/cryptoKeys/{}".format( "cloud-samples-tests", "us", "test", "test" ) table.encryption_configuration = bigquery.EncryptionConfiguration( kms_key_name=original_kms_key_name ) table = client.create_table(table) # [START bigquery_update_table_cmek] # from google.cloud import bigquery # client = bigquery.Client() assert table.encryption_configuration.kms_key_name == original_kms_key_name # Set a new encryption key to use for the destination. # TODO: Replace this key with a key you have created in KMS. updated_kms_key_name = ( "projects/cloud-samples-tests/locations/us/keyRings/test/cryptoKeys/otherkey" ) table.encryption_configuration = bigquery.EncryptionConfiguration( kms_key_name=updated_kms_key_name ) table = client.update_table(table, ["encryption_configuration"]) # API request assert table.encryption_configuration.kms_key_name == updated_kms_key_name assert original_kms_key_name != updated_kms_key_name # [END bigquery_update_table_cmek] def test_load_table_add_column(client, to_delete): dataset_id = "load_table_add_column_{}".format(_millis()) project = client.project dataset_ref = bigquery.DatasetReference(project, dataset_id) dataset = bigquery.Dataset(dataset_ref) dataset.location = "US" dataset = client.create_dataset(dataset) to_delete.append(dataset) snippets_dir = os.path.abspath(os.path.dirname(__file__)) filepath = os.path.join(snippets_dir, "..", "tests", "data", "people.csv") table_ref = dataset_ref.table("my_table") old_schema = [bigquery.SchemaField("full_name", "STRING", mode="REQUIRED")] table = client.create_table(bigquery.Table(table_ref, schema=old_schema)) # [START bigquery_add_column_load_append] # from google.cloud import bigquery # client = bigquery.Client() # project = client.project # dataset_ref = bigquery.DatasetReference(project, 'my_dataset') # filepath = 'path/to/your_file.csv' # Retrieves the destination table and checks the length of the schema table_id = "my_table" table_ref = dataset_ref.table(table_id) table = client.get_table(table_ref) print("Table {} contains {} columns.".format(table_id, len(table.schema))) # Configures the load job to append the data to the destination table, # allowing field addition job_config = bigquery.LoadJobConfig() job_config.write_disposition = bigquery.WriteDisposition.WRITE_APPEND job_config.schema_update_options = [ bigquery.SchemaUpdateOption.ALLOW_FIELD_ADDITION ] # In this example, the existing table contains only the 'full_name' column. # 'REQUIRED' fields cannot be added to an existing schema, so the # additional column must be 'NULLABLE'. job_config.schema = [ bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"), bigquery.SchemaField("age", "INTEGER", mode="NULLABLE"), ] job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 with open(filepath, "rb") as source_file: job = client.load_table_from_file( source_file, table_ref, location="US", # Must match the destination dataset location. job_config=job_config, ) # API request job.result() # Waits for table load to complete. print( "Loaded {} rows into {}:{}.".format( job.output_rows, dataset_id, table_ref.table_id ) ) # Checks the updated length of the schema table = client.get_table(table) print("Table {} now contains {} columns.".format(table_id, len(table.schema))) # [END bigquery_add_column_load_append] assert len(table.schema) == 2 assert table.num_rows > 0 def test_load_table_relax_column(client, to_delete): dataset_id = "load_table_relax_column_{}".format(_millis()) project = client.project dataset_ref = bigquery.DatasetReference(project, dataset_id) dataset = bigquery.Dataset(dataset_ref) dataset.location = "US" dataset = client.create_dataset(dataset) to_delete.append(dataset) snippets_dir = os.path.abspath(os.path.dirname(__file__)) filepath = os.path.join(snippets_dir, "..", "tests", "data", "people.csv") table_ref = dataset_ref.table("my_table") old_schema = [ bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"), bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"), bigquery.SchemaField("favorite_color", "STRING", mode="REQUIRED"), ] table = client.create_table(bigquery.Table(table_ref, schema=old_schema)) # [START bigquery_relax_column_load_append] # from google.cloud import bigquery # client = bigquery.Client() # project = client.project # dataset_ref = bigquery.DatasetReference(project, 'my_dataset') # filepath = 'path/to/your_file.csv' # Retrieves the destination table and checks the number of required fields table_id = "my_table" table_ref = dataset_ref.table(table_id) table = client.get_table(table_ref) original_required_fields = sum(field.mode == "REQUIRED" for field in table.schema) # In this example, the existing table has 3 required fields. print("{} fields in the schema are required.".format(original_required_fields)) # Configures the load job to append the data to a destination table, # allowing field relaxation job_config = bigquery.LoadJobConfig() job_config.write_disposition = bigquery.WriteDisposition.WRITE_APPEND job_config.schema_update_options = [ bigquery.SchemaUpdateOption.ALLOW_FIELD_RELAXATION ] # In this example, the existing table contains three required fields # ('full_name', 'age', and 'favorite_color'), while the data to load # contains only the first two fields. job_config.schema = [ bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"), bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"), ] job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 with open(filepath, "rb") as source_file: job = client.load_table_from_file( source_file, table_ref, location="US", # Must match the destination dataset location. job_config=job_config, ) # API request job.result() # Waits for table load to complete. print( "Loaded {} rows into {}:{}.".format( job.output_rows, dataset_id, table_ref.table_id ) ) # Checks the updated number of required fields table = client.get_table(table) current_required_fields = sum(field.mode == "REQUIRED" for field in table.schema) print("{} fields in the schema are now required.".format(current_required_fields)) # [END bigquery_relax_column_load_append] assert original_required_fields - current_required_fields == 1 assert len(table.schema) == 3 assert table.schema[2].mode == "NULLABLE" assert table.num_rows > 0 def test_extract_table(client, to_delete): bucket_name = "extract_shakespeare_{}".format(_millis()) storage_client = storage.Client() bucket = retry_storage_errors(storage_client.create_bucket)(bucket_name) to_delete.append(bucket) # [START bigquery_extract_table] # from google.cloud import bigquery # client = bigquery.Client() # bucket_name = 'my-bucket' project = "bigquery-public-data" dataset_id = "samples" table_id = "shakespeare" destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.csv") dataset_ref = bigquery.DatasetReference(project, dataset_id) table_ref = dataset_ref.table(table_id) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print( "Exported {}:{}.{} to {}".format(project, dataset_id, table_id, destination_uri) ) # [END bigquery_extract_table] blob = retry_storage_errors(bucket.get_blob)("shakespeare.csv") assert blob.exists assert blob.size > 0 to_delete.insert(0, blob) def test_extract_table_json(client, to_delete): bucket_name = "extract_shakespeare_json_{}".format(_millis()) storage_client = storage.Client() bucket = retry_storage_errors(storage_client.create_bucket)(bucket_name) to_delete.append(bucket) project = "bigquery-public-data" dataset_id = "samples" # [START bigquery_extract_table_json] # from google.cloud import bigquery # client = bigquery.Client() # bucket_name = 'my-bucket' destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.json") dataset_ref = bigquery.DatasetReference(project, dataset_id) table_ref = dataset_ref.table("shakespeare") job_config = bigquery.job.ExtractJobConfig() job_config.destination_format = bigquery.DestinationFormat.NEWLINE_DELIMITED_JSON extract_job = client.extract_table( table_ref, destination_uri, job_config=job_config, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. # [END bigquery_extract_table_json] blob = retry_storage_errors(bucket.get_blob)("shakespeare.json") assert blob.exists assert blob.size > 0 to_delete.insert(0, blob) def test_extract_table_compressed(client, to_delete): bucket_name = "extract_shakespeare_compress_{}".format(_millis()) storage_client = storage.Client() bucket = retry_storage_errors(storage_client.create_bucket)(bucket_name) to_delete.append(bucket) project = "bigquery-public-data" dataset_id = "samples" # [START bigquery_extract_table_compressed] # from google.cloud import bigquery # client = bigquery.Client() # bucket_name = 'my-bucket' destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.csv.gz") dataset_ref = bigquery.DatasetReference(project, dataset_id) table_ref = dataset_ref.table("shakespeare") job_config = bigquery.job.ExtractJobConfig() job_config.compression = bigquery.Compression.GZIP extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", job_config=job_config, ) # API request extract_job.result() # Waits for job to complete. # [END bigquery_extract_table_compressed] blob = retry_storage_errors(bucket.get_blob)("shakespeare.csv.gz") assert blob.exists assert blob.size > 0 to_delete.insert(0, blob) def test_client_query_total_rows(client, capsys): """Run a query and just check for how many rows.""" # [START bigquery_query_total_rows] # from google.cloud import bigquery # client = bigquery.Client() query = ( "SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` " 'WHERE state = "TX" ' "LIMIT 100" ) results = client.query_and_wait( query, # Location must match that of the dataset(s) referenced in the query. location="US", ) # API request - starts the query and waits for results. print("Got {} rows.".format(results.total_rows)) # [END bigquery_query_total_rows] out, _ = capsys.readouterr() assert "Got 100 rows." in out def test_ddl_create_view(client, to_delete, capsys): """Create a view via a DDL query.""" project = client.project dataset_id = "ddl_view_{}".format(_millis()) table_id = "new_view" dataset_ref = bigquery.DatasetReference(project, dataset_id) dataset = bigquery.Dataset(dataset_ref) client.create_dataset(dataset) to_delete.append(dataset) # [START bigquery_ddl_create_view] # from google.cloud import bigquery # project = 'my-project' # dataset_id = 'my_dataset' # table_id = 'new_view' # client = bigquery.Client(project=project) sql = """ CREATE VIEW `{}.{}.{}` OPTIONS( expiration_timestamp=TIMESTAMP_ADD( CURRENT_TIMESTAMP(), INTERVAL 48 HOUR), friendly_name="new_view", description="a view that expires in 2 days", labels=[("org_unit", "development")] ) AS SELECT name, state, year, number FROM `bigquery-public-data.usa_names.usa_1910_current` WHERE state LIKE 'W%' """.format( project, dataset_id, table_id ) job = client.query(sql) # API request. job.result() # Waits for the query to finish. print( 'Created new view "{}.{}.{}".'.format( job.destination.project, job.destination.dataset_id, job.destination.table_id, ) ) # [END bigquery_ddl_create_view] out, _ = capsys.readouterr() assert 'Created new view "{}.{}.{}".'.format(project, dataset_id, table_id) in out # Test that listing query result rows succeeds so that generic query # processing tools work with DDL statements. rows = list(job) assert len(rows) == 0 if pandas is not None: df = job.to_dataframe() assert len(df) == 0 @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_query_results_as_dataframe(client): # [START bigquery_query_results_dataframe] # from google.cloud import bigquery # client = bigquery.Client() sql = """ SELECT name, SUM(number) as count FROM `bigquery-public-data.usa_names.usa_1910_current` GROUP BY name ORDER BY count DESC LIMIT 10 """ df = client.query_and_wait(sql).to_dataframe() # [END bigquery_query_results_dataframe] assert isinstance(df, pandas.DataFrame) assert len(list(df)) == 2 # verify the number of columns assert len(df) == 10 # verify the number of rows @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_list_rows_as_dataframe(client): # [START bigquery_list_rows_dataframe] # from google.cloud import bigquery # client = bigquery.Client() project = "bigquery-public-data" dataset_id = "samples" dataset_ref = bigquery.DatasetReference(project, dataset_id) table_ref = dataset_ref.table("shakespeare") table = client.get_table(table_ref) df = client.list_rows(table).to_dataframe() # [END bigquery_list_rows_dataframe] assert isinstance(df, pandas.DataFrame) assert len(list(df)) == len(table.schema) # verify the number of columns assert len(df) == table.num_rows # verify the number of rows if __name__ == "__main__": pytest.main()