# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Workload W1R3 profiling script. This is not an officially supported Google product.""" import logging import os import random import time import uuid from functools import partial, update_wrapper from google.cloud import storage import _perf_utils as _pu def WRITE(bucket, blob_name, checksum, size, args, **kwargs): """Perform an upload and return latency.""" blob = bucket.blob(blob_name) file_path = f"{os.getcwd()}/{uuid.uuid4().hex}" # Create random file locally on disk with open(file_path, "wb") as file_obj: file_obj.write(os.urandom(size)) start_time = time.monotonic_ns() blob.upload_from_filename(file_path, checksum=checksum, if_generation_match=0) end_time = time.monotonic_ns() elapsed_time = round( (end_time - start_time) / 1000 ) # convert nanoseconds to microseconds # Clean up local file _pu.cleanup_file(file_path) return elapsed_time def READ(bucket, blob_name, checksum, args, **kwargs): """Perform a download and return latency.""" blob = bucket.blob(blob_name) if not blob.exists(): raise Exception("Blob does not exist. Previous WRITE failed.") range_read_size = args.range_read_size range_read_offset = kwargs.get("range_read_offset") # Perfor range read if range_read_size is specified, else get full object. if range_read_size != 0: start = range_read_offset end = start + range_read_size - 1 else: start = 0 end = -1 file_path = f"{os.getcwd()}/{blob_name}" with open(file_path, "wb") as file_obj: start_time = time.monotonic_ns() blob.download_to_file(file_obj, checksum=checksum, start=start, end=end) end_time = time.monotonic_ns() elapsed_time = round( (end_time - start_time) / 1000 ) # convert nanoseconds to microseconds # Clean up local file _pu.cleanup_file(file_path) return elapsed_time def _wrapped_partial(func, *args, **kwargs): """Helper method to create partial and propagate function name and doc from original function.""" partial_func = partial(func, *args, **kwargs) update_wrapper(partial_func, func) return partial_func def _generate_func_list(args): """Generate Write-1-Read-3 workload.""" bucket_name = args.bucket blob_name = f"{_pu.TIMESTAMP}-{uuid.uuid4().hex}" # parse min_size and max_size from object_size min_size, max_size = _pu.get_min_max_size(args.object_size) # generate randmon size in bytes using a uniform distribution size = random.randint(min_size, max_size) # generate random checksumming type: md5, crc32c or None idx_checksum = random.choice([0, 1, 2]) checksum = _pu.CHECKSUM[idx_checksum] # generated random read_offset range_read_offset = random.randint( args.minimum_read_offset, args.maximum_read_offset ) func_list = [ _wrapped_partial( WRITE, storage.Client().bucket(bucket_name), blob_name, size=size, checksum=checksum, args=args, ), *[ _wrapped_partial( READ, storage.Client().bucket(bucket_name), blob_name, size=size, checksum=checksum, args=args, num=i, range_read_offset=range_read_offset, ) for i in range(3) ], ] return func_list def log_performance(func, args, elapsed_time, status, failure_msg): """Hold benchmarking results per operation call.""" size = func.keywords.get("size") checksum = func.keywords.get("checksum", None) num = func.keywords.get("num", None) range_read_size = args.range_read_size res = { "Op": func.__name__, "ElapsedTimeUs": elapsed_time, "ApiName": args.api, "RunID": _pu.TIMESTAMP, "CpuTimeUs": _pu.NOT_SUPPORTED, "AppBufferSize": _pu.NOT_SUPPORTED, "LibBufferSize": _pu.DEFAULT_LIB_BUFFER_SIZE, "ChunkSize": 0, "ObjectSize": size, "TransferSize": size, "TransferOffset": 0, "RangeReadSize": range_read_size, "BucketName": args.bucket, "Library": "python-storage", "Crc32cEnabled": checksum == "crc32c", "MD5Enabled": checksum == "md5", "FailureMsg": failure_msg, "Status": status, } if res["Op"] == "READ": res["Op"] += f"[{num}]" # For range reads (workload 2), record additional outputs if range_read_size > 0: res["TransferSize"] = range_read_size res["TransferOffset"] = func.keywords.get("range_read_offset", 0) return res def run_profile_w1r3(args): """Run w1r3 benchmarking. This is a wrapper used with the main benchmarking framework.""" results = [] for func in _generate_func_list(args): failure_msg = "" try: elapsed_time = func() except Exception as e: failure_msg = ( f"Caught an exception while running operation {func.__name__}\n {e}" ) logging.exception(failure_msg) status = ["FAIL"] elapsed_time = _pu.NOT_SUPPORTED else: status = ["OK"] res = log_performance(func, args, elapsed_time, status, failure_msg) results.append(res) return results def run_profile_range_read(args): """Run range read W2 benchmarking. This is a wrapper used with the main benchmarking framework.""" results = [] for func in _generate_func_list(args): failure_msg = "" try: elapsed_time = func() except Exception as e: failure_msg = ( f"Caught an exception while running operation {func.__name__}\n {e}" ) logging.exception(failure_msg) status = ["FAIL"] elapsed_time = _pu.NOT_SUPPORTED else: status = ["OK"] # Only measure the last read res = log_performance(func, args, elapsed_time, status, failure_msg) results.append(res) return results