# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from typing import Iterator, List from unittest import mock import uuid import google.auth import pytest from google.cloud import bigquery @pytest.fixture(scope="session", autouse=True) def client() -> bigquery.Client: credentials, project = google.auth.default( scopes=[ "https://www.googleapis.com/auth/drive", "https://www.googleapis.com/auth/bigquery", ] ) real_client = bigquery.Client(credentials=credentials, project=project) mock_client = mock.create_autospec(bigquery.Client) mock_client.return_value = real_client bigquery.Client = mock_client # type: ignore return real_client @pytest.fixture def random_table_id(dataset_id: str) -> str: now = datetime.datetime.now() random_table_id = "example_table_{}_{}".format( now.strftime("%Y%m%d%H%M%S"), uuid.uuid4().hex[:8] ) return "{}.{}".format(dataset_id, random_table_id) @pytest.fixture def avro_source_uris() -> List[str]: avro_source_uris = [ "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/a-twitter.avro", "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/b-twitter.avro", "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/c-twitter.avro", ] return avro_source_uris @pytest.fixture def reference_file_schema_uri() -> str: reference_file_schema_uri = "gs://cloud-samples-data/bigquery/federated-formats-reference-file-schema/b-twitter.avro" return reference_file_schema_uri @pytest.fixture def random_dataset_id(client: bigquery.Client) -> Iterator[str]: now = datetime.datetime.now() random_dataset_id = "example_dataset_{}_{}".format( now.strftime("%Y%m%d%H%M%S"), uuid.uuid4().hex[:8] ) yield "{}.{}".format(client.project, random_dataset_id) client.delete_dataset(random_dataset_id, delete_contents=True, not_found_ok=True) @pytest.fixture def random_routine_id(dataset_id: str) -> str: now = datetime.datetime.now() random_routine_id = "example_routine_{}_{}".format( now.strftime("%Y%m%d%H%M%S"), uuid.uuid4().hex[:8] ) return "{}.{}".format(dataset_id, random_routine_id) @pytest.fixture def dataset_id(client: bigquery.Client) -> Iterator[str]: now = datetime.datetime.now() dataset_id = "python_dataset_sample_{}_{}".format( now.strftime("%Y%m%d%H%M%S"), uuid.uuid4().hex[:8] ) dataset = client.create_dataset(dataset_id) yield "{}.{}".format(dataset.project, dataset.dataset_id) client.delete_dataset(dataset, delete_contents=True, not_found_ok=True) @pytest.fixture def table_id(client: bigquery.Client, dataset_id: str) -> Iterator[str]: now = datetime.datetime.now() table_id = "python_table_sample_{}_{}".format( now.strftime("%Y%m%d%H%M%S"), uuid.uuid4().hex[:8] ) table = bigquery.Table("{}.{}".format(dataset_id, table_id)) table = client.create_table(table) yield "{}.{}.{}".format(table.project, table.dataset_id, table.table_id) client.delete_table(table, not_found_ok=True) @pytest.fixture def table_with_schema_id(client: bigquery.Client, dataset_id: str) -> Iterator[str]: now = datetime.datetime.now() table_id = "python_table_with_schema_{}_{}".format( now.strftime("%Y%m%d%H%M%S"), uuid.uuid4().hex[:8] ) schema = [ bigquery.SchemaField("full_name", "STRING"), bigquery.SchemaField("age", "INTEGER"), ] table = bigquery.Table("{}.{}".format(dataset_id, table_id), schema=schema) table = client.create_table(table) yield "{}.{}.{}".format(table.project, table.dataset_id, table.table_id) client.delete_table(table, not_found_ok=True) @pytest.fixture def table_with_data_id() -> str: return "bigquery-public-data.samples.shakespeare" @pytest.fixture def routine_id(client: bigquery.Client, dataset_id: str) -> Iterator[str]: now = datetime.datetime.now() routine_id = "python_routine_sample_{}_{}".format( now.strftime("%Y%m%d%H%M%S"), uuid.uuid4().hex[:8] ) routine = bigquery.Routine("{}.{}".format(dataset_id, routine_id)) routine.type_ = "SCALAR_FUNCTION" routine.language = "SQL" routine.body = "x * 3" routine.arguments = [ bigquery.RoutineArgument( name="x", data_type=bigquery.StandardSqlDataType( type_kind=bigquery.StandardSqlTypeNames.INT64 ), ) ] routine = client.create_routine(routine) yield "{}.{}.{}".format(routine.project, routine.dataset_id, routine.routine_id) client.delete_routine(routine, not_found_ok=True) @pytest.fixture def model_id(client: bigquery.Client, dataset_id: str) -> str: model_id = "{}.{}".format(dataset_id, uuid.uuid4().hex) # The only way to create a model resource is via SQL. # Use a very small dataset (2 points), to train a model quickly. sql = """ CREATE MODEL `{}` OPTIONS ( model_type='linear_reg', max_iterations=1, learn_rate=0.4, learn_rate_strategy='constant' ) AS ( SELECT 'a' AS f1, 2.0 AS label UNION ALL SELECT 'b' AS f1, 3.8 AS label ) """.format( model_id ) client.query_and_wait(sql) return model_id @pytest.fixture def kms_key_name() -> str: return "projects/cloud-samples-tests/locations/us/keyRings/test/cryptoKeys/test"