rithwiks commited on
Commit
b4967a6
2 Parent(s): 2382d98 32a5cc7

Merge branch 'main' of https://huggingface.co/datasets/AstroCompress/GBI-16-2D into main

Browse files
Files changed (2) hide show
  1. GBI-16-2D.py +1 -1
  2. README.md +28 -24
GBI-16-2D.py CHANGED
@@ -45,7 +45,7 @@ _REPO_ID = "AstroCompress/GBI-16-2D"
45
  class GBI_16_2D(datasets.GeneratorBasedBuilder):
46
  """GBI-16-2D Dataset"""
47
 
48
- VERSION = datasets.Version("1.0.0")
49
 
50
  BUILDER_CONFIGS = [
51
  datasets.BuilderConfig(
 
45
  class GBI_16_2D(datasets.GeneratorBasedBuilder):
46
  """GBI-16-2D Dataset"""
47
 
48
+ VERSION = datasets.Version("1.0.1")
49
 
50
  BUILDER_CONFIGS = [
51
  datasets.BuilderConfig(
README.md CHANGED
@@ -21,35 +21,16 @@ pip install datasets astropy
21
 
22
  There are two datasets: `tiny` and `full`, each with `train` and `test` splits. The `tiny` dataset has 2 2D images in the `train` and 1 in the `test`. The `full` dataset contains all the images in the `data/` directory.
23
 
24
- ## Use from Huggingface Directly
25
 
26
- To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:
27
 
28
  ```bash
29
- huggingface-cli login
30
- ```
31
-
32
- or
33
-
34
- ```
35
- import huggingface_hub
36
- huggingface_hub.login(token=token)
37
- ```
38
-
39
- Then in your python script:
40
-
41
- ```python
42
- from datasets import load_dataset
43
- dataset = load_dataset("AstroCompress/GBI-16-2D", "tiny")
44
- ds = dataset.with_format("np")
45
  ```
46
 
47
- ## Local Use
48
-
49
- Alternatively, you can clone this repo and use directly without connecting to hf:
50
-
51
  ```bash
52
- git clone https://huggingface.co/datasets/AstroCompress/GBI-16-2D
53
  ```
54
 
55
  Then `cd SBI-16-3D` and start python like:
@@ -67,4 +48,27 @@ ds["test"][0]["image"].shape # -> (TBD)
67
  ```
68
 
69
  Note of course that it will take a long time to download and convert the images in the local cache for the `full` dataset. Afterward, the usage should be quick as the files are memory-mapped from disk.
70
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  There are two datasets: `tiny` and `full`, each with `train` and `test` splits. The `tiny` dataset has 2 2D images in the `train` and 1 in the `test`. The `full` dataset contains all the images in the `data/` directory.
23
 
24
+ ## Local Use (RECOMMENDED)
25
 
26
+ Alternatively, you can clone this repo and use directly without connecting to hf:
27
 
28
  ```bash
29
+ git clone https://huggingface.co/datasets/AstroCompress/GBI-16-2D
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ```
31
 
 
 
 
 
32
  ```bash
33
+ git lfs pull
34
  ```
35
 
36
  Then `cd SBI-16-3D` and start python like:
 
48
  ```
49
 
50
  Note of course that it will take a long time to download and convert the images in the local cache for the `full` dataset. Afterward, the usage should be quick as the files are memory-mapped from disk.
51
+
52
+
53
+ ## Use from Huggingface Directly
54
+
55
+ To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:
56
+
57
+ ```bash
58
+ huggingface-cli login
59
+ ```
60
+
61
+ or
62
+
63
+ ```
64
+ import huggingface_hub
65
+ huggingface_hub.login(token=token)
66
+ ```
67
+
68
+ Then in your python script:
69
+
70
+ ```python
71
+ from datasets import load_dataset
72
+ dataset = load_dataset("AstroCompress/GBI-16-2D", "tiny")
73
+ ds = dataset.with_format("np")
74
+ ```