File size: 2,352 Bytes
289df1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a822140
289df1b
0b5ffc4
289df1b
 
 
 
 
2e697f2
a2784d6
 
 
a822140
289df1b
 
 
 
03e1b05
289df1b
 
 
 
 
 
 
 
 
 
80b1f0c
a822140
 
8b92da3
 
a822140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e1b05
a822140
e2d279a
 
 
f1c3234
 
 
 
8020e14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: cc-by-4.0
pretty_name: Raw space-based images from the Hubble Space Telescope 
tags:
- astronomy
- compression
- images
---

# SBI-16-2D Dataset

SBI-16-2D is a dataset which is part of the AstroCompress project. It contains imaging data assembled from the Hubble Space Telescope (HST). <TODO>Describe data format</TODO>

# Usage

You first need to install the `datasets` and `astropy` packages:

```bash
pip install datasets astropy
```

There are two datasets: `tiny` and `full`, each with `train` and `test` splits. The `tiny` dataset has 2 2D images in the `train` and 1 in the `test`. The `full` dataset contains all the images in the `data/` directory.

## Local Use (RECOMMENDED)

You can clone this repo and use directly without connecting to hf:

```bash
git clone https://huggingface.co/datasets/AstroCompress/SBI-16-2D
```

To pull all data files:
```
git lfs pull
```

Then `cd SBI-16-3D` and start python like:

```python
from datasets import load_dataset
dataset = load_dataset("./SBI-16-2D.py", "tiny", data_dir="./data/", writer_batch_size=1, trust_remote_code=True)
ds = dataset.with_format("np")
```

Now you should be able to use the `ds` variable like:

```python
ds["test"][0]["image"].shape # -> (TBD)
```

Note of course that it will take a long time to download and convert the images in the local cache for the `full` dataset. Afterward, the usage should be quick as the files are memory-mapped from disk.

## Use from Huggingface Directly

This method may only be an option when trying to access the "tiny" version of the dataset.

To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:

```bash
huggingface-cli login
```

or

```
import huggingface_hub
huggingface_hub.login(token=token)
```

Then in your python script:

```python
from datasets import load_dataset
dataset = load_dataset("AstroCompress/SBI-16-2D", "tiny", writer_batch_size=1, trust_remote_code=True)
ds = dataset.with_format("np")
```


## Demo Colab Notebook
We provide a demo collab notebook to get started on using the dataset [here](https://colab.research.google.com/drive/1SuFBPZiYZg9LH4pqypc_v8Sp99lShJqZ?usp=sharing).

## Utils scripts
Note that utils scripts such as `eval_baselines.py` must be run from the parent directory of `utils`, i.e. `python utils/eval_baselines.py`.