File size: 2,352 Bytes
289df1b a822140 289df1b 0b5ffc4 289df1b 2e697f2 a2784d6 a822140 289df1b 03e1b05 289df1b 80b1f0c a822140 8b92da3 a822140 03e1b05 a822140 e2d279a f1c3234 8020e14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: cc-by-4.0
pretty_name: Raw space-based images from the Hubble Space Telescope
tags:
- astronomy
- compression
- images
---
# SBI-16-2D Dataset
SBI-16-2D is a dataset which is part of the AstroCompress project. It contains imaging data assembled from the Hubble Space Telescope (HST). <TODO>Describe data format</TODO>
# Usage
You first need to install the `datasets` and `astropy` packages:
```bash
pip install datasets astropy
```
There are two datasets: `tiny` and `full`, each with `train` and `test` splits. The `tiny` dataset has 2 2D images in the `train` and 1 in the `test`. The `full` dataset contains all the images in the `data/` directory.
## Local Use (RECOMMENDED)
You can clone this repo and use directly without connecting to hf:
```bash
git clone https://huggingface.co/datasets/AstroCompress/SBI-16-2D
```
To pull all data files:
```
git lfs pull
```
Then `cd SBI-16-3D` and start python like:
```python
from datasets import load_dataset
dataset = load_dataset("./SBI-16-2D.py", "tiny", data_dir="./data/", writer_batch_size=1, trust_remote_code=True)
ds = dataset.with_format("np")
```
Now you should be able to use the `ds` variable like:
```python
ds["test"][0]["image"].shape # -> (TBD)
```
Note of course that it will take a long time to download and convert the images in the local cache for the `full` dataset. Afterward, the usage should be quick as the files are memory-mapped from disk.
## Use from Huggingface Directly
This method may only be an option when trying to access the "tiny" version of the dataset.
To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:
```bash
huggingface-cli login
```
or
```
import huggingface_hub
huggingface_hub.login(token=token)
```
Then in your python script:
```python
from datasets import load_dataset
dataset = load_dataset("AstroCompress/SBI-16-2D", "tiny", writer_batch_size=1, trust_remote_code=True)
ds = dataset.with_format("np")
```
## Demo Colab Notebook
We provide a demo collab notebook to get started on using the dataset [here](https://colab.research.google.com/drive/1SuFBPZiYZg9LH4pqypc_v8Sp99lShJqZ?usp=sharing).
## Utils scripts
Note that utils scripts such as `eval_baselines.py` must be run from the parent directory of `utils`, i.e. `python utils/eval_baselines.py`. |