File size: 30,615 Bytes
2c59d47 8a933d4 2c59d47 8a933d4 2c59d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6e84dd0f",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from tqdm import tqdm\n",
"import glob\n",
"from astropy.io import fits\n",
"import os\n",
"from astropy.io import fits\n",
"from astropy.wcs import WCS\n",
"from spherical_geometry.polygon import SphericalPolygon\n",
"import os\n",
"from astropy.io import fits\n",
"from astropy.wcs import WCS\n",
"from spherical_geometry.polygon import SphericalPolygon\n",
"from sklearn.cluster import AgglomerativeClustering\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"from astropy.io import fits\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"\"\"\"\n",
"First use hubble_downloading file before using this.\n",
"\"\"\"\n",
"\n",
"def get_all_fits_files(root_dir):\n",
" # Use glob to recursively find all .fits files\n",
" pattern = os.path.join(root_dir, '**', '*.fits')\n",
" fits_files = glob.glob(pattern, recursive=True)\n",
" return fits_files"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4f34a245",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββ| 14/14 [02:03<00:00, 8.81s/it]\n"
]
}
],
"source": [
"dirs = [d for d in os.listdir('.') if os.path.isdir(d) and str(d).startswith(\"MAST\")]\n",
"\n",
"all_fits = []\n",
"\n",
"for d in tqdm(dirs):\n",
" fits_files = get_all_fits_files(d)\n",
" all_fits.extend(fits_files)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "51770e43",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 43%|ββββββββββββββββ | 10175/23915 [08:12<12:36, 18.16it/s]WARNING: File may have been truncated: actual file length (28813816) is smaller than the expected size (33598080) [astropy.io.fits.file]\n",
"100%|βββββββββββββββββββββββββββββββββββββ| 23915/23915 [20:00<00:00, 19.92it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"2149\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"ct = 0\n",
"\n",
"valid_fits_paths = []\n",
"\n",
"for fits_path in tqdm(all_fits):\n",
" with fits.open(fits_path) as hdul:\n",
" try:\n",
" if hdul[1].data.dtype == np.dtype('uint16'):\n",
" #print(hdul.info())\n",
" assert hdul[1].data.shape == hdul[4].data.shape\n",
" ct += 1\n",
" valid_fits_paths.append(fits_path)\n",
" except:\n",
" continue\n",
" \n",
"print(ct)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "cfad3290",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File paths saved to valid_fits_paths.txt\n"
]
}
],
"source": [
"def save_filepaths_to_text(filepaths, output_file):\n",
" try:\n",
" with open(output_file, 'w') as f:\n",
" for filepath in filepaths:\n",
" f.write(filepath + '\\n')\n",
" print(f\"File paths saved to {output_file}\")\n",
" except Exception as e:\n",
" print(f\"Error saving file paths: {e}\")\n",
"\n",
"save_filepaths_to_text(valid_fits_paths, \"valid_fits_paths.txt\")\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1a460324",
"metadata": {},
"outputs": [],
"source": [
"valid_fits_paths = os.listdir('./data')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e68b6a9e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββ| 2149/2149 [02:00<00:00, 17.77it/s]\n"
]
}
],
"source": [
"# Initialize the list of confirmed FITS paths\n",
"confirmed_fits_paths = []\n",
"\n",
"\"\"\"\n",
"Because hubble FITS have two images at HDU 1 and 4,\n",
"we need to calculate the union of the spherical polygons\n",
"for both of these, when storing the total FITS polygons.\n",
"\n",
"\"\"\"\n",
"\n",
"all_polys = []\n",
"\n",
"for i in tqdm(range(len(valid_fits_paths))):\n",
"\n",
" path1 = os.path.join('data', valid_fits_paths[i])\n",
" try:\n",
" with fits.open(path1) as hdul1:\n",
" wcs1a = WCS(hdul1[1].header)\n",
" shape1a = sorted(tuple(wcs1a.pixel_shape))[:2]\n",
"\n",
" wcs1b = WCS(hdul1[4].header)\n",
" shape1b = sorted(tuple(wcs1b.pixel_shape))[:2]\n",
"\n",
" # Get the footprints of the two WCS frames\n",
" footprint1a = wcs1a.calc_footprint(axes=shape1a)\n",
" footprint1b = wcs1b.calc_footprint(axes=shape1b)\n",
"\n",
"\n",
" # Define two polygons\n",
" poly1a = SphericalPolygon.from_radec(footprint1a[:, 0], footprint1a[:, 1])\n",
" poly1b = SphericalPolygon.from_radec(footprint1b[:, 0], footprint1b[:, 1])\n",
"\n",
" poly1 = poly1a.union(poly1b)\n",
"\n",
" all_polys.append(poly1)\n",
" except:\n",
" continue"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "72347e84",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββββββββββββββββββββββββββββ| 2148/2148 [00:00<00:00, 77320.99it/s]\n"
]
}
],
"source": [
"latitudes = []\n",
"longitudes = []\n",
"\n",
"for poly in tqdm(all_polys):\n",
" pts = list(poly.to_radec())[0]\n",
" ra = pts[0][0]\n",
" dec = pts[1][0]\n",
" \n",
" longitudes.append(ra)\n",
" latitudes.append(dec)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "a396a37f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Symmetric?\n",
"True\n",
"(2148, 2148)\n"
]
}
],
"source": [
"n_points = len(latitudes)\n",
"\n",
"# Repeat each point n_points times for lat1, lon1\n",
"lat1 = np.repeat(latitudes, n_points)\n",
"lon1 = np.repeat(longitudes, n_points)\n",
"\n",
"# Tile the whole array n_points times for lat2, lon2\n",
"lat2 = np.tile(latitudes, n_points)\n",
"lon2 = np.tile(longitudes, n_points)\n",
"\n",
"# Calculates angular separation between two spherical coords\n",
"# This can be lat/lon or ra/dec\n",
"# Taken from astropy\n",
"def angular_separation_deg(lon1, lat1, lon2, lat2):\n",
" lon1 = np.deg2rad(lon1)\n",
" lon2 = np.deg2rad(lon2)\n",
" lat1 = np.deg2rad(lat1)\n",
" lat2 = np.deg2rad(lat2)\n",
" \n",
" sdlon = np.sin(lon2 - lon1)\n",
" cdlon = np.cos(lon2 - lon1)\n",
" slat1 = np.sin(lat1)\n",
" slat2 = np.sin(lat2)\n",
" clat1 = np.cos(lat1)\n",
" clat2 = np.cos(lat2)\n",
"\n",
" num1 = clat2 * sdlon\n",
" num2 = clat1 * slat2 - slat1 * clat2 * cdlon\n",
" denominator = slat1 * slat2 + clat1 * clat2 * cdlon\n",
"\n",
" return np.rad2deg(np.arctan2(np.hypot(num1, num2), denominator))\n",
"\n",
"# Compute the pairwise angular separations\n",
"angular_separations = angular_separation_deg(lon1, lat1, lon2, lat2)\n",
"\n",
"# Reshape the result into a matrix form\n",
"angular_separations_matrix = angular_separations.reshape(n_points, n_points)\n",
"\n",
"def check_symmetric(a, rtol=1e-05, atol=1e-07):\n",
" return np.allclose(a, a.T, rtol=rtol, atol=atol)\n",
"\n",
"print(\"Symmetric?\")\n",
"print(check_symmetric(angular_separations_matrix))\n",
"print(angular_separations_matrix.shape)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "ae7ed213",
"metadata": {},
"outputs": [],
"source": [
"HUBBLE_FOV = 0.057\n",
"#JWST_FOV = 0.0366667\n",
"\n",
"THRESH = HUBBLE_FOV * 3\n",
"\n",
"clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
"labels = clustering.fit_predict(angular_separations_matrix)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "bd5cc1db",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 1/1947 [00:00<03:29, 9.28it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"FAIL 0.2290158291821388\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 2%|β | 30/1947 [00:19<05:46, 5.54it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"FAIL 0.25478384325067566\n",
"FAIL 0.11201573962968173\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|β | 32/1947 [00:20<04:39, 6.86it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"FAIL 0.08182961205102905\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 6%|βββ | 108/1947 [00:47<08:23, 3.65it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"FAIL 0.31680112298937957\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 24%|ββββββββββ | 470/1947 [00:51<00:06, 231.53it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"FAIL 0.08882975311005689\n",
"FAIL 0.008033477806590562\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββ| 1947/1947 [00:51<00:00, 37.70it/s]\n"
]
}
],
"source": [
"failed_labels = []\n",
"failed_paths = []\n",
"\n",
"for label in tqdm(np.unique(labels)):\n",
" polys = [(all_polys[i], valid_fits_paths[i]) for i in range(len(labels)) if labels[i] == label]\n",
" if len(polys) > 1:\n",
" total_poly = polys[0][0]\n",
" for i in range(1, len(polys)):\n",
" new_poly = polys[i][0]\n",
" new_path = polys[i][1]\n",
" if total_poly.intersects_poly(new_poly):\n",
" union_over_max = total_poly.intersection(new_poly).area() / new_poly.area()\n",
" print(f\"FAIL {union_over_max}\")\n",
" failed_labels.append(label)\n",
" failed_paths.append(new_path)\n",
" continue\n",
" else:\n",
" total_poly = total_poly.union(new_poly)\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "7170d0e1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['j9l919b6q_raw.fits',\n",
" 'je2r07ajq_raw.fits',\n",
" 'jcdm56ncq_raw.fits',\n",
" 'j9fc0tqaq_raw.fits',\n",
" 'jbpk02ioq_raw.fits',\n",
" 'jepx44lrq_raw.fits',\n",
" 'j9cx01cfq_raw.fits']"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"failed_paths"
]
},
{
"cell_type": "code",
"execution_count": 105,
"id": "5baea239",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"22 15\n",
"58 12\n",
"49 7\n",
"55 7\n",
"28 6\n",
" ..\n",
"1493 1\n",
"1264 1\n",
"1214 1\n",
"1387 1\n",
"141 1\n",
"Name: count, Length: 1946, dtype: int64"
]
},
"execution_count": 105,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.Series(labels).value_counts()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cbb7bf27",
"metadata": {},
"outputs": [],
"source": [
"# Function to plot the rectangle\n",
"def plot_rectangle(corners):\n",
" # Close the rectangle by repeating the first point at the end\n",
" closed_corners = np.append(corners, [corners[0]], axis=0)\n",
"\n",
" # Plot the rectangle\n",
" plt.plot(closed_corners[:, 0], closed_corners[:, 1], 'b-')\n",
" plt.scatter(corners[:, 0], corners[:, 1], color='red')\n",
" \n",
" # Annotate the points\n",
" for i, corner in enumerate(corners):\n",
" plt.annotate(f'P{i+1}', (corner[0], corner[1]), textcoords=\"offset points\", xytext=(5,5), ha='center')\n",
" \n",
" plt.xlabel('Longitude')\n",
" plt.ylabel('Latitude')\n",
" plt.title('Rectangle Plot from Given Corners')\n",
" plt.grid(True)\n",
"\n",
"# Call the function to plot the rectangle\n",
"plot_rectangle(footprint1)\n",
"plot_rectangle(footprint2)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "37557566",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"XTENSION= 'IMAGE ' / extension type BITPIX = 16 / bits per data value NAXIS = 2 / number of data axes NAXIS1 = 4144 / length of first data axis NAXIS2 = 2068 / length of second data axis PCOUNT = 0 / number of group parameters GCOUNT = 1 / number of groups INHERIT = T / inherit the primary header EXTNAME = 'SCI ' / extension name EXTVER = 1 / extension version number ROOTNAME= 'jcuh01euq ' / rootname of the observation setEXPNAME = 'jcuh01euq ' / exposure identifier DATAMIN = 2205. / the minimum value of the data DATAMAX = 51795. / the maximum value of the data BUNIT = 'COUNTS ' / brightness units BSCALE = 1.0 / scale factor for array value to physical value BZERO = 32768.0 / physical value for an array value of zero / WFC CCD CHIP IDENTIFICATION CCDCHIP = 2 / CCD chip (1 or 2) / World Coordinate System and Related Parameters WCSAXES = 2 / number of World Coordinate System axes CRPIX1 = 2124.0 / x-coordinate of reference pixel CRPIX2 = 1024.0 / y-coordinate of reference pixel CRVAL1 = 2.980193405890E+02 / first axis value at reference pixel CRVAL2 = 1.447422452918E+01 / second axis value at reference pixel CTYPE1 = 'RA---TAN' / the coordinate type for the first axis CTYPE2 = 'DEC--TAN' / the coordinate type for the second axis CD1_1 = 1.40038E-06 / partial of first axis coordinate w.r.t. x CD1_2 = 1.39725E-05 / partial of first axis coordinate w.r.t. y CD2_1 = 1.37888E-05 / partial of second axis coordinate w.r.t. x CD2_2 = -4.58499E-07 / partial of second axis coordinate w.r.t. y LTV1 = 24.0 / offset in X to subsection start LTV2 = 0.0 / offset in Y to subsection start RAW_LTV1= 24.0 / original offset in X to subsection start RAW_LTV2= 0.0 / original offset in Y to subsection start LTM1_1 = 1.0 / reciprocal of sampling rate in X LTM2_2 = 1.0 / reciprocal of sampling rate in Y ORIENTAT= 91.8795 / position angle of image y axis (deg. e of n) RA_APER = 2.980491666667E+02 / RA of aperture reference position DEC_APER= 1.447333333333E+01 / Declination of aperture reference position PA_APER = 91.4584 / Position Angle of reference aperture center (deVAFACTOR= 9.999498853766E-01 / velocity aberration plate scale factor / READOUT DEFINITION PARAMETERS CENTERA1= 2073 / subarray axis1 center pt in unbinned dect. pix CENTERA2= 1035 / subarray axis2 center pt in unbinned dect. pix SIZAXIS1= 4144 / subarray axis1 size in unbinned detector pixelsSIZAXIS2= 2068 / subarray axis2 size in unbinned detector pixelsBINAXIS1= 1 / axis1 data bin size in unbinned detector pixelsBINAXIS2= 1 / axis2 data bin size in unbinned detector pixels / PHOTOMETRY KEYWORDS PHOTMODE= ' ' / obserPHOTFLAM= 0.000000000000E+00 / inverse sensitivity, ergs/cm2/Ang/electron PHOTZPT = 0.000000 / ST magnitude zero point PHOTPLAM= 0.000000 / Pivot wavelength (Angstroms) PHOTBW = 0.000000 / RMS bandwidth of filter plus detector / REPEATED EXPOSURES INFO NCOMBINE= 1 / number of image sets combined during CR rejecti / DATA PACKET INFORMATION FILLCNT = 0 / number of segments containing fill ERRCNT = 0 / number of segments containing errors PODPSFF = F / podps fill present (T/F) STDCFFF = F / science telemetry fill data present (T=1/F=0) STDCFFP = '0x5569' / science telemetry fill pattern (hex) / ON-BOARD COMPRESSION INFORMATION WFCMPRSD= F / was WFC data compressed? (T/F) CBLKSIZ = 0 / size of compression block in 2-byte words LOSTPIX = 0 / #pixels lost due to buffer overflow COMPTYP = 'None ' / compression type performed (Partial/Full/None) / IMAGE STATISTICS AND DATA QUALITY FLAGS NGOODPIX= 8569792 / number of good pixels SDQFLAGS= 31743 / serious data quality flags GOODMIN = 2205. / minimum value of good pixels GOODMAX = 51795. / maximum value of good pixels GOODMEAN= 2346.49479940703 / mean value of good pixels SOFTERRS= 0 / number of soft error pixels (DQF=1) SNRMIN = 0.000000 / minimum signal to noise of good pixels SNRMAX = 0.000000 / maximum signal to noise of good pixels SNRMEAN = 0.000000 / mean value of signal to noise of good pixels MEANDARK= 0.000000 / average of the dark values subtracted MEANBLEV= 0.000000 / average of all bias levels subtracted MEANFLSH= 0.000000 / Mean number of counts in post flash exposure END \n"
]
}
],
"source": [
"fitpath = \"./data/jcuh01euq_raw.fits\"\n",
"\n",
"with fits.open(fitpath) as hdul1:\n",
" print(hdul1[1].header)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "da51818b",
"metadata": {},
"outputs": [],
"source": [
"def get_corners_and_metadata(fits_path):\n",
" with fits.open(fits_path) as hdul1:\n",
" wcs1a = WCS(hdul1[1].header)\n",
" shape1a = sorted(tuple(wcs1a.pixel_shape))[:2]\n",
" footprint1a = wcs1a.calc_footprint(axes=shape1a)\n",
" coords = list(footprint1a.flatten())\n",
" inf = hdul1[0].header\n",
" ra_targ = inf['RA_TARG']\n",
" dec_targ = inf['DEC_TARG']\n",
" exp_time = inf['EXPTIME']\n",
" \n",
" return coords"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "cac0e38b",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββ| 2142/2142 [00:26<00:00, 80.15it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" fits_file ra1 dec1 ra2 dec2 \n",
"0 jcuh01euq_raw.fits 298.001510 14.445419 298.061288 14.443517 \\\n",
"1 jbkh05h9q_raw.fits 287.858027 -60.066247 287.752068 -60.042645 \n",
"2 jcnu10r9q_raw.fits 201.025443 -43.460893 201.056301 -43.407484 \n",
"3 jdba3qokq_raw.fits 141.681252 -24.804074 141.744131 -24.813923 \n",
"4 jdrz77m0q_raw.fits 150.936991 40.747275 151.004173 40.719653 \n",
"... ... ... ... ... ... \n",
"2136 jbkz29rzq_raw.fits 138.498478 40.943594 138.437903 40.979121 \n",
"2137 jdba3bi3q_raw.fits 131.959813 72.952872 131.893400 73.007432 \n",
"2138 jbkz90hxq_raw.fits 46.020489 -44.048250 46.094849 -44.070590 \n",
"2139 jcb805vtq_raw.fits 182.552746 49.999954 182.561072 49.942283 \n",
"2140 jdba8aw2q_raw.fits 224.393934 -19.196982 224.334389 -19.183120 \n",
"\n",
" ra3 dec3 ra4 dec4 exposure_time \n",
"0 298.064282 14.472018 298.004497 14.473921 580.0 \n",
"1 287.725102 -60.067934 287.831124 -60.091557 500.0 \n",
"2 201.021070 -43.394620 200.990187 -43.448019 430.0 \n",
"3 141.751603 -24.786090 141.688738 -24.776244 348.0 \n",
"4 151.024449 40.743832 150.957250 40.771467 390.0 \n",
"... ... ... ... ... ... \n",
"2136 138.412650 40.957740 138.473220 40.922227 400.0 \n",
"2137 131.799083 72.999647 131.865760 72.945118 348.0 \n",
"2138 46.112684 -44.044969 46.038349 -44.022640 400.0 \n",
"2139 182.605575 49.942966 182.597302 50.000640 659.0 \n",
"2140 224.325127 -19.210400 224.384680 -19.224265 348.0 \n",
"\n",
"[2141 rows x 10 columns]\n"
]
}
],
"source": [
"# Directory containing the FITS files\n",
"data_dir = './data'\n",
"\n",
"# List to hold the data for the DataFrame\n",
"data = []\n",
"\n",
"# Loop through all FITS files in the \"data\" directory\n",
"for fits_file in tqdm(os.listdir(data_dir)):\n",
" if fits_file.endswith('.fits'):\n",
" file_path = os.path.join(data_dir, fits_file)\n",
" ra1, dec1, ra2, dec2, ra3, dec3, ra4, dec4, exposure_time = get_corners_and_metadata(file_path)\n",
" data.append([fits_file, ra1, dec1, ra2, dec2, ra3, dec3, ra4, dec4, exposure_time])\n",
"\n",
"# Create a DataFrame\n",
"df = pd.DataFrame(data, columns=['fits_file', 'ra1', 'dec1', 'ra2', 'dec2', 'ra3', 'dec3', 'ra4', 'dec4', 'exposure_time'])\n",
"\n",
"# Display the DataFrame\n",
"print(df)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "fc086514",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train and test datasets have been saved to 'train_data.csv' and 'test_data.csv'.\n"
]
}
],
"source": [
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"# Assuming df is your DataFrame\n",
"# df = pd.DataFrame(...) # Your DataFrame should already be defined\n",
"\n",
"# Perform an 85/15 train-test split\n",
"train_df, test_df = train_test_split(df, test_size=0.15, random_state=42)\n",
"\n",
"# Save the train and test DataFrames to CSV files\n",
"train_df.to_csv('train_split.csv', index=False)\n",
"test_df.to_csv('test_split.csv', index=False)\n",
"\n",
"print(\"Train and test datasets have been saved to 'train_data.csv' and 'test_data.csv'.\")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "ab4a9a6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['README.md',\n",
" 'hst_FINAL.csv',\n",
" 'hubble_data_filtering.ipynb',\n",
" 'data',\n",
" 'valid_fits_paths.txt',\n",
" 'SBI-16-2D.py',\n",
" '.gitattributes',\n",
" '.git',\n",
" '.ipynb_checkpoints']"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.listdir('.')"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "2a77c29e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CSV file has been converted and saved as JSONL at test_split.jsonl\n",
"CSV file has been converted and saved as JSONL at train_split.jsonl\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"names = [\"test_split\", \"train_split\"]\n",
"\n",
"for name in names:\n",
"\n",
" # Step 1: Load the CSV file into a DataFrame\n",
" csv_file_path = f'{name}.csv' # Replace with your actual CSV file path\n",
" df = pd.read_csv(csv_file_path)\n",
"\n",
" # Step 2: Save the DataFrame as a JSONL file\n",
" jsonl_file_path = f'{name}.jsonl' # Replace with your desired output file path\n",
" df.to_json(jsonl_file_path, orient='records', lines=True)\n",
"\n",
" print(f\"CSV file has been converted and saved as JSONL at {jsonl_file_path}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c78322ff",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|