rithwiks commited on
Commit
0119ae3
1 Parent(s): 7de150a

utils and baselines

Browse files
Files changed (2) hide show
  1. utils/__init__.py +1 -0
  2. utils/eval_baselines.py +134 -0
utils/__init__.py CHANGED
@@ -0,0 +1 @@
 
 
1
+ from .create_splits import *
utils/eval_baselines.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Runs several baseline compression algorithms and stores results for each FITS file in a csv.
3
+ This code is written functionality-only and cleaning it up is a TODO.
4
+ """
5
+
6
+
7
+ import os
8
+ import re
9
+ from pathlib import Path
10
+ import argparse
11
+ import os.path
12
+ from astropy.io import fits
13
+ import numpy as np
14
+ from time import time
15
+ import pandas as pd
16
+ from tqdm import tqdm
17
+
18
+ from astropy.io.fits import CompImageHDU
19
+ from imagecodecs import (
20
+ jpeg2k_encode,
21
+ jpeg2k_decode,
22
+ jpegls_encode,
23
+ jpegls_decode,
24
+ jpegxl_encode,
25
+ jpegxl_decode,
26
+ rcomp_encode,
27
+ rcomp_decode,
28
+ )
29
+
30
+ # Functions that require some preset parameters. All others default to lossless.
31
+
32
+ jpegxl_encode_max_effort_preset = lambda x: jpegxl_encode(x, lossless=True, effort=9)
33
+ jpegxl_encode_preset = lambda x: jpegxl_encode(x, lossless=True)
34
+
35
+ def find_matching_files():
36
+ """
37
+ Returns list of test set file paths.
38
+ """
39
+ df = pd.read_json("./splits/full_test.jsonl", lines=True)
40
+ return list(df['image'])
41
+
42
+ def benchmark_imagecodecs_compression_algos(arr, compression_type):
43
+
44
+ encoder, decoder = ALL_CODECS[compression_type]
45
+
46
+ write_start_time = time()
47
+ encoded = encoder(arr)
48
+ write_time = time() - write_start_time
49
+
50
+ read_start_time = time()
51
+ if compression_type == "RICE":
52
+ decoded = decoder(encoded, shape=arr.shape, dtype=np.uint16)
53
+ else:
54
+ decoded = decoder(encoded)
55
+ read_time = time() - read_start_time
56
+
57
+ assert np.array_equal(arr, decoded)
58
+
59
+ buflength = len(encoded)
60
+
61
+ return {compression_type + "_BPD": buflength / arr.size,
62
+ compression_type + "_WRITE_RUNTIME": write_time,
63
+ compression_type + "_READ_RUNTIME": read_time,
64
+ #compression_type + "_TILE_DIVISOR": np.nan,
65
+ }
66
+
67
+ def main(dim):
68
+
69
+ save_path = f"baseline_results_{dim}.csv"
70
+
71
+ file_paths = find_matching_files()
72
+
73
+ df = pd.DataFrame(columns=columns, index=[str(p) for p in file_paths])
74
+
75
+ print(f"Number of files to be tested: {len(file_paths)}")
76
+
77
+ ct = 0
78
+
79
+ for path in tqdm(file_paths):
80
+ for hdu_idx in [1, 4]:
81
+ with fits.open(path) as hdul:
82
+ if dim == '2d':
83
+ arr = hdul[hdu_idx].data
84
+ else:
85
+ raise RuntimeError(f"{dim} not applicable.")
86
+
87
+ ct += 1
88
+ if ct % 10 == 0:
89
+ print(df.mean())
90
+ df.to_csv(save_path)
91
+
92
+ for algo in ALL_CODECS.keys():
93
+ try:
94
+ if algo == "JPEG_2K" and dim != '2d':
95
+ test_results = benchmark_imagecodecs_compression_algos(arr.transpose(1, 2, 0), algo)
96
+ else:
97
+ test_results = benchmark_imagecodecs_compression_algos(arr, algo)
98
+
99
+ for column, value in test_results.items():
100
+ if column in df.columns:
101
+ df.at[path + f"_hdu{hdu_idx}", column] = value
102
+
103
+ except Exception as e:
104
+ print(f"Failed at {path} under exception {e}.")
105
+
106
+
107
+ if __name__ == "__main__":
108
+ parser = argparse.ArgumentParser(description="Process some 2D or 3D data.")
109
+ parser.add_argument(
110
+ "dimension",
111
+ choices=['2d'],
112
+ help="Specify whether the data is 2d, or; not applicable here: 3dt (3d time dimension), or 3dw (3d wavelength dimension)."
113
+ )
114
+ args = parser.parse_args()
115
+ dim = args.dimension.lower()
116
+
117
+ # RICE REQUIRES UNIQUE INPUT OF ARR SHAPE AND DTYPE INTO DECODER
118
+
119
+ ALL_CODECS = {
120
+ "JPEG_XL_MAX_EFFORT": [jpegxl_encode_max_effort_preset, jpegxl_decode],
121
+ "JPEG_XL": [jpegxl_encode_preset, jpegxl_decode],
122
+ "JPEG_2K": [jpeg2k_encode, jpeg2k_decode],
123
+ "JPEG_LS": [jpegls_encode, jpegls_decode],
124
+ "RICE": [rcomp_encode, rcomp_decode],
125
+ }
126
+
127
+ columns = []
128
+ for algo in ALL_CODECS.keys():
129
+ columns.append(algo + "_BPD")
130
+ columns.append(algo + "_WRITE_RUNTIME")
131
+ columns.append(algo + "_READ_RUNTIME")
132
+ #columns.append(algo + "_TILE_DIVISOR")
133
+
134
+ main(dim)