sbi script
Browse files- SBI-16-2D.py +1 -55
SBI-16-2D.py
CHANGED
@@ -155,58 +155,4 @@ class SBI_16_2D(datasets.GeneratorBasedBuilder):
|
|
155 |
# Process image data from HDU index 4
|
156 |
image_data_4 = hdul[4].data[:, :].tolist()
|
157 |
task_instance_key_4 = f"{self.config.name}-{split}-{idx}-HDU4"
|
158 |
-
yield task_instance_key_4, {**{"image": image_data_4}, **item}
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
def make_split_jsonl_files(
|
163 |
-
config_type="tiny", data_dir="./data", outdir="./splits", seed=42
|
164 |
-
):
|
165 |
-
"""
|
166 |
-
Create jsonl files for the SBI-16-2D dataset.
|
167 |
-
|
168 |
-
config_type: str, default="tiny"
|
169 |
-
The type of split to create. Options are "tiny" and "full".
|
170 |
-
data_dir: str, default="./data"
|
171 |
-
The directory where the FITS files are located.
|
172 |
-
outdir: str, default="./splits"
|
173 |
-
The directory where the jsonl files will be created.
|
174 |
-
seed: int, default=42
|
175 |
-
The seed for the random split.
|
176 |
-
"""
|
177 |
-
random.seed(seed)
|
178 |
-
os.makedirs(outdir, exist_ok=True)
|
179 |
-
|
180 |
-
fits_files = glob(os.path.join(data_dir, "*.fits"))
|
181 |
-
random.shuffle(fits_files)
|
182 |
-
if config_type == "tiny":
|
183 |
-
train_files = fits_files[:2]
|
184 |
-
test_files = fits_files[2:3]
|
185 |
-
elif config_type == "full":
|
186 |
-
split_idx = int(0.8 * len(fits_files))
|
187 |
-
train_files = fits_files[:split_idx]
|
188 |
-
test_files = fits_files[split_idx:]
|
189 |
-
else:
|
190 |
-
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")
|
191 |
-
|
192 |
-
def create_jsonl(files, split_name):
|
193 |
-
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
|
194 |
-
with open(output_file, "w") as out_f:
|
195 |
-
for file in files:
|
196 |
-
print(file, flush=True, end="...")
|
197 |
-
with fits.open(file, memmap=False) as hdul:
|
198 |
-
image_id = os.path.basename(file).split(".fits")[0]
|
199 |
-
ra = hdul["SCI"].header.get("CRVAL1", 0)
|
200 |
-
dec = hdul["SCI"].header.get("CRVAL2", 0)
|
201 |
-
pixscale = hdul["SCI"].header.get("CD1_2", 0.396)
|
202 |
-
item = {
|
203 |
-
"image_id": image_id,
|
204 |
-
"image": file,
|
205 |
-
"ra": ra,
|
206 |
-
"dec": dec,
|
207 |
-
"pixscale": pixscale,
|
208 |
-
}
|
209 |
-
out_f.write(json.dumps(item) + "\n")
|
210 |
-
|
211 |
-
create_jsonl(train_files, "train")
|
212 |
-
create_jsonl(test_files, "test")
|
|
|
155 |
# Process image data from HDU index 4
|
156 |
image_data_4 = hdul[4].data[:, :].tolist()
|
157 |
task_instance_key_4 = f"{self.config.name}-{split}-{idx}-HDU4"
|
158 |
+
yield task_instance_key_4, {**{"image": image_data_4}, **item}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|