added csv pull
Browse files- utils/eval_baselines.py +14 -4
- utils/pull_hubble_csv.py +80 -0
utils/eval_baselines.py
CHANGED
@@ -70,14 +70,23 @@ def main(dim):
|
|
70 |
|
71 |
file_paths = find_matching_files()
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
print(f"Number of files to be tested: {len(file_paths)}")
|
76 |
|
77 |
ct = 0
|
|
|
|
|
78 |
|
79 |
for path in tqdm(file_paths):
|
80 |
for hdu_idx in [1, 4]:
|
|
|
|
|
|
|
81 |
with fits.open(path) as hdul:
|
82 |
if dim == '2d':
|
83 |
arr = hdul[hdu_idx].data
|
@@ -86,7 +95,7 @@ def main(dim):
|
|
86 |
|
87 |
ct += 1
|
88 |
if ct % 10 == 0:
|
89 |
-
print(df.mean())
|
90 |
df.to_csv(save_path)
|
91 |
|
92 |
for algo in ALL_CODECS.keys():
|
@@ -98,12 +107,13 @@ def main(dim):
|
|
98 |
|
99 |
for column, value in test_results.items():
|
100 |
if column in df.columns:
|
101 |
-
df.at[
|
102 |
|
103 |
except Exception as e:
|
104 |
print(f"Failed at {path} under exception {e}.")
|
105 |
|
106 |
-
|
|
|
107 |
if __name__ == "__main__":
|
108 |
parser = argparse.ArgumentParser(description="Process some 2D or 3D data.")
|
109 |
parser.add_argument(
|
|
|
70 |
|
71 |
file_paths = find_matching_files()
|
72 |
|
73 |
+
if os.path.isfile(save_path):
|
74 |
+
df = pd.read_csv(save_path)
|
75 |
+
else:
|
76 |
+
pass
|
77 |
+
#df = pd.DataFrame(columns=columns, index=[str(p) for p in file_paths])
|
78 |
|
79 |
print(f"Number of files to be tested: {len(file_paths)}")
|
80 |
|
81 |
ct = 0
|
82 |
+
|
83 |
+
#print(df)
|
84 |
|
85 |
for path in tqdm(file_paths):
|
86 |
for hdu_idx in [1, 4]:
|
87 |
+
df_idx = path + f"_hdu{hdu_idx}"
|
88 |
+
if df_idx in df[df.columns[0]].values:
|
89 |
+
continue
|
90 |
with fits.open(path) as hdul:
|
91 |
if dim == '2d':
|
92 |
arr = hdul[hdu_idx].data
|
|
|
95 |
|
96 |
ct += 1
|
97 |
if ct % 10 == 0:
|
98 |
+
#print(df.mean())
|
99 |
df.to_csv(save_path)
|
100 |
|
101 |
for algo in ALL_CODECS.keys():
|
|
|
107 |
|
108 |
for column, value in test_results.items():
|
109 |
if column in df.columns:
|
110 |
+
df.at[df_idx, column] = value
|
111 |
|
112 |
except Exception as e:
|
113 |
print(f"Failed at {path} under exception {e}.")
|
114 |
|
115 |
+
df.to_csv(save_path)
|
116 |
+
|
117 |
if __name__ == "__main__":
|
118 |
parser = argparse.ArgumentParser(description="Process some 2D or 3D data.")
|
119 |
parser.add_argument(
|
utils/pull_hubble_csv.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from astroquery.mast.missions import MastMissions
|
2 |
+
|
3 |
+
"""
|
4 |
+
Used to pull the list of observations that fit our filter criteria from
|
5 |
+
online Hubble archives. See all filter details in the function call below.
|
6 |
+
"""
|
7 |
+
|
8 |
+
missions = MastMissions(mission='hst')
|
9 |
+
|
10 |
+
# Use query_criteria method to use selected form search conditions for making missions_mast search API call
|
11 |
+
results = missions.query_criteria(select_cols=[
|
12 |
+
'sci_aec',
|
13 |
+
'ang_sep',
|
14 |
+
'sci_aper_1234',
|
15 |
+
'sci_archive_class',
|
16 |
+
'sci_archive_date',
|
17 |
+
'sci_asn_id',
|
18 |
+
'sci_bandwidth',
|
19 |
+
'sci_broad_category',
|
20 |
+
'sci_central_wavelength',
|
21 |
+
'sci_costar_deploy',
|
22 |
+
'sci_data_set_name',
|
23 |
+
'sci_dec',
|
24 |
+
'sci_dec_v1',
|
25 |
+
'sci_dispersion',
|
26 |
+
'sci_ecliptic_latitude',
|
27 |
+
'sci_ecliptic_longitude',
|
28 |
+
'sci_expflag',
|
29 |
+
'sci_actual_duration',
|
30 |
+
'sci_fgslock',
|
31 |
+
'sci_spec_1234',
|
32 |
+
'sci_fov_config',
|
33 |
+
'sci_galactic_latitude',
|
34 |
+
'sci_galactic_longitude',
|
35 |
+
'sci_generation_date',
|
36 |
+
'sci_hapnum',
|
37 |
+
'sci_haspnum',
|
38 |
+
'sci_hlsp',
|
39 |
+
'sci_instrume',
|
40 |
+
'sci_instrument_config',
|
41 |
+
'sci_mtflag',
|
42 |
+
'sci_obs_type',
|
43 |
+
'sci_obset_id',
|
44 |
+
'sci_obsnum',
|
45 |
+
'sci_operating_mode',
|
46 |
+
'sci_pa_aper',
|
47 |
+
'sci_pi_last_name',
|
48 |
+
'sci_pixel_res',
|
49 |
+
'sci_preview_name',
|
50 |
+
'sci_program_id',
|
51 |
+
'sci_pep_id',
|
52 |
+
'sci_ra',
|
53 |
+
'sci_ra_v1',
|
54 |
+
'sci_refnum',
|
55 |
+
'sci_release_date',
|
56 |
+
'scp_scan_type',
|
57 |
+
'sci_spectral_res',
|
58 |
+
'sci_spectrum_end',
|
59 |
+
'sci_spectrum_start',
|
60 |
+
'sci_start_time',
|
61 |
+
'sci_status',
|
62 |
+
'sci_stop_time',
|
63 |
+
'sci_sun_alt',
|
64 |
+
'sci_target_descrip',
|
65 |
+
'sci_targname',
|
66 |
+
'sci_v3_pos_angle'],
|
67 |
+
sci_spec_1234='F606W,F606W;*,*;F606W,*;F606W;*',
|
68 |
+
sci_aec='S',
|
69 |
+
sci_instrume='acs',
|
70 |
+
sci_instrument_config='ACS/WFC',
|
71 |
+
sci_expflag='NORMAL',
|
72 |
+
sci_actual_duration='>300',
|
73 |
+
sci_aper_1234='WFC,WFC1,WFC2,WFCENTER',
|
74 |
+
limit=25000
|
75 |
+
|
76 |
+
)
|
77 |
+
|
78 |
+
df = results.to_pandas()
|
79 |
+
print(len(df))
|
80 |
+
df.to_csv('hst_FINAL.csv')
|