import os import random from glob import glob import json from huggingface_hub import hf_hub_download from tqdm import tqdm import numpy as np from astropy.io import fits from astropy.wcs import WCS import datasets from datasets import DownloadManager from fsspec.core import url_to_fs def get_fits_footprint(fits_path): """ Process a FITS file to extract WCS information and calculate the footprint. Parameters: fits_path (str): Path to the FITS file. Returns: tuple: A tuple containing the WCS footprint coordinates. """ with fits.open(fits_path) as hdul: wcs = WCS(hdul[1].header) shape = sorted(tuple(wcs.pixel_shape))[:2] footprint = wcs.calc_footprint(axes=shape) coords1 = list(footprint.flatten()) wcs = WCS(hdul[4].header) shape = sorted(tuple(wcs.pixel_shape))[:2] footprint = wcs.calc_footprint(axes=shape) coords2 = list(footprint.flatten()) return coords1, coords2 def calculate_pixel_scale(header): """ Calculate the pixel scale separately for X and Y directions and return the mean pixel scale from a FITS header. Args: header: A FITS header object containing CD1_1, CD1_2, CD2_1, and CD2_2. Returns: mean_pixscale: The mean pixel scale in arcseconds per pixel. """ # Extract CD matrix elements CD1_1 = header['CD1_1'] CD1_2 = header['CD1_2'] CD2_1 = header['CD2_1'] CD2_2 = header['CD2_2'] # Calculate pixel scales pixscale_x = (CD1_1**2 + CD1_2**2)**0.5 * 3600 # Convert from degrees to arcseconds pixscale_y = (CD2_1**2 + CD2_2**2)**0.5 * 3600 # Convert from degrees to arcseconds # Calculate mean pixel scale mean_pixscale = (pixscale_x + pixscale_y) / 2 return mean_pixscale def make_split_jsonl_files( config_type="tiny", data_dir="./data", outdir="./splits", seed=42 ): """ Create jsonl files for the SBI-16-2D dataset. config_type: str, default="tiny" The type of split to create. Options are "tiny" and "full". data_dir: str, default="./data" The directory where the FITS files are located. outdir: str, default="./splits" The directory where the jsonl files will be created. seed: int, default=42 The seed for the random split. """ random.seed(seed) os.makedirs(outdir, exist_ok=True) fits_files = glob(os.path.join(data_dir, "*.fits")) random.shuffle(fits_files) if config_type == "tiny": train_files = fits_files[:2] test_files = fits_files[2:3] elif config_type == "full": split_idx = int(0.8 * len(fits_files)) train_files = fits_files[:split_idx] test_files = fits_files[split_idx:] else: raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.") def create_jsonl(files, split_name): output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl") with open(output_file, "w") as out_f: for file in tqdm(files): #print(file, flush=True, end="...") with fits.open(file, memmap=False) as hdul: image_id = os.path.basename(file).split(".fits")[0] ra = hdul["SCI"].header.get("CRVAL1", 0) dec = hdul["SCI"].header.get("CRVAL2", 0) pixscale = calculate_pixel_scale(hdul[1].header) footprint = get_fits_footprint(file) item = { "image_id": image_id, "image": file, "ra": ra, "dec": dec, "pixscale": pixscale, "footprint": footprint } out_f.write(json.dumps(item) + "\n") create_jsonl(train_files, "train") create_jsonl(test_files, "test") if __name__ == "__main__": make_split_jsonl_files("tiny") make_split_jsonl_files("full")