import os import random from glob import glob import json from huggingface_hub import hf_hub_download from astropy.io import fits import datasets from datasets import DownloadManager from fsspec.core import url_to_fs _DESCRIPTION = """ SBI-16-2D is a dataset which is part of the AstroCompress project. It contains imaging data assembled from the Hubble Space Telescope (HST). """ _HOMEPAGE = "https://google.github.io/AstroCompress" _LICENSE = "CC BY 4.0" _URL = "https://huggingface.co/datasets/AstroCompress/SBI-16-2D/resolve/main/" _URLS = { "tiny": { "train": "./splits/tiny_train.jsonl", "test": "./splits/tiny_test.jsonl", }, "full": { "train": "./splits/full_train.jsonl", "test": "./splits/full_test.jsonl", }, } _REPO_ID = "AstroCompress/SBI-16-2D" class SBI_16_2D(datasets.GeneratorBasedBuilder): """SBI-16-2D Dataset""" VERSION = datasets.Version("1.0.3") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="tiny", version=VERSION, description="A small subset of the data, to test downsteam workflows.", ), datasets.BuilderConfig( name="full", version=VERSION, description="The full dataset", ), ] DEFAULT_CONFIG_NAME = "tiny" def __init__(self, **kwargs): super().__init__(version=self.VERSION, **kwargs) def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(decode=True, mode="I;16"), "ra": datasets.Value("float64"), "dec": datasets.Value("float64"), "pixscale": datasets.Value("float64"), "image_id": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation="TBD", ) def _split_generators(self, dl_manager: DownloadManager): ret = [] base_path = dl_manager._base_path locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT) _, path = url_to_fs(base_path) for split in ["train", "test"]: if locally_run: split_file_location = os.path.normpath( os.path.join(path, _URLS[self.config.name][split]) ) split_file = dl_manager.download_and_extract(split_file_location) else: split_file = hf_hub_download( repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset", ) with open(split_file, encoding="utf-8") as f: data_filenames = [] data_metadata = [] for line in f: item = json.loads(line) data_filenames.append(item["image"]) data_metadata.append( { "ra": item["ra"], "dec": item["dec"], "pixscale": item["pixscale"], "image_id": item["image_id"], } ) if locally_run: data_urls = [ os.path.normpath(os.path.join(path, data_filename)) for data_filename in data_filenames ] data_files = [ dl_manager.download(data_url) for data_url in data_urls ] else: data_urls = data_filenames data_files = [ hf_hub_download( repo_id=_REPO_ID, filename=data_url, repo_type="dataset" ) for data_url in data_urls ] ret.append( datasets.SplitGenerator( name=( datasets.Split.TRAIN if split == "train" else datasets.Split.TEST ), gen_kwargs={ "filepaths": data_files, "split_file": split_file, "split": split, "data_metadata": data_metadata, }, ), ) return ret def _generate_examples(self, filepaths, split_file, split, data_metadata): """Generate SBI-16-2D examples""" for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)): with fits.open(filepath, memmap=False) as hdul: # Process image data from HDU index 1 image_data_1 = hdul[1].data[:, :].tolist() task_instance_key_1 = f"{self.config.name}-{split}-{idx}-HDU1" yield task_instance_key_1, {**{"image": image_data_1}, **item} # Process image data from HDU index 4 image_data_4 = hdul[4].data[:, :].tolist() task_instance_key_4 = f"{self.config.name}-{split}-{idx}-HDU4" yield task_instance_key_4, {**{"image": image_data_4}, **item}