Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
code
Size:
10K<n<100K
ArXiv:
Tags:
code
License:
File size: 6,042 Bytes
1c63810 c357971 1c63810 c357971 1c63810 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# coding=utf-8
# Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TACO dataset."""
import json
import datasets
_REPO_NAME = "BAAI/TACO"
_CITATION = """
"""
_DESCRIPTION = """
TACO is a benchmark for Python code generation, it includes 25443 problems and 1000 problems for train and test splits.
"""
_HOMEPAGE = "https://github.com/FlagOpen/TACO"
_DIFFICULTY = ["EASY", "MEDIUM", "MEDIUM_HARD", "HARD", "VERY_HARD"]
_DIFFICULTY_CONFIGS = ["ALL"] + _DIFFICULTY
_SKILL = ['Data structures', 'Sorting', 'Range queries', 'Complete search', 'Amortized analysis', 'Dynamic programming', 'Bit manipulation', 'Greedy algorithms']
_SKILL_CONFIGS = ["ALL"] + _SKILL
_URLS = {
"train": ['train/data-00000-of-00009.arrow', 'train/data-00001-of-00009.arrow', 'train/data-00002-of-00009.arrow', 'train/data-00003-of-00009.arrow', 'train/data-00004-of-00009.arrow', 'train/data-00005-of-00009.arrow', 'train/data-00006-of-00009.arrow', 'train/data-00007-of-00009.arrow', 'train/data-00008-of-00009.arrow'],
"test": ['test/data-00000-of-00001.arrow'],
}
class TACOConfig(datasets.BuilderConfig):
"""BuilderConfig for the TACO dataset."""
def __init__(self, *args, difficulties=["ALL"], skills=["ALL"], **kwargs):
"""BuilderConfig for the APPS Code dataset.
Args:
difficulties (:obj:`List[str]`): List of problem difficulty levels to load.
skills (:obj:`List[str]`): List of algorithm skills of problems to load.
**kwargs: keyword arguments forwarded to super.
"""
if "ALL" in difficulties:
assert len(difficulties) == 1
self.filter_difficulties = False
else:
self.filter_difficulties = True
if "ALL" in skills:
assert len(skills) == 1
self.filter_skills = False
else:
self.filter_skills = True
if self.filter_difficulties:
subset_name = '+'.join(sorted(difficulties))
assert not self.filter_skills, "Not supported to filter difficulties and skills together."
elif self.filter_skills:
subset_name = '+'.join(sorted(skills))
else:
subset_name = 'ALL'
super().__init__(
*args,
name=subset_name,
**kwargs,
)
self.subsets = {"difficulties": difficulties, "skills": skills}
class TACO(datasets.GeneratorBasedBuilder):
"""TACO dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = TACOConfig
BUILDER_CONFIGS = [
TACOConfig(difficulties=[level]) for level in _DIFFICULTY_CONFIGS
] + [
TACOConfig(skills=[skill]) for skill in _SKILL_CONFIGS if skill!='ALL'
]
DEFAULT_CONFIG_NAME = "ALL"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
'question': datasets.Value(dtype='string', id=None),
'solutions': datasets.Value(dtype='string', id=None),
'starter_code': datasets.Value(dtype='string', id=None),
'input_output': datasets.Value(dtype='string', id=None),
'difficulty': datasets.Value(dtype='string', id=None),
'raw_tags': datasets.Value(dtype='string', id=None),
'name': datasets.Value(dtype='string', id=None),
'source': datasets.Value(dtype='string', id=None),
'tags': datasets.Value(dtype='string', id=None),
'skill_types': datasets.Value(dtype='string', id=None),
'url': datasets.Value(dtype='string', id=None),
'Expected Auxiliary Space': datasets.Value(dtype='string', id=None),
'time_limit': datasets.Value(dtype='string', id=None),
'date': datasets.Value(dtype='string', id=None),
'picture_num': datasets.Value(dtype='string', id=None),
'memory_limit': datasets.Value(dtype='string', id=None),
'Expected Time Complexity': datasets.Value(dtype='string', id=None),
}),
supervised_keys=None,
citation=_CITATION,
homepage=_HOMEPAGE,
license="MIT License",
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
key = 0
dataset = datasets.concatenate_datasets([datasets.Dataset.from_file(file) for file in filepath])
for idx, data in enumerate(dataset):
difficulty = data['difficulty']
skills = eval(data['skill_types'])
if self.config.filter_difficulties and not difficulty in self.config.subsets['difficulties']:
continue
if self.config.filter_skills:
valid_skills = self.config.subsets['skills']
if not bool(set(valid_skills) & set(skills)):
continue
yield key, {k:v for k, v in data.items() if k!='eval_topic'}
key += 1 |