initial commit
Browse files- .gitattributes +9 -0
- bindingdb-ic50.csv +3 -0
- bindingdb-kd.csv +3 -0
- bindingdb-ki.csv +3 -0
- data_sources.md +9 -0
- davis-filter.csv +3 -0
- davis.csv +3 -0
- glaser.csv +3 -0
- kiba.csv +3 -0
- pdbbind-2020-combined.csv +3 -0
- pdbbind-2020-refined.csv +3 -0
- standardize_data.py +205 -0
.gitattributes
CHANGED
@@ -57,3 +57,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
+
davis.csv filter=lfs diff=lfs merge=lfs -text
|
61 |
+
kiba.csv filter=lfs diff=lfs merge=lfs -text
|
62 |
+
pdbbind-2020-refined.csv filter=lfs diff=lfs merge=lfs -text
|
63 |
+
bindingdb-ic50.csv filter=lfs diff=lfs merge=lfs -text
|
64 |
+
bindingdb-kd.csv filter=lfs diff=lfs merge=lfs -text
|
65 |
+
davis-filter.csv filter=lfs diff=lfs merge=lfs -text
|
66 |
+
bindingdb-ki.csv filter=lfs diff=lfs merge=lfs -text
|
67 |
+
glaser.csv filter=lfs diff=lfs merge=lfs -text
|
68 |
+
pdbbind-2020-combined.csv filter=lfs diff=lfs merge=lfs -text
|
bindingdb-ic50.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25a6488d678b3a1a2b83d78ab900fe5c49b96ad6b116efde158b5c5bdd39b557
|
3 |
+
size 899074544
|
bindingdb-kd.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e18aaba78a1e2c0e9584fbc831954312d65e02deca70ce01b7514b5004a4c216
|
3 |
+
size 57281302
|
bindingdb-ki.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8b08f64f5954c6189561014f802c103a86bb78d6644460e3f6f31697376a1f6
|
3 |
+
size 259031100
|
data_sources.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
davis-filter.csv: https://www.kaggle.com/datasets/christang0002/davis-and-kiba
|
2 |
+
bindingdb-ic50.csv: https://tdcommons.ai/ (tdc python package)
|
3 |
+
bindingdb-kd.csv: https://tdcommons.ai/ (tdc python package)
|
4 |
+
bindingdb-ki.csv: https://tdcommons.ai/ (tdc python package)
|
5 |
+
davis.csv: https://tdcommons.ai/ (tdc python package)
|
6 |
+
kiba.csv: https://tdcommons.ai/ (tdc python package)
|
7 |
+
pdbbind-2020-combined.csv: https://www.pdbbind.org.cn/
|
8 |
+
pdbbind-2020-refined.csv: https://www.pdbbind.org.cn/
|
9 |
+
glaser.csv: https://huggingface.co/datasets/jglaser/binding_affinity
|
davis-filter.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:484eaefff41f82de0f39811b589db7ed390061c952bc4199353d9e1c3700cfff
|
3 |
+
size 8948685
|
davis.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34f698180a386c92ecc160da984d9d2c31bf1d153cb26a2d91d8eab4d7ec5fd7
|
3 |
+
size 22441866
|
glaser.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73550c83f7fc9315bbcfa363304231f00f88dbd503222d241a47c8551ef65cd8
|
3 |
+
size 1433278852
|
kiba.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56ac9893cbdc98ddc137a7ef4f5a5f00756da6ec5792b7ce9b2ccd270e4244d2
|
3 |
+
size 102460723
|
pdbbind-2020-combined.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7221192655553cdfd07df4a71386aad31873bb8e0f27ec7fe26536a56a9df868
|
3 |
+
size 11802666
|
pdbbind-2020-refined.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46ef8fb491e31ca6b9e6256742300b14d0cc545d0ebdf83cdd097155f98bbd99
|
3 |
+
size 3025349
|
standardize_data.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from rdkit import Chem
|
3 |
+
from rdkit.Chem import MolToSmiles
|
4 |
+
from scipy.stats import zscore
|
5 |
+
from tqdm import tqdm
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
def load_binding_affinity_dataset(csv_path,
|
9 |
+
protein_col_idx,
|
10 |
+
smiles_col_idx,
|
11 |
+
affinity_col_idx,
|
12 |
+
is_log10_affinity=True,
|
13 |
+
canonicalize_smiles=True,
|
14 |
+
affinity_unit="uM",
|
15 |
+
delimiter=','):
|
16 |
+
"""
|
17 |
+
Load a protein-ligand binding affinity dataset and preprocess it.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
csv_path (str): Path to the CSV file.
|
21 |
+
protein_col_idx (int): Column index containing protein sequences.
|
22 |
+
smiles_col_idx (int): Column index containing molecule SMILES.
|
23 |
+
affinity_col_idx (int): Column index containing binding affinities.
|
24 |
+
is_log10_affinity (bool): Whether affinities are in log10. Default is True.
|
25 |
+
canonicalize_smiles (bool): Whether to canonicalize SMILES. Default is True.
|
26 |
+
delimiter (str): Delimiter for the CSV file. Default is ','.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
pd.DataFrame: Processed DataFrame with columns "seq", "smiles_can",
|
30 |
+
"affinity_uM", "neg_log10_affinity_M", and "affinity_norm".
|
31 |
+
"""
|
32 |
+
# Load dataset
|
33 |
+
df = pd.read_csv(csv_path, delimiter=delimiter)
|
34 |
+
|
35 |
+
# Extract relevant columns
|
36 |
+
df = df.iloc[:, [protein_col_idx, smiles_col_idx, affinity_col_idx]]
|
37 |
+
df.columns = ["seq", "smiles", "affinity"]
|
38 |
+
|
39 |
+
# Canonicalize SMILES
|
40 |
+
if canonicalize_smiles:
|
41 |
+
def canonicalize(smiles):
|
42 |
+
try:
|
43 |
+
mol = Chem.MolFromSmiles(smiles)
|
44 |
+
return MolToSmiles(mol, canonical=True) if mol else None
|
45 |
+
except:
|
46 |
+
return None
|
47 |
+
|
48 |
+
from tqdm import tqdm
|
49 |
+
tqdm.pandas()
|
50 |
+
df["smiles_can"] = df["smiles"].progress_apply(canonicalize)
|
51 |
+
df = df[df["smiles_can"].notna()]
|
52 |
+
else:
|
53 |
+
df["smiles_can"] = df["smiles"]
|
54 |
+
|
55 |
+
# Process affinities
|
56 |
+
if not is_log10_affinity:
|
57 |
+
# Convert plain Kd value to neg log10(M)
|
58 |
+
df["affinity_uM"] = df["affinity"]/(1e3 if affinity_unit == "nM" else 1)
|
59 |
+
|
60 |
+
df["neg_log10_affinity_M"] = -df["affinity_uM"].apply(lambda x: np.log10(x/1e6) if x > 0 else np.nan)
|
61 |
+
else:
|
62 |
+
# Convert log10 values to plain uM for clarity
|
63 |
+
df["neg_log10_affinity_M"] = df["affinity"]
|
64 |
+
df["affinity_uM"] = df["neg_log10_affinity_M"].apply(lambda x: (10**(-x))*1e6)
|
65 |
+
|
66 |
+
df.dropna(inplace=True)
|
67 |
+
|
68 |
+
# Z-score normalization
|
69 |
+
df["affinity_norm"] = zscore(df["neg_log10_affinity_M"])
|
70 |
+
|
71 |
+
# Select and reorder columns
|
72 |
+
df = df[["seq", "smiles_can", "affinity_uM", "neg_log10_affinity_M", "affinity_norm"]]
|
73 |
+
|
74 |
+
# Add normalization parameters as columns for reference
|
75 |
+
df["affinity_mean"] = df["neg_log10_affinity_M"].mean()
|
76 |
+
df["affinity_std"] = df["neg_log10_affinity_M"].std()
|
77 |
+
|
78 |
+
return df.sort_values(by="affinity_norm", ascending=False)
|
79 |
+
|
80 |
+
dataset = load_binding_affinity_dataset(
|
81 |
+
csv_path="data/raw_data/bindingdb_ic50.csv",
|
82 |
+
protein_col_idx=3,
|
83 |
+
smiles_col_idx=1,
|
84 |
+
affinity_col_idx=4,
|
85 |
+
is_log10_affinity=False, # Specify if Kd values are plain
|
86 |
+
canonicalize_smiles=True,
|
87 |
+
affinity_unit="nM",
|
88 |
+
delimiter=","
|
89 |
+
)
|
90 |
+
dataset.to_csv("data/bindingdb-ic50.csv", index=False)
|
91 |
+
|
92 |
+
# View processed dataset
|
93 |
+
print(dataset.head())
|
94 |
+
|
95 |
+
|
96 |
+
# Code for loading tdc data:
|
97 |
+
# import pandas as pd
|
98 |
+
# from rdkit import Chem
|
99 |
+
# from tdc.multi_pred import DTI
|
100 |
+
|
101 |
+
# def process_dataset(name):
|
102 |
+
# data = DTI(name=name)
|
103 |
+
# data.harmonize_affinities(mode='mean')
|
104 |
+
# data.convert_to_log()
|
105 |
+
# df = data.get_data()
|
106 |
+
# df['smiles_can'] = df['Drug'].apply(lambda s: Chem.MolToSmiles(Chem.MolFromSmiles(s), isomericSmiles=True, canonical=True) if Chem.MolFromSmiles(s) else None)
|
107 |
+
# return df[['smiles_can', 'Target', 'Y']].dropna(subset=['smiles_can']).rename(columns={'Target': 'seq', 'Y': 'neg_log_10_affinity'})
|
108 |
+
|
109 |
+
# datasets = ['BindingDB_Ki', 'BindingDB_Kd', 'BindingDB_IC50', 'DAVIS', 'KIBA']
|
110 |
+
# processed_data = [process_dataset(name) for name in datasets]
|
111 |
+
|
112 |
+
# binding_db = pd.concat(processed_data[:3]).drop_duplicates().reset_index(drop=True)
|
113 |
+
# binding_db.to_csv("data/bindingdb.csv", index=False)
|
114 |
+
# processed_data[3].to_csv("data/davis.csv", index=False)
|
115 |
+
# processed_data[4].to_csv("data/kiba.csv", index=False)
|
116 |
+
|
117 |
+
# code for loading pdbbind data:
|
118 |
+
# import os
|
119 |
+
# from pathlib import Path
|
120 |
+
# from Bio import PDB
|
121 |
+
# from Bio.PDB.Polypeptide import PPBuilder
|
122 |
+
# from rdkit import Chem
|
123 |
+
# from rdkit.Chem import AllChem
|
124 |
+
# import pandas as pd
|
125 |
+
# from tqdm import tqdm
|
126 |
+
|
127 |
+
# ppb = PPBuilder()
|
128 |
+
|
129 |
+
# def get_protein_sequence(structure):
|
130 |
+
# """Extract protein sequence from a PDB structure."""
|
131 |
+
# sequence = ""
|
132 |
+
# for pp in ppb.build_peptides(structure):
|
133 |
+
# sequence += str(pp.get_sequence())
|
134 |
+
# return sequence
|
135 |
+
|
136 |
+
# def get_canonical_smiles(mol):
|
137 |
+
# """Convert RDKit molecule to canonical SMILES."""
|
138 |
+
# return Chem.MolToSmiles(mol, isomericSmiles=True, canonical=True)
|
139 |
+
|
140 |
+
# def process_pdbbind_data(pdbbind_dir, index_file):
|
141 |
+
# pdbbind_dir = Path(pdbbind_dir).expanduser()
|
142 |
+
# parser = PDB.PDBParser(QUIET=True)
|
143 |
+
# data = []
|
144 |
+
|
145 |
+
# # Read the index file
|
146 |
+
# df_index = pd.read_csv(index_file, sep='\s+', header=None, comment= "#", usecols=[0,1,2,3,4,6,7],
|
147 |
+
# names=['PDB_ID', 'Resolution', 'Release_Year', '-logKd/Ki', 'Kd/Ki', 'Reference', 'Ligand_Name'])
|
148 |
+
|
149 |
+
# # Get the total number of entries for progress tracking
|
150 |
+
# total_entries = len(df_index)
|
151 |
+
|
152 |
+
# # Use tqdm for progress tracking
|
153 |
+
# with tqdm(total=total_entries, desc="Processing PDBbind data") as pbar:
|
154 |
+
# for _, row in df_index.iterrows():
|
155 |
+
# pdb_id = row['PDB_ID']
|
156 |
+
# subdir = pdbbind_dir / pdb_id
|
157 |
+
|
158 |
+
# if subdir.is_dir():
|
159 |
+
# # Process protein
|
160 |
+
# protein_file = subdir / f"{pdb_id}_protein.pdb"
|
161 |
+
# if protein_file.exists():
|
162 |
+
# structure = parser.get_structure(pdb_id, protein_file)
|
163 |
+
# sequence = get_protein_sequence(structure)
|
164 |
+
|
165 |
+
# # Process ligand
|
166 |
+
# ligand_file = subdir / f"{pdb_id}_ligand.mol2"
|
167 |
+
# if ligand_file.exists():
|
168 |
+
# mol = Chem.MolFromMol2File(str(ligand_file))
|
169 |
+
# if mol is not None:
|
170 |
+
# smiles = get_canonical_smiles(mol)
|
171 |
+
|
172 |
+
# # Get binding affinity
|
173 |
+
# neg_log_10_affinity = row['-logKd/Ki']
|
174 |
+
|
175 |
+
# # Add to data list
|
176 |
+
# data.append({
|
177 |
+
# 'smiles_can': smiles,
|
178 |
+
# 'seq': sequence,
|
179 |
+
# 'neg_log_10_affinity_M': neg_log_10_affinity
|
180 |
+
# })
|
181 |
+
|
182 |
+
# pbar.update(1)
|
183 |
+
|
184 |
+
# return pd.DataFrame(data)
|
185 |
+
|
186 |
+
# # Process data from PDBbind refined set
|
187 |
+
# pdbbind_refined_dir = "~/Data/PDBBind/PDBbind_v2020_refined"
|
188 |
+
# index_refined_file = "/home/tyler/Data/PDBBind/index/INDEX_refined_data.2020"
|
189 |
+
# df_refined = process_pdbbind_data(pdbbind_refined_dir, index_refined_file)
|
190 |
+
|
191 |
+
# # Process data from PDBbind general set
|
192 |
+
# pdbbind_general_dir = "~/Data/PDBBind/PDBbind_v2020_other_PL"
|
193 |
+
# index_general_file = "/home/tyler/Data/PDBBind/index/INDEX_general_PL_data.2020"
|
194 |
+
# df_general = process_pdbbind_data(pdbbind_general_dir, index_general_file)
|
195 |
+
|
196 |
+
# # Combine dataframes
|
197 |
+
# df_combined = pd.concat([df_refined, df_general], ignore_index=True)
|
198 |
+
|
199 |
+
# # Remove duplicates (if any) and reset index
|
200 |
+
# df_combined = df_combined.drop_duplicates().reset_index(drop=True)
|
201 |
+
|
202 |
+
# # Save to CSV
|
203 |
+
# output_file = "data/pdbbind_2020_combined.csv"
|
204 |
+
# df_combined.to_csv(output_file, index=False)
|
205 |
+
# print(f"Saved {len(df_combined)} entries to {output_file}")
|