File size: 4,237 Bytes
2fa581b
 
669916d
2fa581b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfc5e4
2fa581b
 
 
 
 
 
 
fb664b9
2fa581b
 
 
 
 
 
 
 
 
 
 
fb664b9
2fa581b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfc5e4
 
 
cf7a362
 
 
 
 
 
d35ff18
cf7a362
 
 
 
 
 
 
 
 
 
 
 
 
 
505fa74
cf7a362
162574e
fb664b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7a362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f7fd5
cf7a362
 
 
6c5b365
cf7a362
 
 
 
 
 
 
 
 
6c5b365
cf7a362
 
 
d35ff18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- ko
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: laion2B-multi-korean-subset
size_categories:
- 10M<n<100M
task_categories:
- feature-extraction
---
# laion2B-multi-korean-subset

## Dataset Description
- **Homepage:** [laion-5b](https://laion.ai/blog/laion-5b/)
- **Huggingface:** [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi)

## About dataset
a subset data of [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi), including only korean

### Lisence
CC-BY-4.0
## Data Structure

### Data Instance

```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/laion2B-multi-korean-subset")
>>> dataset
DatasetDict({
    train: Dataset({
        features: ['SAMPLE_ID', 'URL', 'TEXT', 'HEIGHT', 'WIDTH', 'LICENSE', 'LANGUAGE', 'NSFW', 'similarity'],
        num_rows: 11376263
    })
})
```

```py
>>> dataset["train"].features
{'SAMPLE_ID': Value(dtype='int64', id=None),
 'URL': Value(dtype='string', id=None),
 'TEXT': Value(dtype='string', id=None),
 'HEIGHT': Value(dtype='int32', id=None),
 'WIDTH': Value(dtype='int32', id=None),
 'LICENSE': Value(dtype='string', id=None),
 'LANGUAGE': Value(dtype='string', id=None),
 'NSFW': Value(dtype='string', id=None),
 'similarity': Value(dtype='float32', id=None)}
```

### Data Size

download: 1.56 GiB<br>
generated: 2.37 GiB<br>
total: 3.93 GiB

### Data Field

- 'SAMPLE_ID': `int`
- 'URL': `string`
- 'TEXT': `string`
- 'HEIGHT': `int`
- 'WIDTH': `int`
- 'LICENSE': `string`
- 'LANGUAGE': `string`
- 'NSFW': `string`
- 'similarity': `float`

### Data Splits

|           |    train |
| --------- | -------- |
| # of data | 11376263 |


## Note

### Height, Width

μ΄λ―Έμ§€μ˜ κ°€λ‘œκ°€ `HEIGHT`둜, μ„Έλ‘œκ°€ `WIDTH`둜 λ˜μ–΄μžˆλŠ” 것 κ°™μŠ΅λ‹ˆλ‹€.

```pycon
>>> dataset["train"][98]
{'SAMPLE_ID': 2937471001780,
 'URL': 'https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png',
 'TEXT': 'μΈμ²œμ‹œκ΅μœ‘μ²­, 인천 μ‹œκ΅°κ΅¬λ°œμ „ν˜‘μ˜νšŒ  μž„μ›μ§„κ³Όμ˜ κ°„λ‹΄νšŒ 개졜',
 'HEIGHT': 640,
 'WIDTH': 321,
 'LICENSE': '?',
 'LANGUAGE': 'ko',
 'NSFW': 'UNLIKELY',
 'similarity': 0.33347243070602417}
```

![image](https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png)

### csv file, pandas

```py
# pip install zstandard
import pandas as pd
from huggingface_hub import hf_hub_url

url = hf_hub_url("Bingsu/laion2B-multi-korean-subset", filename="laion2B-multi-korean-subset.csv.zst", repo_type="dataset")
# url = "https://huggingface.co/datasets/Bingsu/laion2B-multi-korean-subset/resolve/main/laion2B-multi-korean-subset.csv.zst"
df = pd.read_csv(url)
```

<https://huggingface.co/datasets/Bingsu/laion2B-multi-korean-subset/resolve/main/laion2B-multi-korean-subset.csv.zst>

778 MB

### Code used to generate

```py
import csv
import re

from datasets import load_dataset
from tqdm import tqdm


pattern = re.compile(r"[κ°€-힣]")


def quote(s: str) -> str:
    s = s.replace('"""', "")
    return s


def filter_func(example) -> bool:
    lang = example.get("LANGUAGE")
    text = example.get("TEXT")
    if not isinstance(lang, str) or not isinstance(text, str):
        return False
    return lang == "ko" or pattern.search(text) is not None


file = open("./laion2B-mulit_korean_subset.csv", "w", encoding="utf-8", newline="")

ds = load_dataset("laion/laion2B-multi", split="train", streaming=True)
dsf = ds.filter(filter_func)
header = [
    "SAMPLE_ID",
    "URL",
    "TEXT",
    "HEIGHT",
    "WIDTH",
    "LICENSE",
    "LANGUAGE",
    "NSFW",
    "similarity",
]
writer = csv.DictWriter(file, fieldnames=header)
writer.writeheader()

try:
    for data in tqdm(dsf):  # total=11378843
        data["TEXT"] = quote(data.get("TEXT", ""))
        if data["TEXT"]:
            writer.writerow(data)
finally:
    file.close()

print("Done!")
```

싀행에 μ•½ 8μ‹œκ°„μ΄ μ†Œμš”λ˜μ—ˆμŠ΅λ‹ˆλ‹€. 이후에 `HEIGHT`λ‚˜ `WIDTH`κ°€ None인 데이터λ₯Ό μ œκ±°ν•˜κ³  μ—…λ‘œλ“œν•˜μ˜€μŠ΅λ‹ˆλ‹€.

### img2dataset

[img2dataset](https://github.com/rom1504/img2dataset)을 μ‚¬μš©ν•˜μ—¬ URL둜된 이미지듀을 데이터셋 ν˜•νƒœλ‘œ λ§Œλ“€ 수 μžˆμŠ΅λ‹ˆλ‹€.