Datasets:
File size: 5,769 Bytes
94efbe5 08143b8 94efbe5 08143b8 94efbe5 08143b8 df81181 08143b8 94efbe5 08143b8 94efbe5 08143b8 94efbe5 df81181 94efbe5 df81181 94efbe5 df81181 94efbe5 df81181 08143b8 94efbe5 08143b8 df81181 08143b8 94efbe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""
from datasets import AutomaticSpeechRecognition
import datasets
import os
import pandas as pd
_CITATION = """\
@inproceedings{lovenia2021ascend,
title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},
publisher = {European Language Resources Association},
year = {2022},
pages = {}
}
"""
_DESCRIPTION = """\
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
"""
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
DEFAULT_CONFIG_NAME = "train"
_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
_URLS = {
"train": _URL + "train_metadata.csv",
"test": _URL + "test_metadata.csv",
"validation": _URL + "validation_metadata.csv",
"waves": "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2",
}
class ASCENDConfig(datasets.BuilderConfig):
"""BuilderConfig for ASCEND."""
def __init__(self, name, **kwargs):
"""
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ASCENDConfig, self).__init__(name, **kwargs)
class ASCEND(datasets.GeneratorBasedBuilder):
"""ASCEND: A Spontaneous Chinese-English Dataset for code-switching. Snapshot date: 5 January 2022."""
BUILDER_CONFIGS = [
ASCENDConfig(
name="train",
version=datasets.Version("1.0.0", ""),
description=_DESCRIPTION,
),
ASCENDConfig(
name="validation",
version=datasets.Version("1.0.0", ""),
description=_DESCRIPTION,
),
ASCENDConfig(
name="test",
version=datasets.Version("1.0.0", ""),
description=_DESCRIPTION,
),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"transcription": datasets.Value("string"),
"duration": datasets.Value("float32"),
"language": datasets.Value("string"),
"original_speaker_id": datasets.Value("int64"),
"session_id": datasets.Value("int64"),
"topic": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_path": downloaded_files["train"],
"wave_path": downloaded_files["waves"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"metadata_path": downloaded_files["test"],
"wave_path": downloaded_files["waves"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"metadata_path": downloaded_files["validation"],
"wave_path": downloaded_files["waves"],
},
),
]
def _generate_examples(self, metadata_path, wave_path):
print(metadata_path)
metadata_df = pd.read_csv(metadata_path)
for index, row in metadata_df.iterrows():
example = {
"id": str(index).zfill(5),
"path": os.path.join(wave_path, row["file_name"]),
"audio": os.path.join(wave_path, row["file_name"]),
"transcription": row["transcription"],
"duration": row["duration"],
"language": row["language"],
"original_speaker_id": row["original_speaker_id"],
"session_id": row["session_id"],
"topic": row["topic"],
}
yield index, example |