File size: 5,769 Bytes
94efbe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08143b8
94efbe5
 
 
08143b8
94efbe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08143b8
 
 
 
 
 
 
df81181
08143b8
 
94efbe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08143b8
94efbe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08143b8
 
94efbe5
 
 
 
df81181
 
94efbe5
 
 
 
 
df81181
 
94efbe5
 
 
 
 
df81181
 
94efbe5
 
 
 
df81181
08143b8
94efbe5
 
 
 
08143b8
df81181
 
08143b8
 
 
 
 
 
94efbe5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""

from datasets import AutomaticSpeechRecognition


import datasets
import os
import pandas as pd


_CITATION = """\
@inproceedings{lovenia2021ascend,
  title     = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
  author    = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
  booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},
  publisher = {European Language Resources Association},
  year      = {2022},
  pages = {}
}
"""

_DESCRIPTION = """\
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
"""

_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"

DEFAULT_CONFIG_NAME = "train"

_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
_URLS = {
    "train": _URL + "train_metadata.csv",
    "test": _URL + "test_metadata.csv",
    "validation": _URL + "validation_metadata.csv",
    "waves": "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2",
}


class ASCENDConfig(datasets.BuilderConfig):
    """BuilderConfig for ASCEND."""

    def __init__(self, name, **kwargs):
        """
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(ASCENDConfig, self).__init__(name, **kwargs)


class ASCEND(datasets.GeneratorBasedBuilder):
    """ASCEND: A Spontaneous Chinese-English Dataset for code-switching. Snapshot date: 5 January 2022."""

    BUILDER_CONFIGS = [
        ASCENDConfig(
            name="train",
            version=datasets.Version("1.0.0", ""),
            description=_DESCRIPTION,
        ),
        ASCENDConfig(
            name="validation",
            version=datasets.Version("1.0.0", ""),
            description=_DESCRIPTION,
        ),
        ASCENDConfig(
            name="test",
            version=datasets.Version("1.0.0", ""),
            description=_DESCRIPTION,
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "path": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16_000),
                "transcription": datasets.Value("string"),
                "duration": datasets.Value("float32"),
                "language": datasets.Value("string"),
                "original_speaker_id": datasets.Value("int64"),
                "session_id": datasets.Value("int64"),
                "topic": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "metadata_path": downloaded_files["train"],
                    "wave_path": downloaded_files["waves"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "metadata_path": downloaded_files["test"],
                    "wave_path": downloaded_files["waves"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "metadata_path": downloaded_files["validation"],
                    "wave_path": downloaded_files["waves"],
                },
            ),
        ]

    def _generate_examples(self, metadata_path, wave_path):
        print(metadata_path)
        metadata_df = pd.read_csv(metadata_path)

        for index, row in metadata_df.iterrows():
            example = {
                "id": str(index).zfill(5),
                "path": os.path.join(wave_path, row["file_name"]),
                "audio": os.path.join(wave_path, row["file_name"]),
                "transcription": row["transcription"],
                "duration": row["duration"],
                "language": row["language"],
                "original_speaker_id": row["original_speaker_id"],
                "session_id": row["session_id"],
                "topic": row["topic"],
            }
            yield index, example