CCRss commited on
Commit
e1ba06c
·
verified ·
1 Parent(s): dbeff4f

Upload folder using huggingface_hub

Browse files
fleurs_cleaned_kk_not_translated.tar.gz.partaa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55e04d91d51f06a8d0cd0f4b24f2e2c53161444c01510bfe111f9a3ff8872970
3
+ size 2753859229
readme.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # tar
2
+ ```bash
3
+ cd /home/vladimir_albrekht/projects/2025_sep_22_qwen3omni/ms_swift_training/approach_2_transformers_based/data/fleurs_data
4
+ tar -czf - fleurs_cleaned_kk_not_translated | split -b 4G - fleurs_cleaned_kk_not_translated.tar.gz.part
5
+ ```
6
+
7
+ # cat
8
+
9
+ ```bash
10
+ cat fleurs_cleaned_kk_not_translated.tar.gz.part* | tar -xzf -
11
+ ```
12
+
13
+
14
+ ## processing logic
15
+
16
+ ```python
17
+ # 1. data part
18
+ import pandas as pd
19
+ from pathlib import Path
20
+
21
+ def load_fleurs_split(split_name, base_path="/home/vladimir_albrekht/projects/2025_sep_22_qwen3omni/ms_swift_training/approach_2_transformers_based/data/fleurs_data/fleurs/data/kk_kz"):
22
+ df = pd.read_csv(
23
+ f"{base_path}/{split_name}.tsv",
24
+ sep="\t",
25
+ header=None,
26
+ names=["id", "file_name", "raw_transcription", "transcription", "phonemes", "num_samples", "gender"]
27
+ )
28
+ df['num_samples'] = pd.to_numeric(df['num_samples'], errors='coerce')
29
+ df['duration_seconds'] = df['num_samples'] / 16000
30
+ df['dataset_type'] = split_name
31
+ df['audio_dir'] = f"{base_path}/audio/{split_name}"
32
+ return df
33
+
34
+ df_test = load_fleurs_split("test")
35
+ df_dev = load_fleurs_split("dev")
36
+ df_train = load_fleurs_split("train")
37
+
38
+ df = pd.concat([df_test, df_dev, df_train], ignore_index=True)
39
+ df_cleaned = df[df['duration_seconds'] <= 29.9]
40
+
41
+ duplicate_files = df_cleaned['file_name'].duplicated().sum()
42
+ unique_files = df_cleaned['file_name'].nunique()
43
+ total_files = len(df_cleaned)
44
+ print(f"Total samples: {total_files}")
45
+ df_cleaned = df_cleaned.drop(columns=['phonemes', 'num_samples'])
46
+ df_cleaned = df_cleaned.rename(columns={
47
+ 'raw_transcription': 'transcription',
48
+ 'transcription': 'raw_transcription'
49
+ })
50
+
51
+
52
+ # 2. convert to .jsonl format
53
+ import shutil
54
+ from pathlib import Path
55
+
56
+ output_dir = Path("/home/vladimir_albrekht/projects/2025_sep_22_qwen3omni/ms_swift_training/approach_2_transformers_based/data/fleurs_data/fleurs_cleaned_kk")
57
+ output_dir.mkdir(exist_ok=True)
58
+ audio_output_dir = output_dir / "audios"
59
+ audio_output_dir.mkdir(exist_ok=True)
60
+
61
+ jsonl_data = []
62
+ for idx, row in df_cleaned.iterrows():
63
+ src_audio = Path(row['audio_dir']) / row['file_name']
64
+ new_audio_name = f"{row['dataset_type']}_{row['file_name']}"
65
+ dst_audio = audio_output_dir / new_audio_name
66
+
67
+ shutil.copy(src_audio, dst_audio)
68
+
69
+ jsonl_data.append({
70
+ "transcription": row['transcription'],
71
+ "audio_path": f"audios/{new_audio_name}",
72
+ "meta_data": {
73
+ "id": row['id'],
74
+ "raw_transcription": row['raw_transcription'],
75
+ "duration_seconds": row['duration_seconds'],
76
+ "gender": row['gender'],
77
+ "dataset_type": row['dataset_type']
78
+ }
79
+ })
80
+
81
+ import json
82
+ with open(output_dir / "data.jsonl", 'w', encoding='utf-8') as f:
83
+ for item in jsonl_data:
84
+ f.write(json.dumps(item, ensure_ascii=False) + '\n')
85
+
86
+ print(f"Saved {len(jsonl_data)} samples to {output_dir}")
87
+ ```