ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
157ac252-c2fa-4689-9278-684810b59383
cpp
google/quiche
tun_device
quiche/quic/qbone/bonnet/tun_device.cc
quiche/quic/qbone/bonnet/tun_device_test.cc
#include "quiche/quic/qbone/bonnet/tun_device.h" #include <fcntl.h> #include <linux/if_tun.h> #include <net/if.h> #include <sys/ioctl.h> #include <sys/socket.h> #include <ios> #include <string> #include "absl/cleanup/cleanup.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/qbone/platform/kernel_interface.h" ABSL_FLAG(std::string, qbone_client_tun_device_path, "/dev/net/tun", "The path to the QBONE client's TUN device."); namespace quic { const int kInvalidFd = -1; TunTapDevice::TunTapDevice(const std::string& interface_name, int mtu, bool persist, bool setup_tun, bool is_tap, KernelInterface* kernel) : interface_name_(interface_name), mtu_(mtu), persist_(persist), setup_tun_(setup_tun), is_tap_(is_tap), file_descriptor_(kInvalidFd), kernel_(*kernel) {} TunTapDevice::~TunTapDevice() { if (!persist_) { Down(); } CloseDevice(); } bool TunTapDevice::Init() { if (interface_name_.empty() || interface_name_.size() >= IFNAMSIZ) { QUIC_BUG(quic_bug_10995_1) << "interface_name must be nonempty and shorter than " << IFNAMSIZ; return false; } if (!OpenDevice()) { return false; } if (!ConfigureInterface()) { return false; } return true; } bool TunTapDevice::Up() { if (!setup_tun_) { return true; } struct ifreq if_request; memset(&if_request, 0, sizeof(if_request)); interface_name_.copy(if_request.ifr_name, IFNAMSIZ); if_request.ifr_flags = IFF_UP; return NetdeviceIoctl(SIOCSIFFLAGS, reinterpret_cast<void*>(&if_request)); } bool TunTapDevice::Down() { if (!setup_tun_) { return true; } struct ifreq if_request; memset(&if_request, 0, sizeof(if_request)); interface_name_.copy(if_request.ifr_name, IFNAMSIZ); if_request.ifr_flags = 0; return NetdeviceIoctl(SIOCSIFFLAGS, reinterpret_cast<void*>(&if_request)); } int TunTapDevice::GetFileDescriptor() const { return file_descriptor_; } bool TunTapDevice::OpenDevice() { if (file_descriptor_ != kInvalidFd) { CloseDevice(); } struct ifreq if_request; memset(&if_request, 0, sizeof(if_request)); interface_name_.copy(if_request.ifr_name, IFNAMSIZ); if_request.ifr_flags = IFF_MULTI_QUEUE | IFF_NO_PI; if (is_tap_) { if_request.ifr_flags |= IFF_TAP; } else { if_request.ifr_flags |= IFF_TUN; } bool successfully_opened = false; auto cleanup = absl::MakeCleanup([this, &successfully_opened]() { if (!successfully_opened) { CloseDevice(); } }); const std::string tun_device_path = absl::GetFlag(FLAGS_qbone_client_tun_device_path); int fd = kernel_.open(tun_device_path.c_str(), O_RDWR); if (fd < 0) { QUIC_PLOG(WARNING) << "Failed to open " << tun_device_path; return successfully_opened; } file_descriptor_ = fd; if (!CheckFeatures(fd)) { return successfully_opened; } if (kernel_.ioctl(fd, TUNSETIFF, reinterpret_cast<void*>(&if_request)) != 0) { QUIC_PLOG(WARNING) << "Failed to TUNSETIFF on fd(" << fd << ")"; return successfully_opened; } if (kernel_.ioctl( fd, TUNSETPERSIST, persist_ ? reinterpret_cast<void*>(&if_request) : nullptr) != 0) { QUIC_PLOG(WARNING) << "Failed to TUNSETPERSIST on fd(" << fd << ")"; return successfully_opened; } successfully_opened = true; return successfully_opened; } bool TunTapDevice::ConfigureInterface() { if (!setup_tun_) { return true; } struct ifreq if_request; memset(&if_request, 0, sizeof(if_request)); interface_name_.copy(if_request.ifr_name, IFNAMSIZ); if_request.ifr_mtu = mtu_; if (!NetdeviceIoctl(SIOCSIFMTU, reinterpret_cast<void*>(&if_request))) { CloseDevice(); return false; } return true; } bool TunTapDevice::CheckFeatures(int tun_device_fd) { unsigned int actual_features; if (kernel_.ioctl(tun_device_fd, TUNGETFEATURES, &actual_features) != 0) { QUIC_PLOG(WARNING) << "Failed to TUNGETFEATURES"; return false; } unsigned int required_features = IFF_TUN | IFF_NO_PI; if ((required_features & actual_features) != required_features) { QUIC_LOG(WARNING) << "Required feature does not exist. required_features: 0x" << std::hex << required_features << " vs actual_features: 0x" << std::hex << actual_features; return false; } return true; } bool TunTapDevice::NetdeviceIoctl(int request, void* argp) { int fd = kernel_.socket(AF_INET6, SOCK_DGRAM, 0); if (fd < 0) { QUIC_PLOG(WARNING) << "Failed to create AF_INET6 socket."; return false; } if (kernel_.ioctl(fd, request, argp) != 0) { QUIC_PLOG(WARNING) << "Failed ioctl request: " << request; kernel_.close(fd); return false; } kernel_.close(fd); return true; } void TunTapDevice::CloseDevice() { if (file_descriptor_ != kInvalidFd) { kernel_.close(file_descriptor_); file_descriptor_ = kInvalidFd; } } }
#include "quiche/quic/qbone/bonnet/tun_device.h" #include <linux/if.h> #include <linux/if_tun.h> #include <sys/ioctl.h> #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/qbone/platform/mock_kernel.h" namespace quic::test { namespace { using ::testing::_; using ::testing::AnyNumber; using ::testing::Invoke; using ::testing::Return; using ::testing::StrEq; using ::testing::Unused; const char kDeviceName[] = "tun0"; const int kSupportedFeatures = IFF_TUN | IFF_TAP | IFF_MULTI_QUEUE | IFF_ONE_QUEUE | IFF_NO_PI; class TunDeviceTest : public QuicTest { protected: void SetUp() override { EXPECT_CALL(mock_kernel_, socket(AF_INET6, _, _)) .Times(AnyNumber()) .WillRepeatedly(Invoke([this](Unused, Unused, Unused) { EXPECT_CALL(mock_kernel_, close(next_fd_)).WillOnce(Return(0)); return next_fd_++; })); } void SetInitExpectations(int mtu, bool persist) { EXPECT_CALL(mock_kernel_, open(StrEq("/dev/net/tun"), _)) .Times(AnyNumber()) .WillRepeatedly(Invoke([this](Unused, Unused) { EXPECT_CALL(mock_kernel_, close(next_fd_)).WillOnce(Return(0)); return next_fd_++; })); EXPECT_CALL(mock_kernel_, ioctl(_, TUNGETFEATURES, _)) .Times(AnyNumber()) .WillRepeatedly(Invoke([](Unused, Unused, void* argp) { auto* actual_flags = reinterpret_cast<int*>(argp); *actual_flags = kSupportedFeatures; return 0; })); EXPECT_CALL(mock_kernel_, ioctl(_, TUNSETIFF, _)) .Times(AnyNumber()) .WillRepeatedly(Invoke([](Unused, Unused, void* argp) { auto* ifr = reinterpret_cast<struct ifreq*>(argp); EXPECT_EQ(IFF_TUN | IFF_MULTI_QUEUE | IFF_NO_PI, ifr->ifr_flags); EXPECT_THAT(ifr->ifr_name, StrEq(kDeviceName)); return 0; })); EXPECT_CALL(mock_kernel_, ioctl(_, TUNSETPERSIST, _)) .Times(AnyNumber()) .WillRepeatedly(Invoke([persist](Unused, Unused, void* argp) { auto* ifr = reinterpret_cast<struct ifreq*>(argp); if (persist) { EXPECT_THAT(ifr->ifr_name, StrEq(kDeviceName)); } else { EXPECT_EQ(nullptr, ifr); } return 0; })); EXPECT_CALL(mock_kernel_, ioctl(_, SIOCSIFMTU, _)) .Times(AnyNumber()) .WillRepeatedly(Invoke([mtu](Unused, Unused, void* argp) { auto* ifr = reinterpret_cast<struct ifreq*>(argp); EXPECT_EQ(mtu, ifr->ifr_mtu); EXPECT_THAT(ifr->ifr_name, StrEq(kDeviceName)); return 0; })); } void ExpectUp(bool fail) { EXPECT_CALL(mock_kernel_, ioctl(_, SIOCSIFFLAGS, _)) .WillOnce(Invoke([fail](Unused, Unused, void* argp) { auto* ifr = reinterpret_cast<struct ifreq*>(argp); EXPECT_TRUE(ifr->ifr_flags & IFF_UP); EXPECT_THAT(ifr->ifr_name, StrEq(kDeviceName)); if (fail) { return -1; } else { return 0; } })); } void ExpectDown(bool fail) { EXPECT_CALL(mock_kernel_, ioctl(_, SIOCSIFFLAGS, _)) .WillOnce(Invoke([fail](Unused, Unused, void* argp) { auto* ifr = reinterpret_cast<struct ifreq*>(argp); EXPECT_FALSE(ifr->ifr_flags & IFF_UP); EXPECT_THAT(ifr->ifr_name, StrEq(kDeviceName)); if (fail) { return -1; } else { return 0; } })); } MockKernel mock_kernel_; int next_fd_ = 100; }; TEST_F(TunDeviceTest, BasicWorkFlow) { SetInitExpectations( 1500, false); TunTapDevice tun_device(kDeviceName, 1500, false, true, false, &mock_kernel_); EXPECT_TRUE(tun_device.Init()); EXPECT_GT(tun_device.GetFileDescriptor(), -1); ExpectUp( false); EXPECT_TRUE(tun_device.Up()); ExpectDown( false); } TEST_F(TunDeviceTest, FailToOpenTunDevice) { SetInitExpectations( 1500, false); EXPECT_CALL(mock_kernel_, open(StrEq("/dev/net/tun"), _)) .WillOnce(Return(-1)); TunTapDevice tun_device(kDeviceName, 1500, false, true, false, &mock_kernel_); EXPECT_FALSE(tun_device.Init()); EXPECT_EQ(tun_device.GetFileDescriptor(), -1); ExpectDown(false); } TEST_F(TunDeviceTest, FailToCheckFeature) { SetInitExpectations( 1500, false); EXPECT_CALL(mock_kernel_, ioctl(_, TUNGETFEATURES, _)).WillOnce(Return(-1)); TunTapDevice tun_device(kDeviceName, 1500, false, true, false, &mock_kernel_); EXPECT_FALSE(tun_device.Init()); EXPECT_EQ(tun_device.GetFileDescriptor(), -1); ExpectDown(false); } TEST_F(TunDeviceTest, TooFewFeature) { SetInitExpectations( 1500, false); EXPECT_CALL(mock_kernel_, ioctl(_, TUNGETFEATURES, _)) .WillOnce(Invoke([](Unused, Unused, void* argp) { int* actual_features = reinterpret_cast<int*>(argp); *actual_features = IFF_TUN | IFF_ONE_QUEUE; return 0; })); TunTapDevice tun_device(kDeviceName, 1500, false, true, false, &mock_kernel_); EXPECT_FALSE(tun_device.Init()); EXPECT_EQ(tun_device.GetFileDescriptor(), -1); ExpectDown(false); } TEST_F(TunDeviceTest, FailToSetFlag) { SetInitExpectations( 1500, true); EXPECT_CALL(mock_kernel_, ioctl(_, TUNSETIFF, _)).WillOnce(Return(-1)); TunTapDevice tun_device(kDeviceName, 1500, true, true, false, &mock_kernel_); EXPECT_FALSE(tun_device.Init()); EXPECT_EQ(tun_device.GetFileDescriptor(), -1); } TEST_F(TunDeviceTest, FailToPersistDevice) { SetInitExpectations( 1500, true); EXPECT_CALL(mock_kernel_, ioctl(_, TUNSETPERSIST, _)).WillOnce(Return(-1)); TunTapDevice tun_device(kDeviceName, 1500, true, true, false, &mock_kernel_); EXPECT_FALSE(tun_device.Init()); EXPECT_EQ(tun_device.GetFileDescriptor(), -1); } TEST_F(TunDeviceTest, FailToOpenSocket) { SetInitExpectations( 1500, true); EXPECT_CALL(mock_kernel_, socket(AF_INET6, _, _)).WillOnce(Return(-1)); TunTapDevice tun_device(kDeviceName, 1500, true, true, false, &mock_kernel_); EXPECT_FALSE(tun_device.Init()); EXPECT_EQ(tun_device.GetFileDescriptor(), -1); } TEST_F(TunDeviceTest, FailToSetMtu) { SetInitExpectations( 1500, true); EXPECT_CALL(mock_kernel_, ioctl(_, SIOCSIFMTU, _)).WillOnce(Return(-1)); TunTapDevice tun_device(kDeviceName, 1500, true, true, false, &mock_kernel_); EXPECT_FALSE(tun_device.Init()); EXPECT_EQ(tun_device.GetFileDescriptor(), -1); } TEST_F(TunDeviceTest, FailToUp) { SetInitExpectations( 1500, true); TunTapDevice tun_device(kDeviceName, 1500, true, true, false, &mock_kernel_); EXPECT_TRUE(tun_device.Init()); EXPECT_GT(tun_device.GetFileDescriptor(), -1); ExpectUp( true); EXPECT_FALSE(tun_device.Up()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/bonnet/tun_device.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/bonnet/tun_device_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
a60fb0ae-01f5-4908-b4fc-335e70e7759f
cpp
tensorflow/tensorflow
unified_api
tensorflow/python/framework/experimental/unified_api.cc
tensorflow/c/eager/unified_api_test.cc
#include <pybind11/stl.h> #include <memory> #include "pybind11/pybind11.h" #include "tensorflow/c/eager/abstract_context.h" #include "tensorflow/c/eager/abstract_function.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/c_api_unified_experimental.h" #include "tensorflow/c/eager/c_api_unified_experimental_internal.h" #include "tensorflow/c/eager/immediate_execution_context.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/eager/tfe_context_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/safe_ptr.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/python/eager/pywrap_tensor.h" #include "tensorflow/python/lib/core/pybind11_lib.h" #include "tensorflow/python/lib/core/pybind11_status.h" #include "tensorflow/python/lib/core/safe_pyobject_ptr.h" namespace py = pybind11; using tensorflow::AbstractContext; using tensorflow::AbstractContextPtr; using tensorflow::AbstractFunction; using tensorflow::AbstractOperation; using tensorflow::AbstractOperationPtr; using tensorflow::AbstractTensorHandle; using tensorflow::AbstractTensorHandlePtr; using tensorflow::OutputList; using tensorflow::tracing::TracingContext; using tensorflow::tracing::TracingOperation; using tensorflow::tracing::TracingTensorHandle; using tensorflow::ImmediateContextPtr; using tensorflow::ImmediateExecutionContext; using tensorflow::ImmediateExecutionTensorHandle; using tensorflow::dyn_cast; using tensorflow::isa; using tensorflow::unwrap; using tensorflow::wrap; using tensorflow::DataType; using tensorflow::make_safe; using tensorflow::MaybeRaiseRegisteredFromStatus; using tensorflow::MaybeRaiseRegisteredFromTFStatus; using tensorflow::Pyo; using tensorflow::Safe_TF_StatusPtr; using tensorflow::Status; using tensorflow::string; using tensorflow::TFE_TensorHandleToNumpy; using tensorflow::core::RefCountPtr; using tensorflow::errors::Internal; using tensorflow::errors::InvalidArgument; PYBIND11_MODULE(_unified_api, m) { m.def("SetTracingImplementation", [](const char* impl) { Safe_TF_StatusPtr status = make_safe(TF_NewStatus()); TF_SetTracingImplementation(impl, status.get()); MaybeRaiseRegisteredFromStatus(status->status); }); m.def("NewTracingContext", [](const char* fn_name) { Safe_TF_StatusPtr status = make_safe(TF_NewStatus()); auto* ctx = unwrap(TF_CreateFunction(fn_name, status.get())); MaybeRaiseRegisteredFromTFStatus(status.get()); if (!ctx) { MaybeRaiseRegisteredFromStatus( Internal("TF_CreateFunction returned nullptr")); } if (!isa<TracingContext>(ctx)) { MaybeRaiseRegisteredFromStatus( Internal("TF_CreateFunction must return a TracingContext, found ", ctx->getKind())); } return dyn_cast<TracingContext>(ctx); }); m.def("EagerContextToImmediateExecutionContext", [](py::handle& obj) { TFE_Context* ctx = static_cast<TFE_Context*>(PyCapsule_GetPointer(obj.ptr(), nullptr)); if (!ctx) { MaybeRaiseRegisteredFromStatus(InvalidArgument("TFE_Context is nullptr")); } return unwrap(ctx); }); py::class_<AbstractContext, AbstractContextPtr>(m, "AbstractContext") .def("CreateOperation", [](AbstractContext* self, const char* op, const char* raw_device_name) { auto operation = self->CreateOperation(); (void)operation->Reset(op, raw_device_name); return operation; }) .def("RegisterFunction", [](AbstractContext* self, AbstractFunction* f) { Status s = self->RegisterFunction(f); MaybeRaiseRegisteredFromStatus(s); }) .def("RemoveFunction", [](AbstractContext* self, const string& func) { Status s = self->RemoveFunction(func); MaybeRaiseRegisteredFromStatus(s); }); py::class_<TracingContext, AbstractContext>(m, "TracingContext") .def("AddParameter", [](TracingContext* self, DataType dtype) { TracingTensorHandle* handle = nullptr; tensorflow::PartialTensorShape shape; Status s = self->AddParameter(dtype, shape, &handle); MaybeRaiseRegisteredFromStatus(s); return static_cast<AbstractTensorHandle*>(handle); }) .def("Finalize", [](TracingContext* self, py::handle& outputs) { OutputList output_list; if (outputs.ptr() != Py_None) { if (!PyList_Check(outputs.ptr())) { MaybeRaiseRegisteredFromStatus( InvalidArgument("must provide a list of Tensors as inputs")); } Py_ssize_t len = PyList_Size(outputs.ptr()); output_list.outputs.resize(len); for (Py_ssize_t i = 0; i < len; ++i) { PyObject* elem = PyList_GetItem(outputs.ptr(), i); if (!elem) { MaybeRaiseRegisteredFromStatus( InvalidArgument("Tensor at index ", i, " is None.")); } py::handle elem_h = elem; AbstractTensorHandle* handle = elem_h.cast<AbstractTensorHandle*>(); if (!isa<TracingTensorHandle>(handle)) { MaybeRaiseRegisteredFromStatus(InvalidArgument( "Tensor at index ", i, " is not a graph tensor.")); } output_list.outputs[i] = handle; } } AbstractFunction* f = nullptr; Status s = self->Finalize(&output_list, &f); MaybeRaiseRegisteredFromStatus(s); return f; }); py::class_<ImmediateExecutionContext, AbstractContext, std::unique_ptr<ImmediateExecutionContext, py::nodelete>> ImmediateExecutionContext(m, "ImmediateExecutionContext"); py::class_<AbstractOperation, AbstractOperationPtr>(m, "AbstractOperation") .def("Reset", [](AbstractOperation* self, const char* op, const char* raw_device_name) { Status s = self->Reset(op, raw_device_name); MaybeRaiseRegisteredFromStatus(s); }) .def("SetOpName", [](AbstractOperation* self, const char* op_name) { if (isa<TracingOperation>(self)) { auto tracing_op = reinterpret_cast<TracingOperation*>(self); Status s = tracing_op->SetOpName(op_name); MaybeRaiseRegisteredFromStatus(s); } }) .def("Name", &AbstractOperation::Name) .def("DeviceName", &AbstractOperation::DeviceName) .def("SetDeviceName", [](AbstractOperation* self, const char* name) { Status s = self->SetDeviceName(name); MaybeRaiseRegisteredFromStatus(s); }) .def("AddInput", [](AbstractOperation* self, AbstractTensorHandle* input) { Status s = self->AddInput(input); MaybeRaiseRegisteredFromStatus(s); }) .def("SetAttrType", [](AbstractOperation* self, const char* attr_name, DataType value) { Status s = self->SetAttrType(attr_name, value); MaybeRaiseRegisteredFromStatus(s); }) .def("Execute", [](AbstractOperation* self, int num_outputs) { std::vector<AbstractTensorHandle*> outputs(num_outputs); MaybeRaiseRegisteredFromStatus( self->Execute(absl::MakeSpan(outputs), &num_outputs)); return outputs; }); py::class_<AbstractTensorHandle, AbstractTensorHandlePtr>( m, "AbstractTensorHandle") .def("DataType", &AbstractTensorHandle::DataType) .def("numpy", [](AbstractTensorHandle* self) { if (!isa<ImmediateExecutionTensorHandle>(self)) { MaybeRaiseRegisteredFromStatus(Internal( "AbstractTensorHandle.numpy() must be called with an ", "ImmediateExecutionTensorHandle found type: ", self->getKind())); } TF_Status s; TFE_TensorHandle* handle = wrap(dyn_cast<ImmediateExecutionTensorHandle>(self)); auto result = TFE_TensorHandleToNumpy(handle, &s); MaybeRaiseRegisteredFromStatus(s.status); return Pyo(result); }); m.def("EagerTensorToImmediateExecutionTensorHandle", [](py::object handle) { if (!EagerTensor_CheckExact(handle.ptr())) { MaybeRaiseRegisteredFromStatus( InvalidArgument("EagerTensorToImmediateExecutionTensorHandle called " "with non-EagerTensor.")); } TFE_TensorHandle* eager_tensor = EagerTensor_Handle(handle.ptr()); auto t = static_cast<AbstractTensorHandle*>(unwrap(eager_tensor)); t->Ref(); return t; }); py::class_<AbstractFunction, std::unique_ptr<AbstractFunction, tsl::core::RefCountDeleter>> AbstractFunction(m, "AbstractFunction"); }
#include "tensorflow/c/eager/c_api_unified_experimental.h" #include "tensorflow/c/eager/c_api_unified_experimental_internal.h" #include "tensorflow/c/eager/unified_api_testutil.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class UnifiedAPI : public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> { protected: void SetUp() override { TF_StatusPtr status(TF_NewStatus()); TF_SetTracingImplementation(std::get<0>(GetParam()), status.get()); Status s = StatusFromTF_Status(status.get()); CHECK_EQ(errors::OK, s.code()) << s.message(); } public: bool UseMlir() const { return strcmp(std::get<0>(GetParam()), "mlir") == 0; } bool UseFunction() const { return std::get<2>(GetParam()); } }; Status TestScalarShape(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { PartialTensorShape shape; TF_RETURN_IF_ERROR(inputs[0]->Shape(&shape)); if (shape.dims() != 0) { return errors::InvalidArgument( "Tensor expected to have scalar shape found rank: ", shape.dims()); } return absl::OkStatus(); } TEST_P(UnifiedAPI, TestTensorShapeScalar) { if (UseFunction() && UseMlir()) { GTEST_SKIP() << "MlirTensor::Shape is not implemented yet."; } AbstractContextPtr ctx; { AbstractContext* ctx_raw = nullptr; Status s = BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw); ASSERT_EQ(errors::OK, s.code()) << s.message(); ctx.reset(ctx_raw); } AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; Status s = TestScalarTensorHandle<float, TF_FLOAT>(ctx.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, s.code()) << s.message(); x.reset(x_raw); } Status s = RunModel(TestScalarShape, ctx.get(), {x.get()}, {}, UseFunction()); ASSERT_EQ(errors::OK, s.code()) << s.message(); } Status TestTensorShape2x4(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { PartialTensorShape shape; TF_RETURN_IF_ERROR(inputs[0]->Shape(&shape)); if (shape.dims() != 2) { return errors::InvalidArgument( "Tensor expected to have rank 2 found rank: ", shape.dims()); } int64_t dim_sizes[] = {2, 4}; for (int i = 0; i < shape.dims(); i++) { if (shape.dim_size(i) != dim_sizes[i]) { return errors::InvalidArgument("Dim ", i, " expected to be of size ", dim_sizes[i], " found: ", shape.dim_size(i)); } } return absl::OkStatus(); } TEST_P(UnifiedAPI, TestTensorShape2x4) { if (UseFunction() && UseMlir()) { GTEST_SKIP() << "MlirTensor::Shape is not implemented yet."; } AbstractContextPtr ctx; { AbstractContext* ctx_raw = nullptr; Status s = BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw); ASSERT_EQ(errors::OK, s.code()) << s.message(); ctx.reset(ctx_raw); } AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; float data[] = {0., 0., 0., 0., 0., 0., 0., 0}; int64_t dim_sizes[] = {2, 4}; Status s = TestTensorHandleWithDims<float, TF_FLOAT>(ctx.get(), data, dim_sizes, 2, &x_raw); ASSERT_EQ(errors::OK, s.code()) << s.message(); x.reset(x_raw); } Status s = RunModel(TestTensorShape2x4, ctx.get(), {x.get()}, {}, UseFunction()); ASSERT_EQ(errors::OK, s.code()) << s.message(); } TEST_P(UnifiedAPI, TestUnknownShapeTracing) { if (!UseFunction()) { GTEST_SKIP() << "Tracing only test."; } if (UseMlir()) { GTEST_SKIP() << "MlirTensor::Shape is not implemented yet."; } AbstractContextPtr ctx(BuildFunction("test_fn")); AbstractTensorHandlePtr x; { tracing::TracingTensorHandle* x_raw = nullptr; PartialTensorShape shape; Status s = dyn_cast<tracing::TracingContext>(ctx.get())->AddParameter( DT_FLOAT, shape, &x_raw); ASSERT_EQ(errors::OK, s.code()) << s.message(); x.reset(x_raw); } PartialTensorShape shape; Status s = x->Shape(&shape); ASSERT_EQ(errors::OK, s.code()) << s.message(); ASSERT_TRUE(shape.unknown_rank()); } TEST_P(UnifiedAPI, TestPartialShapeTracing) { if (!UseFunction()) { GTEST_SKIP() << "Tracing only test."; } if (UseMlir()) { GTEST_SKIP() << "MlirTensor::Shape is not implemented yet."; } AbstractContextPtr ctx(BuildFunction("test_fn")); AbstractTensorHandlePtr x; { tracing::TracingTensorHandle* x_raw = nullptr; PartialTensorShape shape; int64_t dim_sizes[] = {2, -1}; Status s = PartialTensorShape::MakePartialShape(dim_sizes, 2, &shape); ASSERT_EQ(errors::OK, s.code()) << s.message(); s = dyn_cast<tracing::TracingContext>(ctx.get())->AddParameter( DT_FLOAT, shape, &x_raw); ASSERT_EQ(errors::OK, s.code()) << s.message(); x.reset(x_raw); } PartialTensorShape shape; Status s = x->Shape(&shape); ASSERT_EQ(errors::OK, s.code()) << s.message(); ASSERT_FALSE(shape.unknown_rank()); ASSERT_EQ(2, shape.dim_size(0)); ASSERT_EQ(-1, shape.dim_size(1)); } INSTANTIATE_TEST_SUITE_P( UnifiedCppAPI, UnifiedAPI, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/python/framework/experimental/unified_api.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/unified_api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
75b1a335-02f3-4b27-ade6-73c68ae3eab2
cpp
abseil/abseil-cpp
path_util
absl/flags/internal/path_util.h
absl/flags/internal/path_util_test.cc
#ifndef ABSL_FLAGS_INTERNAL_PATH_UTIL_H_ #define ABSL_FLAGS_INTERNAL_PATH_UTIL_H_ #include "absl/base/config.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { inline absl::string_view Basename(absl::string_view filename) { auto last_slash_pos = filename.find_last_of("/\\"); return last_slash_pos == absl::string_view::npos ? filename : filename.substr(last_slash_pos + 1); } inline absl::string_view Package(absl::string_view filename) { auto last_slash_pos = filename.find_last_of("/\\"); return last_slash_pos == absl::string_view::npos ? absl::string_view() : filename.substr(0, last_slash_pos + 1); } } ABSL_NAMESPACE_END } #endif
#include "absl/flags/internal/path_util.h" #include "gtest/gtest.h" namespace { namespace flags = absl::flags_internal; TEST(FlagsPathUtilTest, TestBasename) { EXPECT_EQ(flags::Basename(""), ""); EXPECT_EQ(flags::Basename("a.cc"), "a.cc"); EXPECT_EQ(flags::Basename("dir/a.cc"), "a.cc"); EXPECT_EQ(flags::Basename("dir1/dir2/a.cc"), "a.cc"); EXPECT_EQ(flags::Basename("../dir1/dir2/a.cc"), "a.cc"); EXPECT_EQ(flags::Basename("/dir1/dir2/a.cc"), "a.cc"); EXPECT_EQ(flags::Basename("/dir1/dir2/../dir3/a.cc"), "a.cc"); } TEST(FlagsPathUtilTest, TestPackage) { EXPECT_EQ(flags::Package(""), ""); EXPECT_EQ(flags::Package("a.cc"), ""); EXPECT_EQ(flags::Package("dir/a.cc"), "dir/"); EXPECT_EQ(flags::Package("dir1/dir2/a.cc"), "dir1/dir2/"); EXPECT_EQ(flags::Package("../dir1/dir2/a.cc"), "../dir1/dir2/"); EXPECT_EQ(flags::Package("/dir1/dir2/a.cc"), "/dir1/dir2/"); EXPECT_EQ(flags::Package("/dir1/dir2/../dir3/a.cc"), "/dir1/dir2/../dir3/"); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/internal/path_util.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/internal/path_util_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
ea855415-dd79-4602-bd93-5e2fe3e53737
cpp
tensorflow/tensorflow
modular_filesystem
tensorflow/c/experimental/filesystem/modular_filesystem.cc
tensorflow/c/experimental/filesystem/modular_filesystem_test.cc
#include "tensorflow/c/experimental/filesystem/modular_filesystem.h" #include <algorithm> #include <string> #include <utility> #include "absl/log/check.h" #include "tensorflow/c/experimental/filesystem/filesystem_interface.h" #include "tensorflow/c/experimental/filesystem/modular_filesystem_registration.h" #include "tensorflow/c/tf_file_statistics.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/file_statistics.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/file_system_helper.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" namespace tensorflow { using UniquePtrTo_TF_Status = ::std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>; Status ModularFileSystem::NewRandomAccessFile( const std::string& fname, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) { if (ops_->new_random_access_file == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", fname, " does not support NewRandomAccessFile()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); auto file = std::make_unique<TF_RandomAccessFile>(); std::string translated_name = TranslateName(fname); ops_->new_random_access_file(filesystem_.get(), translated_name.c_str(), file.get(), plugin_status.get()); if (TF_GetCode(plugin_status.get()) == TF_OK) *result = std::make_unique<ModularRandomAccessFile>( translated_name, std::move(file), random_access_file_ops_.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::NewWritableFile( const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { if (ops_->new_writable_file == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", fname, " does not support NewWritableFile()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); auto file = std::make_unique<TF_WritableFile>(); std::string translated_name = TranslateName(fname); ops_->new_writable_file(filesystem_.get(), translated_name.c_str(), file.get(), plugin_status.get()); if (TF_GetCode(plugin_status.get()) == TF_OK) *result = std::make_unique<ModularWritableFile>( translated_name, std::move(file), writable_file_ops_.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::NewAppendableFile( const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { if (ops_->new_appendable_file == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", fname, " does not support NewAppendableFile()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); auto file = std::make_unique<TF_WritableFile>(); std::string translated_name = TranslateName(fname); ops_->new_appendable_file(filesystem_.get(), translated_name.c_str(), file.get(), plugin_status.get()); if (TF_GetCode(plugin_status.get()) == TF_OK) *result = std::make_unique<ModularWritableFile>( translated_name, std::move(file), writable_file_ops_.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::NewReadOnlyMemoryRegionFromFile( const std::string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) { if (ops_->new_read_only_memory_region_from_file == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", fname, " does not support NewReadOnlyMemoryRegionFromFile()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); auto region = std::make_unique<TF_ReadOnlyMemoryRegion>(); std::string translated_name = TranslateName(fname); ops_->new_read_only_memory_region_from_file( filesystem_.get(), translated_name.c_str(), region.get(), plugin_status.get()); if (TF_GetCode(plugin_status.get()) == TF_OK) *result = std::make_unique<ModularReadOnlyMemoryRegion>( std::move(region), read_only_memory_region_ops_.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::FileExists(const std::string& fname, TransactionToken* token) { if (ops_->path_exists == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", fname, " does not support FileExists()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); const std::string translated_name = TranslateName(fname); ops_->path_exists(filesystem_.get(), translated_name.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } bool ModularFileSystem::FilesExist(const std::vector<std::string>& files, TransactionToken* token, std::vector<Status>* status) { if (ops_->paths_exist == nullptr) return FileSystem::FilesExist(files, token, status); std::vector<char*> translated_names; translated_names.reserve(files.size()); for (int i = 0; i < files.size(); i++) translated_names.push_back(strdup(TranslateName(files[i]).c_str())); bool result; if (status == nullptr) { result = ops_->paths_exist(filesystem_.get(), translated_names.data(), files.size(), nullptr); } else { std::vector<TF_Status*> plugin_status; plugin_status.reserve(files.size()); for (int i = 0; i < files.size(); i++) plugin_status.push_back(TF_NewStatus()); result = ops_->paths_exist(filesystem_.get(), translated_names.data(), files.size(), plugin_status.data()); for (int i = 0; i < files.size(); i++) { status->push_back(StatusFromTF_Status(plugin_status[i])); TF_DeleteStatus(plugin_status[i]); } } for (int i = 0; i < files.size(); i++) free(translated_names[i]); return result; } Status ModularFileSystem::GetChildren(const std::string& dir, TransactionToken* token, std::vector<std::string>* result) { if (ops_->get_children == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", dir, " does not support GetChildren()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(dir); char** children = nullptr; const int num_children = ops_->get_children(filesystem_.get(), translated_name.c_str(), &children, plugin_status.get()); if (num_children >= 0) { for (int i = 0; i < num_children; i++) { result->push_back(std::string(children[i])); plugin_memory_free_(children[i]); } plugin_memory_free_(children); } return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::GetMatchingPaths(const std::string& pattern, TransactionToken* token, std::vector<std::string>* result) { if (ops_->get_matching_paths == nullptr) return internal::GetMatchingPaths(this, Env::Default(), pattern, result); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); char** matches = nullptr; const int num_matches = ops_->get_matching_paths( filesystem_.get(), pattern.c_str(), &matches, plugin_status.get()); if (num_matches >= 0) { for (int i = 0; i < num_matches; i++) { result->push_back(std::string(matches[i])); plugin_memory_free_(matches[i]); } plugin_memory_free_(matches); } return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::DeleteFile(const std::string& fname, TransactionToken* token) { if (ops_->delete_file == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", fname, " does not support DeleteFile()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(fname); ops_->delete_file(filesystem_.get(), translated_name.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::DeleteRecursively(const std::string& dirname, TransactionToken* token, int64_t* undeleted_files, int64_t* undeleted_dirs) { if (undeleted_files == nullptr || undeleted_dirs == nullptr) return errors::FailedPrecondition( "DeleteRecursively must not be called with `undeleted_files` or " "`undeleted_dirs` set to NULL"); if (ops_->delete_recursively == nullptr) return FileSystem::DeleteRecursively(dirname, token, undeleted_files, undeleted_dirs); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(dirname); uint64_t plugin_undeleted_files, plugin_undeleted_dirs; ops_->delete_recursively(filesystem_.get(), translated_name.c_str(), &plugin_undeleted_files, &plugin_undeleted_dirs, plugin_status.get()); *undeleted_files = plugin_undeleted_files; *undeleted_dirs = plugin_undeleted_dirs; return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::DeleteDir(const std::string& dirname, TransactionToken* token) { if (ops_->delete_dir == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", dirname, " does not support DeleteDir()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(dirname); ops_->delete_dir(filesystem_.get(), translated_name.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::RecursivelyCreateDir(const std::string& dirname, TransactionToken* token) { if (ops_->recursively_create_dir == nullptr) return FileSystem::RecursivelyCreateDir(dirname, token); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(dirname); ops_->recursively_create_dir(filesystem_.get(), translated_name.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::CreateDir(const std::string& dirname, TransactionToken* token) { if (ops_->create_dir == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", dirname, " does not support CreateDir()")); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(dirname); ops_->create_dir(filesystem_.get(), translated_name.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::Stat(const std::string& fname, TransactionToken* token, FileStatistics* stat) { if (ops_->stat == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Filesystem for ", fname, " does not support Stat()")); if (stat == nullptr) return errors::InvalidArgument("FileStatistics pointer must not be NULL"); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(fname); TF_FileStatistics stats; ops_->stat(filesystem_.get(), translated_name.c_str(), &stats, plugin_status.get()); if (TF_GetCode(plugin_status.get()) == TF_OK) { stat->length = stats.length; stat->mtime_nsec = stats.mtime_nsec; stat->is_directory = stats.is_directory; } return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::IsDirectory(const std::string& name, TransactionToken* token) { if (ops_->is_directory == nullptr) return FileSystem::IsDirectory(name, token); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(name); ops_->is_directory(filesystem_.get(), translated_name.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::GetFileSize(const std::string& fname, TransactionToken* token, uint64* file_size) { if (ops_->get_file_size == nullptr) { FileStatistics stat; Status status = Stat(fname, &stat); if (!status.ok()) return status; if (stat.is_directory) return errors::FailedPrecondition("Called GetFileSize on a directory"); *file_size = stat.length; return status; } UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_name = TranslateName(fname); *file_size = ops_->get_file_size(filesystem_.get(), translated_name.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::RenameFile(const std::string& src, const std::string& target, TransactionToken* token) { if (ops_->rename_file == nullptr) { Status status = CopyFile(src, target); if (status.ok()) status = DeleteFile(src); return status; } UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_src = TranslateName(src); std::string translated_target = TranslateName(target); ops_->rename_file(filesystem_.get(), translated_src.c_str(), translated_target.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::CopyFile(const std::string& src, const std::string& target, TransactionToken* token) { if (ops_->copy_file == nullptr) return FileSystem::CopyFile(src, target, token); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); std::string translated_src = TranslateName(src); std::string translated_target = TranslateName(target); ops_->copy_file(filesystem_.get(), translated_src.c_str(), translated_target.c_str(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } std::string ModularFileSystem::TranslateName(const std::string& name) const { if (ops_->translate_name == nullptr) return FileSystem::TranslateName(name); char* p = ops_->translate_name(filesystem_.get(), name.c_str()); CHECK(p != nullptr) << "TranslateName(" << name << ") returned nullptr"; std::string ret(p); plugin_memory_free_(p); return ret; } void ModularFileSystem::FlushCaches(TransactionToken* token) { if (ops_->flush_caches != nullptr) ops_->flush_caches(filesystem_.get()); } Status ModularFileSystem::SetOption(const std::string& name, const std::vector<string>& values) { if (ops_->set_filesystem_configuration == nullptr) { return errors::Unimplemented( "Filesystem does not support SetConfiguration()"); } if (values.empty()) { return errors::InvalidArgument( "SetConfiguration() needs number of values > 0"); } TF_Filesystem_Option option; memset(&option, 0, sizeof(option)); option.name = const_cast<char*>(name.c_str()); TF_Filesystem_Option_Value option_value; memset(&option_value, 0, sizeof(option_value)); option_value.type_tag = TF_Filesystem_Option_Type_Buffer; option_value.num_values = values.size(); std::vector<TF_Filesystem_Option_Value_Union> option_values(values.size()); for (size_t i = 0; i < values.size(); i++) { memset(&option_values[i], 0, sizeof(option_values[i])); option_values[i].buffer_val.buf = const_cast<char*>(values[i].c_str()); option_values[i].buffer_val.buf_length = values[i].size(); } option_value.values = &option_values[0]; option.value = &option_value; UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); ops_->set_filesystem_configuration(filesystem_.get(), &option, 1, plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::SetOption(const std::string& name, const std::vector<int64_t>& values) { if (ops_->set_filesystem_configuration == nullptr) { return errors::Unimplemented( "Filesystem does not support SetConfiguration()"); } if (values.empty()) { return errors::InvalidArgument( "SetConfiguration() needs number of values > 0"); } TF_Filesystem_Option option; memset(&option, 0, sizeof(option)); option.name = const_cast<char*>(name.c_str()); TF_Filesystem_Option_Value option_value; memset(&option_value, 0, sizeof(option_value)); option_value.type_tag = TF_Filesystem_Option_Type_Int; option_value.num_values = values.size(); std::vector<TF_Filesystem_Option_Value_Union> option_values(values.size()); for (size_t i = 0; i < values.size(); i++) { memset(&option_values[i], 0, sizeof(option_values[i])); option_values[i].int_val = values[i]; } option_value.values = &option_values[0]; option.value = &option_value; UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); ops_->set_filesystem_configuration(filesystem_.get(), &option, 1, plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularFileSystem::SetOption(const std::string& name, const std::vector<double>& values) { if (ops_->set_filesystem_configuration == nullptr) { return errors::Unimplemented( "Filesystem does not support SetConfiguration()"); } if (values.empty()) { return errors::InvalidArgument( "SetConfiguration() needs number of values > 0"); } TF_Filesystem_Option option; memset(&option, 0, sizeof(option)); option.name = const_cast<char*>(name.c_str()); TF_Filesystem_Option_Value option_value; memset(&option_value, 0, sizeof(option_value)); option_value.type_tag = TF_Filesystem_Option_Type_Real; option_value.num_values = values.size(); std::vector<TF_Filesystem_Option_Value_Union> option_values(values.size()); for (size_t i = 0; i < values.size(); i++) { memset(&option_values[i], 0, sizeof(option_values[i])); option_values[i].real_val = values[i]; } option_value.values = &option_values[0]; option.value = &option_value; UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); ops_->set_filesystem_configuration(filesystem_.get(), &option, 1, plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularRandomAccessFile::Read(uint64 offset, size_t n, StringPiece* result, char* scratch) const { if (ops_->read == nullptr) return errors::Unimplemented( tensorflow::strings::StrCat("Read() not implemented for ", filename_)); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); int64_t read = ops_->read(file_.get(), offset, n, scratch, plugin_status.get()); if (read > 0) *result = StringPiece(scratch, read); return StatusFromTF_Status(plugin_status.get()); } Status ModularRandomAccessFile::Name(StringPiece* result) const { *result = filename_; return OkStatus(); } Status ModularWritableFile::Append(StringPiece data) { if (ops_->append == nullptr) return errors::Unimplemented(tensorflow::strings::StrCat( "Append() not implemented for ", filename_)); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); ops_->append(file_.get(), data.data(), data.size(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularWritableFile::Close() { if (ops_->close == nullptr) return errors::Unimplemented( tensorflow::strings::StrCat("Close() not implemented for ", filename_)); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); ops_->close(file_.get(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularWritableFile::Flush() { if (ops_->flush == nullptr) return OkStatus(); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); ops_->flush(file_.get(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularWritableFile::Sync() { if (ops_->sync == nullptr) return Flush(); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); ops_->sync(file_.get(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status ModularWritableFile::Name(StringPiece* result) const { *result = filename_; return OkStatus(); } Status ModularWritableFile::Tell(int64_t* position) { if (ops_->tell == nullptr) return errors::Unimplemented( tensorflow::strings::StrCat("Tell() not implemented for ", filename_)); UniquePtrTo_TF_Status plugin_status(TF_NewStatus(), TF_DeleteStatus); *position = ops_->tell(file_.get(), plugin_status.get()); return StatusFromTF_Status(plugin_status.get()); } Status RegisterFilesystemPlugin(const std::string& dso_path) { Env* env = Env::Default(); void* dso_handle; TF_RETURN_IF_ERROR(env->LoadDynamicLibrary(dso_path.c_str(), &dso_handle)); void* dso_symbol; TF_RETURN_WITH_CONTEXT_IF_ERROR( env->GetSymbolFromLibrary(dso_handle, "TF_InitPlugin", &dso_symbol), "Failed to load TF_InitPlugin symbol for DSO: ", dso_path); TF_FilesystemPluginInfo info; memset(&info, 0, sizeof(info)); auto TF_InitPlugin = reinterpret_cast<int (*)(TF_FilesystemPluginInfo*)>(dso_symbol); TF_InitPlugin(&info); return filesystem_registration::RegisterFilesystemPluginImpl(&info); } }
#include "tensorflow/c/experimental/filesystem/modular_filesystem.h" #include <memory> #include <random> #include <string> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/stacktrace_handler.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/command_line_flags.h" #if defined(PLATFORM_WINDOWS) #include <direct.h> #define mkdir(name, mode) _mkdir(name) #undef CopyFile #undef DeleteFile #undef TranslateName #endif namespace tensorflow { namespace { using ::tensorflow::error::Code; class ModularFileSystemTest : public ::testing::TestWithParam<std::string> { public: ModularFileSystemTest() { const std::string test_name = tensorflow::str_util::StringReplace( ::testing::UnitTest::GetInstance()->current_test_info()->name(), "/", "_", true); if (!cloud_path_.empty()) { root_dir_ = tensorflow::strings::StrCat( "/", tmp_dir_, tensorflow::strings::StrCat("tf_fs_", rng_val_, "_", test_name), "/"); } else { root_dir_ = tensorflow::io::JoinPath( tmp_dir_, tensorflow::strings::StrCat("tf_fs_", rng_val_, "_", test_name)); } if (!GetParam().empty()) { root_dir_ = tensorflow::strings::StrCat(GetParam(), ": root_dir_); } env_ = Env::Default(); } void SetUp() override { FileSystem* fs = nullptr; Status s = env_->GetFileSystemForFile(root_dir_, &fs); if (fs == nullptr || !s.ok()) GTEST_SKIP() << "No filesystem registered: " << s; s = fs->CreateDir(root_dir_); if (!s.ok()) { GTEST_SKIP() << "Cannot create working directory: " << s; } } std::string GetURIForPath(StringPiece path) { const std::string translated_name = tensorflow::io::JoinPath(root_dir_, path); return translated_name; } StringPiece GetRelativePath(StringPiece absolute_path) { return tensorflow::str_util::StripPrefix(absolute_path, root_dir_); } static void InitializeTestRNG() { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> distribution; rng_val_ = distribution(gen); } static void SetCloudPath(const std::string& cloud_path) { cloud_path_ = cloud_path; if (cloud_path_.back() == '/') cloud_path_.pop_back(); } static void SetTmpDir(const std::string& tmp_dir) { tmp_dir_ = tmp_dir.empty() ? ::testing::TempDir() : tmp_dir; } protected: Env* env_; private: std::string root_dir_; static int rng_val_; static std::string cloud_path_; static std::string tmp_dir_; }; int ModularFileSystemTest::rng_val_; std::string ModularFileSystemTest::cloud_path_; std::string ModularFileSystemTest::tmp_dir_; bool UnimplementedOrReturnsCode(Status actual_status, Code expected_code) { Code actual_code = actual_status.code(); return (actual_code == Code::UNIMPLEMENTED) || (actual_code == expected_code); } TEST_P(ModularFileSystemTest, TestTranslateName) { const std::string generic_path = GetURIForPath("some_path"); FileSystem* fs = nullptr; Status s = env_->GetFileSystemForFile(generic_path, &fs); if (fs == nullptr || !s.ok()) GTEST_SKIP() << "No filesystem registered: " << s; if (GetParam().empty()) { EXPECT_EQ(fs->TranslateName(""), ""); EXPECT_EQ(fs->TranslateName("/"), "/"); EXPECT_EQ(fs->TranslateName(" EXPECT_EQ(fs->TranslateName("a_file"), "a_file"); EXPECT_EQ(fs->TranslateName("a_dir/.."), "."); } else { EXPECT_EQ(fs->TranslateName(tensorflow::strings::StrCat(GetParam(), ": "/"); EXPECT_EQ( fs->TranslateName(tensorflow::strings::StrCat(GetParam(), ": "/"); EXPECT_EQ( fs->TranslateName(tensorflow::strings::StrCat(GetParam(), ": "/"); } EXPECT_EQ(GetRelativePath(fs->TranslateName(GetURIForPath("a_file"))), "/a_file"); EXPECT_EQ(GetRelativePath(fs->TranslateName(GetURIForPath("a_dir/a_file"))), "/a_dir/a_file"); EXPECT_EQ(GetRelativePath(fs->TranslateName(GetURIForPath("./a_file"))), "/a_file"); EXPECT_EQ(GetRelativePath(fs->TranslateName( GetURIForPath("a/convoluted/../path/./to/. "/a/path/to/a/file"); } TEST_P(ModularFileSystemTest, TestCreateFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestCreateFileNonExisting) { const std::string filepath = GetURIForPath("dir_not_found/a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestCreateFileExistingDir) { const std::string filepath = GetURIForPath("a_file"); Status status = env_->CreateDir(filepath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; std::unique_ptr<WritableFile> new_file; status = env_->NewWritableFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCreateFilePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_file"); std::unique_ptr<WritableFile> new_file; status = env_->NewWritableFile(new_path, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestAppendFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewAppendableFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestAppendFileNonExisting) { const std::string filepath = GetURIForPath("dir_not_found/a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewAppendableFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestAppendFileExistingDir) { const std::string filepath = GetURIForPath("a_file"); Status status = env_->CreateDir(filepath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; std::unique_ptr<WritableFile> new_file; status = env_->NewAppendableFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCreateThenAppendFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; std::unique_ptr<WritableFile> same_file; status = env_->NewAppendableFile(filepath, &same_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestAppendFilePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_file"); std::unique_ptr<WritableFile> same_file; status = env_->NewAppendableFile(new_path, &same_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestReadFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<RandomAccessFile> new_file; Status status = env_->NewRandomAccessFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestReadFileNonExisting) { const std::string filepath = GetURIForPath("dir_not_found/a_file"); std::unique_ptr<RandomAccessFile> new_file; Status status = env_->NewRandomAccessFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestReadFileExistingDir) { const std::string filepath = GetURIForPath("a_file"); Status status = env_->CreateDir(filepath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; std::unique_ptr<RandomAccessFile> new_file; status = env_->NewRandomAccessFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCreateThenReadFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; std::unique_ptr<RandomAccessFile> same_file; status = env_->NewRandomAccessFile(filepath, &same_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestReadFilePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_file"); std::unique_ptr<RandomAccessFile> same_file; status = env_->NewRandomAccessFile(new_path, &same_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCreateMemoryRegion) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<ReadOnlyMemoryRegion> region; Status status = env_->NewReadOnlyMemoryRegionFromFile(filepath, &region); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestCreateMemoryRegionNonExisting) { const std::string filepath = GetURIForPath("dir_not_found/a_file"); std::unique_ptr<ReadOnlyMemoryRegion> region; Status status = env_->NewReadOnlyMemoryRegionFromFile(filepath, &region); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestCreateMemoryRegionExistingDir) { const std::string filepath = GetURIForPath("a_file"); Status status = env_->CreateDir(filepath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; std::unique_ptr<ReadOnlyMemoryRegion> new_file; status = env_->NewReadOnlyMemoryRegionFromFile(filepath, &new_file); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCreateMemoryRegionFromEmptyFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; std::unique_ptr<ReadOnlyMemoryRegion> region; status = env_->NewReadOnlyMemoryRegionFromFile(filepath, &region); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::INVALID_ARGUMENT); } TEST_P(ModularFileSystemTest, TestCreateMemoryRegionFromFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = new_file->Append(test_data); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = new_file->Flush(); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = new_file->Close(); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; std::unique_ptr<ReadOnlyMemoryRegion> region; status = env_->NewReadOnlyMemoryRegionFromFile(filepath, &region); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "NewReadOnlyMemoryRegionFromFile() not supported: " << status; EXPECT_EQ(region->length(), test_data.size()); EXPECT_STREQ(reinterpret_cast<const char*>(region->data()), test_data.c_str()); } TEST_P(ModularFileSystemTest, TestCreateMemoryRegionFromFilePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; std::string new_path = GetURIForPath("a_file/a_file"); std::unique_ptr<ReadOnlyMemoryRegion> region; status = env_->NewReadOnlyMemoryRegionFromFile(new_path, &region); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCreateDir) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestCreateDirNoParent) { const std::string dirpath = GetURIForPath("dir_not_found/a_dir"); Status status = env_->CreateDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestCreateDirWhichIsFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->CreateDir(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::ALREADY_EXISTS); } TEST_P(ModularFileSystemTest, TestCreateDirTwice) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; status = env_->CreateDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::ALREADY_EXISTS); } TEST_P(ModularFileSystemTest, TestCreateDirPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_dir"); status = env_->CreateDir(new_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestRecursivelyCreateDir) { const std::string dirpath = GetURIForPath("a/path/to/a/dir"); Status status = env_->RecursivelyCreateDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestRecursivelyCreateDirInATree) { const std::string dirpath = GetURIForPath("a/path/to/a/dir"); Status status = env_->RecursivelyCreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "RecursivelyCreateDir() not supported: " << status; const std::string new_dirpath = GetURIForPath("a/path/to/a/another/dir"); status = env_->RecursivelyCreateDir(new_dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestRecursivelyCreateDirWhichIsFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->RecursivelyCreateDir(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestRecursivelyCreateDirTwice) { const std::string dirpath = GetURIForPath("a/path/to/a/dir"); Status status = env_->RecursivelyCreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "RecursivelyCreateDir() not supported: " << status; status = env_->RecursivelyCreateDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestRecursivelyCreateDirPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_dir"); status = env_->RecursivelyCreateDir(new_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestRecursivelyCreateDirFromNestedDir) { const std::string parent_path = GetURIForPath("some/path"); Status status = env_->RecursivelyCreateDir(parent_path); if (!status.ok()) GTEST_SKIP() << "RecursivelyCreateDir() not supported: " << status; const std::string new_dirpath = GetURIForPath("some/path/that/is/extended"); status = env_->RecursivelyCreateDir(new_dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestRecursivelyCreateDirFromNestedFile) { const std::string parent_path = GetURIForPath("some/path"); Status status = env_->RecursivelyCreateDir(parent_path); if (!status.ok()) GTEST_SKIP() << "RecursivelyCreateDir() not supported: " << status; const std::string filepath = GetURIForPath("some/path/to_a_file"); std::unique_ptr<WritableFile> file; status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_dirpath = GetURIForPath("some/path/to_a_file/error"); status = env_->RecursivelyCreateDir(new_dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestDeleteFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->DeleteFile(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestDeleteFileFromDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string filepath = GetURIForPath("a_dir/a_file"); std::unique_ptr<WritableFile> new_file; status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->DeleteFile(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestDeleteFileDoesNotExist) { const std::string filepath = GetURIForPath("a_file"); Status status = env_->DeleteFile(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestDeleteFileWhichIsDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; status = env_->DeleteFile(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestDeleteFilePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_new_file"); status = env_->DeleteFile(new_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestDeleteDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; status = env_->DeleteDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestDeleteDirectoryFromDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string target_path = GetURIForPath("a_dir/another_dir"); EXPECT_EQ(env_->CreateDir(target_path).code(), Code::OK); status = env_->DeleteDir(target_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestDeleteDirectoryDoesNotExist) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->DeleteDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestDeleteDirectoryNotEmpty) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string filepath = GetURIForPath("a_dir/a_file"); std::unique_ptr<WritableFile> new_file; status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->DeleteDir(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestDeleteDirectoryWhichIsFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->DeleteDir(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestDeleteDirectoryPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_dir"); status = env_->DeleteDir(new_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestDeleteRecursivelyEmpty) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; status = env_->DeleteRecursively(dirpath, &undeleted_files, &undeleted_dirs); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 0); } TEST_P(ModularFileSystemTest, TestDeleteRecursivelyNotEmpty) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string some_path = GetURIForPath("a_dir/another_dir"); status = env_->CreateDir(some_path); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string another_path = GetURIForPath("a_dir/yet_another_dir"); status = env_->CreateDir(another_path); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string filepath = GetURIForPath("a_dir/a_file"); std::unique_ptr<WritableFile> new_file; status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; status = env_->DeleteRecursively(dirpath, &undeleted_files, &undeleted_dirs); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 0); } TEST_P(ModularFileSystemTest, TestDeleteRecursivelyDoesNotExist) { const std::string dirpath = GetURIForPath("a_dir"); int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; Status status = env_->DeleteRecursively(dirpath, &undeleted_files, &undeleted_dirs); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 1); } TEST_P(ModularFileSystemTest, TestDeleteRecursivelyAFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; status = env_->DeleteRecursively(filepath, &undeleted_files, &undeleted_dirs); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 0); } TEST_P(ModularFileSystemTest, TestDeleteRecursivelyPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_path = GetURIForPath("a_file/a_dir"); int64_t undeleted_files, undeleted_dirs; status = env_->DeleteRecursively(new_path, &undeleted_files, &undeleted_dirs); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestDeleteRecursivelyANestedDir) { const std::string parent_path = GetURIForPath("parent/path"); Status status = env_->RecursivelyCreateDir(parent_path); if (!status.ok()) GTEST_SKIP() << "RecursivelyCreateDir() not supported: " << status; const std::string new_dirpath = GetURIForPath("parent/path/that/is/extended"); status = env_->RecursivelyCreateDir(new_dirpath); if (!status.ok()) GTEST_SKIP() << "RecursivelyCreateDir() not supported: " << status; const std::string path = GetURIForPath("parent/path/that"); int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; status = env_->DeleteRecursively(path, &undeleted_files, &undeleted_dirs); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 0); status = env_->FileExists(parent_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestDeleteRecursivelyANestedFile) { const std::string parent_path = GetURIForPath("some/path"); Status status = env_->RecursivelyCreateDir(parent_path); if (!status.ok()) GTEST_SKIP() << "RecursivelyCreateDir() not supported: " << status; const std::string filepath = GetURIForPath("some/path/to_a_file"); std::unique_ptr<WritableFile> file; status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; status = env_->DeleteRecursively(filepath, &undeleted_files, &undeleted_dirs); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 0); status = env_->FileExists(parent_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestRenameFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->RenameFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "RenameFile() not supported: " << status; status = env_->FileExists(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); status = env_->FileExists(new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestRenameFileOverwrite) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); std::unique_ptr<WritableFile> new_file; status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->RenameFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "RenameFile() not supported: " << status; status = env_->FileExists(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); status = env_->FileExists(new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestRenameFileSourceNotFound) { const std::string filepath = GetURIForPath("a_file"); const std::string new_filepath = GetURIForPath("a_new_file"); Status status = env_->RenameFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestRenameFileDestinationParentNotFound) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_filepath = GetURIForPath("a_dir/a_file"); status = env_->RenameFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestRenameFileSourceIsDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->RenameFile(dirpath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestRenameFileTargetIsDirectory) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string dirpath = GetURIForPath("a_dir"); status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; status = env_->RenameFile(filepath, dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestRenameFileSourcePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string old_filepath = GetURIForPath("a_file/x"); const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->RenameFile(old_filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestRenameFileTargetPathIsInvalid) { const std::string old_filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> old_file; Status status = env_->NewWritableFile(old_filepath, &old_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_filepath = GetURIForPath("a_file/a_new_file"); status = env_->RenameFile(old_filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestRenameFileCompareContents) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = file->Append(test_data); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Flush(); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = file->Close(); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->RenameFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "RenameFile() not supported: " << status; uint64 size; status = env_->GetFileSize(new_filepath, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetFileSize() not supported: " << status; EXPECT_EQ(size, test_data.size()); } TEST_P(ModularFileSystemTest, TestCopyFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->CopyFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "CopyFile() not supported: " << status; status = env_->FileExists(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); status = env_->FileExists(new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestCopyFileOverwrite) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); std::unique_ptr<WritableFile> new_file; status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->CopyFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "CopyFile() not supported: " << status; status = env_->FileExists(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); status = env_->FileExists(new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestCopyFileSourceNotFound) { const std::string filepath = GetURIForPath("a_file"); const std::string new_filepath = GetURIForPath("a_new_file"); Status status = env_->CopyFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestCopyFileSourceIsDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->CopyFile(dirpath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCopyFileTargetIsDirectory) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> new_file; Status status = env_->NewWritableFile(filepath, &new_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string dirpath = GetURIForPath("a_dir"); status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; status = env_->CopyFile(filepath, dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCopyFileSourcePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string old_filepath = GetURIForPath("a_file/x"); const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->CopyFile(old_filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCopyFileTargetPathIsInvalid) { const std::string old_filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> old_file; Status status = env_->NewWritableFile(old_filepath, &old_file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string new_filepath = GetURIForPath("a_file/a_new_file"); status = env_->CopyFile(old_filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestCopyFileCompareContents) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = file->Append(test_data); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Flush(); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = file->Close(); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; const std::string new_filepath = GetURIForPath("a_new_file"); status = env_->CopyFile(filepath, new_filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "RenameFile() not supported: " << status; uint64 size; status = env_->GetFileSize(filepath, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetFileSize() not supported: " << status; EXPECT_EQ(size, test_data.size()); status = env_->GetFileSize(new_filepath, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetFileSize() not supported: " << status; EXPECT_EQ(size, test_data.size()); } TEST_P(ModularFileSystemTest, TestFileExists) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->FileExists(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestFileExistsButIsDirectory) { const std::string filepath = GetURIForPath("a_file"); Status status = env_->CreateDir(filepath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; status = env_->FileExists(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestFileExistsNotFound) { const std::string filepath = GetURIForPath("a_file"); Status status = env_->FileExists(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestFileExistsPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string target_path = GetURIForPath("a_file/a_new_file"); status = env_->FileExists(target_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestFilesExist) { const std::vector<std::string> filenames = {GetURIForPath("a"), GetURIForPath("b")}; for (const auto& filename : filenames) { std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; } EXPECT_TRUE(env_->FilesExist(filenames, nullptr)); std::vector<Status> statuses; EXPECT_TRUE(env_->FilesExist(filenames, &statuses)); EXPECT_EQ(statuses.size(), filenames.size()); for (const auto& status : statuses) EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestFilesExistAllFailureModes) { const std::vector<std::string> filenames = { GetURIForPath("a_dir"), GetURIForPath("a_file"), GetURIForPath("a_file/a_new_file"), GetURIForPath("file_not_found"), }; Status status = env_->CreateDir(filenames[0]); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; std::unique_ptr<WritableFile> file; status = env_->NewWritableFile(filenames[1], &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; std::vector<Status> statuses; EXPECT_FALSE(env_->FilesExist(filenames, &statuses)); EXPECT_EQ(statuses.size(), filenames.size()); EXPECT_PRED2(UnimplementedOrReturnsCode, statuses[0], Code::OK); EXPECT_PRED2(UnimplementedOrReturnsCode, statuses[1], Code::OK); EXPECT_PRED2(UnimplementedOrReturnsCode, statuses[2], Code::FAILED_PRECONDITION); EXPECT_PRED2(UnimplementedOrReturnsCode, statuses[3], Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestFilesExistsNoFiles) { const std::vector<std::string> filenames = {}; EXPECT_TRUE(env_->FilesExist(filenames, nullptr)); std::vector<Status> statuses; EXPECT_TRUE(env_->FilesExist(filenames, &statuses)); EXPECT_TRUE(statuses.empty()); } TEST_P(ModularFileSystemTest, TestStatEmptyFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; FileStatistics stat; status = env_->Stat(filepath, &stat); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Stat() not supported: " << status; EXPECT_FALSE(stat.is_directory); EXPECT_EQ(stat.length, 0); } TEST_P(ModularFileSystemTest, TestStatNonEmptyFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = file->Append(test_data); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Flush(); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = file->Close(); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; FileStatistics stat; status = env_->Stat(filepath, &stat); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Stat() not supported: " << status; EXPECT_FALSE(stat.is_directory); EXPECT_EQ(stat.length, test_data.size()); } TEST_P(ModularFileSystemTest, TestStatDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; FileStatistics stat; status = env_->Stat(dirpath, &stat); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Stat() not supported: " << status; EXPECT_TRUE(stat.is_directory); } TEST_P(ModularFileSystemTest, TestStatNotFound) { const std::string dirpath = GetURIForPath("a_dir"); FileStatistics stat; Status status = env_->Stat(dirpath, &stat); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestStatPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string target_path = GetURIForPath("a_file/a_new_file"); FileStatistics stat; status = env_->Stat(target_path, &stat); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestIsDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; status = env_->IsDirectory(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); } TEST_P(ModularFileSystemTest, TestIsDirectoryFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = env_->IsDirectory(filepath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestIsDirectoryNotFound) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->IsDirectory(dirpath); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestIsDirectoryPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string target_path = GetURIForPath("a_file/a_new_file"); status = env_->IsDirectory(target_path); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestGetFileSizeEmptyFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; uint64 size; status = env_->GetFileSize(filepath, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetFileSize() not supported: " << status; EXPECT_EQ(size, 0); } TEST_P(ModularFileSystemTest, TestGetFileSizeNonEmptyFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = file->Append(test_data); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Flush(); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = file->Close(); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; uint64 size; status = env_->GetFileSize(filepath, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetFileSize() not supported: " << status; EXPECT_EQ(size, test_data.size()); } TEST_P(ModularFileSystemTest, TestGetFileSizeDirectory) { const std::string dirpath = GetURIForPath("a_dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; uint64 size; status = env_->GetFileSize(dirpath, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestGetFileSizeNotFound) { const std::string filepath = GetURIForPath("a_dir"); uint64 size; Status status = env_->GetFileSize(filepath, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestGetFileSizePathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string target_path = GetURIForPath("a_file/a_new_file"); uint64 size; status = env_->GetFileSize(target_path, &size); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestGetChildren) { const std::string dirpath = GetURIForPath("dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; const std::vector<std::string> filenames = { GetURIForPath("dir/a_file"), GetURIForPath("dir/another_file"), }; for (const auto& filename : filenames) { std::unique_ptr<WritableFile> file; status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; } const std::vector<std::string> dirnames = { GetURIForPath("dir/a_dir"), GetURIForPath("dir/another_dir"), }; for (const auto& dirname : dirnames) { status = env_->CreateDir(dirname); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; } std::vector<std::string> children; status = env_->GetChildren(dirpath, &children); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetChildren() not supported: " << status; const std::vector<std::string> expected_children = {"a_file", "another_file", "a_dir", "another_dir"}; EXPECT_EQ(children.size(), filenames.size() + dirnames.size()); for (const auto& child : expected_children) EXPECT_NE(std::find(children.begin(), children.end(), child), children.end()); } TEST_P(ModularFileSystemTest, TestGetChildrenEmpty) { const std::string dirpath = GetURIForPath("dir"); Status status = env_->CreateDir(dirpath); if (!status.ok()) GTEST_SKIP() << "CreateDir() not supported: " << status; std::vector<std::string> children; status = env_->GetChildren(dirpath, &children); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(children.size(), 0); } TEST_P(ModularFileSystemTest, TestGetChildrenOfFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; std::vector<std::string> children; status = env_->GetChildren(filepath, &children); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestGetChildrenPathNotFound) { const std::string target_path = GetURIForPath("a_dir"); std::vector<std::string> children; Status status = env_->GetChildren(target_path, &children); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::NOT_FOUND); } TEST_P(ModularFileSystemTest, TestGetChildrenPathIsInvalid) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string target_path = GetURIForPath("a_file/a_new_dir"); std::vector<std::string> children; status = env_->GetChildren(target_path, &children); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::FAILED_PRECONDITION); } TEST_P(ModularFileSystemTest, TestGetMatchingPaths) { const std::vector<std::string> matching_filenames = { GetURIForPath("a_file"), GetURIForPath("another_file"), }; const std::vector<std::string> other_filenames = { GetURIForPath("some_file"), GetURIForPath("yet_another_file"), }; for (const auto& filename : matching_filenames) { std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; } for (const auto& filename : other_filenames) { std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; } std::vector<std::string> results; Status status = env_->GetMatchingPaths(GetURIForPath("/a*"), &results); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetMatchingPaths() not supported: " << status; EXPECT_EQ(results.size(), matching_filenames.size()); for (const auto& match : matching_filenames) EXPECT_NE(std::find(results.begin(), results.end(), match), results.end()); } TEST_P(ModularFileSystemTest, TestGetMatchingPathsEmptyFileSystem) { std::vector<std::string> results; Status status = env_->GetMatchingPaths(GetURIForPath("a*"), &results); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(results.size(), 0); } TEST_P(ModularFileSystemTest, TestGetMatchingPathsEmptyPattern) { const std::vector<std::string> filenames = { GetURIForPath("a_file"), GetURIForPath("another_file"), GetURIForPath("some_file"), GetURIForPath("yet_another_file"), }; for (const auto& filename : filenames) { std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; } std::vector<std::string> results; Status status = env_->GetMatchingPaths(GetURIForPath(""), &results); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetMatchingPaths() not supported: " << status; EXPECT_EQ(results.size(), 1); EXPECT_NE(std::find(results.begin(), results.end(), GetURIForPath("")), results.end()); } TEST_P(ModularFileSystemTest, TestGetMatchingPathsLiteralMatch) { const std::vector<std::string> filenames = { GetURIForPath("a_file"), GetURIForPath("another_file"), GetURIForPath("some_file"), GetURIForPath("yet_another_file"), }; for (const auto& filename : filenames) { std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; } std::vector<std::string> results; Status status = env_->GetMatchingPaths(filenames[0], &results); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "GetMatchingPaths() not supported: " << status; EXPECT_EQ(results.size(), 1); EXPECT_NE(std::find(results.begin(), results.end(), filenames[0]), results.end()); } TEST_P(ModularFileSystemTest, TestGetMatchingPathsNoMatch) { const std::vector<std::string> filenames = { GetURIForPath("a_file"), GetURIForPath("another_file"), GetURIForPath("some_file"), GetURIForPath("yet_another_file"), }; for (const auto& filename : filenames) { std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; } std::vector<std::string> results; Status status = env_->GetMatchingPaths(GetURIForPath("x?y*"), &results); if (!status.ok()) GTEST_SKIP() << "GetMatchingPaths() not supported: " << status; EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(results.size(), 0); } TEST_P(ModularFileSystemTest, TestAppendAndTell) { const std::string filename = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; int64_t position; status = file->Tell(&position); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Tell() not supported: " << status; EXPECT_EQ(position, 0); const std::string test_data("asdf"); status = file->Append(test_data); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Tell(&position); EXPECT_EQ(status.code(), Code::OK); EXPECT_EQ(position, test_data.size()); } TEST_P(ModularFileSystemTest, TestClose) { const std::string filename = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filename, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; status = file->Close(); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; } TEST_P(ModularFileSystemTest, TestRoundTrip) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = file->Append(test_data); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Flush(); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = file->Close(); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; std::unique_ptr<RandomAccessFile> read_file; status = env_->NewRandomAccessFile(filepath, &read_file); if (!status.ok()) GTEST_SKIP() << "NewRandomAccessFile() not supported: " << status; char scratch[64 ] = {0}; StringPiece result; status = read_file->Read(0, test_data.size(), &result, scratch); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(test_data, result); } TEST_P(ModularFileSystemTest, TestRoundTripWithAppendableFile) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = file->Append(test_data); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Flush(); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = file->Close(); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; std::unique_ptr<WritableFile> same_file; status = env_->NewAppendableFile(filepath, &same_file); if (!status.ok()) GTEST_SKIP() << "NewAppendableFile() not supported: " << status; const std::string more_test_data("qwer"); EXPECT_EQ(same_file->Append(more_test_data).code(), Code::OK); EXPECT_EQ(same_file->Flush().code(), Code::OK); EXPECT_EQ(same_file->Close().code(), Code::OK); std::unique_ptr<RandomAccessFile> read_file; status = env_->NewRandomAccessFile(filepath, &read_file); if (!status.ok()) GTEST_SKIP() << "NewRandomAccessFile() not supported: " << status; char scratch[64 ] = {0}; StringPiece result; status = read_file->Read(0, test_data.size() + more_test_data.size(), &result, scratch); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); EXPECT_EQ(test_data + more_test_data, result); EXPECT_EQ( read_file->Read(test_data.size(), more_test_data.size(), &result, scratch) .code(), Code::OK); EXPECT_EQ(more_test_data, result); } TEST_P(ModularFileSystemTest, TestReadOutOfRange) { const std::string filepath = GetURIForPath("a_file"); std::unique_ptr<WritableFile> file; Status status = env_->NewWritableFile(filepath, &file); if (!status.ok()) GTEST_SKIP() << "NewWritableFile() not supported: " << status; const std::string test_data("asdf"); status = file->Append(test_data); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Append() not supported: " << status; status = file->Flush(); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Flush() not supported: " << status; status = file->Close(); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OK); if (!status.ok()) GTEST_SKIP() << "Close() not supported: " << status; std::unique_ptr<RandomAccessFile> read_file; status = env_->NewRandomAccessFile(filepath, &read_file); if (!status.ok()) GTEST_SKIP() << "NewRandomAccessFile() not supported: " << status; char scratch[64 ] = {0}; StringPiece result; status = read_file->Read(0, test_data.size() + 1, &result, scratch); EXPECT_PRED2(UnimplementedOrReturnsCode, status, Code::OUT_OF_RANGE); } static std::vector<std::string>* SchemeVector() { static std::vector<std::string>* schemes = new std::vector<std::string>; return schemes; } static std::vector<std::string>* GetSchemesFromUserOrEnv() { std::vector<std::string>* all_schemes = new std::vector<std::string>; tensorflow::Status status = tensorflow::Env::Default()->GetRegisteredFileSystemSchemes(all_schemes); if (status.ok()) { std::vector<std::string>* user_schemes = SchemeVector(); if (!user_schemes->empty()) { auto is_requested_scheme = [user_schemes](const auto& scheme) { return std::find(user_schemes->begin(), user_schemes->end(), scheme) == user_schemes->end(); }; auto end = std::remove_if(all_schemes->begin(), all_schemes->end(), is_requested_scheme); all_schemes->erase(end, all_schemes->end()); } } return all_schemes; } static std::vector<std::string> GetSchemes() { static std::vector<std::string>* schemes = GetSchemesFromUserOrEnv(); return *schemes; } INSTANTIATE_TEST_SUITE_P(ModularFileSystem, ModularFileSystemTest, ::testing::ValuesIn(GetSchemes())); static bool LoadDSO(const std::string& dso) { tensorflow::Status status = RegisterFilesystemPlugin(dso); if (!status.ok()) VLOG(0) << "Filesystems from '" << dso << "' could not be registered: " << status; return status.ok(); } static bool GetURIScheme(const std::string& scheme) { tensorflow::SchemeVector()->push_back(scheme); return true; } static bool SetCloudPath(const std::string& cloud_path_) { ModularFileSystemTest::SetCloudPath(cloud_path_); return true; } static bool SetTmpDir(const std::string& tmp_dir_) { ModularFileSystemTest::SetTmpDir(tmp_dir_); return true; } } } GTEST_API_ int main(int argc, char** argv) { const std::vector<tensorflow::Flag> flag_list = { tensorflow::Flag("dso", tensorflow::LoadDSO, "", "Path to shared object to load"), tensorflow::Flag("scheme", tensorflow::GetURIScheme, "", "URI scheme to test"), tensorflow::Flag("cloud_path", tensorflow::SetCloudPath, "", "Path for cloud filesystem (namenode for hdfs, " "bucketname for s3/gcs)"), tensorflow::Flag("tmp_dir", tensorflow::SetTmpDir, "", "Temporary directory to store test data.")}; if (!tensorflow::Flags::Parse(&argc, argv, flag_list)) { std::cout << tensorflow::Flags::Usage(argv[0], flag_list); return -1; } tensorflow::testing::InstallStacktraceHandler(); tensorflow::ModularFileSystemTest::InitializeTestRNG(); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/filesystem/modular_filesystem.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/filesystem/modular_filesystem_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4e37c532-87dd-48a8-b0b5-c412fc21335e
cpp
tensorflow/tensorflow
dispatcher_client
tensorflow/core/data/service/dispatcher_client.cc
tensorflow/core/data/service/dispatcher_client_test.cc
#include "tensorflow/core/data/service/dispatcher_client.h" #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <vector> #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/dispatcher.grpc.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace data { Status DataServiceDispatcherClient::Initialize() { mutex_lock l(mu_); if (stub_) { return absl::OkStatus(); } std::shared_ptr<grpc::ChannelCredentials> credentials; TF_RETURN_IF_ERROR( CredentialsFactory::CreateClientCredentials(protocol_, &credentials)); grpc::ChannelArguments args; args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); auto channel = grpc::CreateCustomChannel(address_, credentials, args); stub_ = DispatcherService::NewStub(channel); GetVersionRequest req; GetVersionResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetVersion(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get dispatcher version from dispatcher " "running at ", address_), s); } if (resp.version() != kDataServiceVersion) { return errors::FailedPrecondition( "Version mismatch with tf.data service server. The server is running " "version ", resp.version(), ", while the client is running version ", kDataServiceVersion, ". Please ensure that the client and server side are running the " "same version of TensorFlow. If you're running an MPM binary, make " "sure the server is running an up-to-date MPM."); } return absl::OkStatus(); } absl::StatusOr<WorkerHeartbeatResponse> DataServiceDispatcherClient::WorkerHeartbeat( const WorkerHeartbeatRequest& request) { WorkerHeartbeatResponse response; grpc::ClientContext client_ctx; grpc::Status status = stub_->WorkerHeartbeat(&client_ctx, request, &response); if (!status.ok()) { return grpc_util::WrapError("Failed to perform worker heartbeat", status); } return response; } Status DataServiceDispatcherClient::WorkerUpdate( const std::string& worker_address, std::vector<TaskProgress>& task_progress) { WorkerUpdateRequest req; req.set_worker_address(worker_address); for (const auto& update : task_progress) { *(req.add_updates()) = update; } WorkerUpdateResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->WorkerUpdate(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to send worker update", status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDatasetDef(const std::string& dataset_id, DatasetDef& dataset_def) { GetDatasetDefRequest req; req.set_dataset_id(dataset_id); GetDatasetDefResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetDatasetDef(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get dataset def", status); } dataset_def = resp.dataset_def(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetSplit(int64_t iteration_id, int64_t repetition, int64_t split_provider_index, Tensor& split, bool& end_of_splits) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetSplitRequest req; req.set_iteration_id(iteration_id); req.set_repetition(repetition); req.set_split_provider_index(split_provider_index); GetSplitResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetSplit(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get split", status); } end_of_splits = resp.end_of_splits(); if (!end_of_splits) { if (!split.FromProto(resp.split())) { return errors::Internal("Failed to parse split tensor proto"); } } return absl::OkStatus(); } Status DataServiceDispatcherClient::Snapshot( const DatasetDef& dataset, const std::string& path, const experimental::DistributedSnapshotMetadata& metadata) { TF_RETURN_IF_ERROR(EnsureInitialized()); SnapshotRequest req; *req.mutable_dataset() = dataset; req.set_path(path); *req.mutable_metadata() = metadata; SnapshotResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->Snapshot(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to snapshot", status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetSnapshotSplit( const std::string& worker_address, const std::string& base_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, Tensor& split, int64_t& local_split_index, bool& end_of_splits) { GetSnapshotSplitRequest req; req.set_worker_address(worker_address); req.set_base_path(base_path); req.set_stream_index(stream_index); req.set_source_index(source_index); req.set_repetition_index(repetition_index); GetSnapshotSplitResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetSnapshotSplit(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get snapshot split", status); } local_split_index = resp.local_split_index(); end_of_splits = resp.end_of_splits(); if (end_of_splits) { return absl::OkStatus(); } if (!split.FromProto(resp.split())) { return errors::Internal("Failed to parse split tensor proto: ", resp.split().DebugString()); } return absl::OkStatus(); } Status DataServiceDispatcherClient::RegisterDataset( const DatasetDef& dataset, const DataServiceMetadata& metadata, const std::optional<std::string>& requested_dataset_id, std::string& dataset_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrRegisterDatasetRequest req; *req.mutable_dataset() = dataset; *req.mutable_metadata() = metadata; if (requested_dataset_id.has_value()) { req.set_dataset_id(*requested_dataset_id); } GetOrRegisterDatasetResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrRegisterDataset(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to register dataset", status); } dataset_id = resp.dataset_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetOrCreateJob( const std::string& dataset_id, const ProcessingModeDef& processing_mode, const std::optional<std::string>& job_name, std::optional<int64_t> num_consumers, bool use_cross_trainer_cache, TargetWorkers target_workers, int64_t& job_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrCreateJobRequest req; req.set_dataset_id(dataset_id); *req.mutable_processing_mode_def() = processing_mode; if (job_name.has_value()) { req.set_job_name(job_name.value()); } if (num_consumers.has_value()) { req.set_num_consumers(num_consumers.value()); } req.set_target_workers(target_workers); req.set_use_cross_trainer_cache(use_cross_trainer_cache); GetOrCreateJobResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrCreateJob(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get or create job for dataset with id ", dataset_id), status); } job_id = resp.job_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetOrCreateIteration( int64_t job_id, int64_t repetition, int64_t& iteration_client_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrCreateIterationRequest req; req.set_job_id(job_id); req.set_repetition(repetition); GetOrCreateIterationResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrCreateIteration(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get or create iteration for job with id ", job_id), status); } iteration_client_id = resp.iteration_client_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::ReleaseIterationClient( int64_t iteration_client_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); ReleaseIterationClientRequest req; req.set_iteration_client_id(iteration_client_id); ReleaseIterationClientResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->ReleaseIterationClient(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to release iteration client with id ", iteration_client_id), status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::MaybeRemoveTask(int64_t task_id, int64_t consumer_index, int64_t round, bool& removed) { TF_RETURN_IF_ERROR(EnsureInitialized()); MaybeRemoveTaskRequest req; req.set_task_id(task_id); req.set_consumer_index(consumer_index); req.set_round(round); MaybeRemoveTaskResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->MaybeRemoveTask(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to call MaybeRemoveTask", status); } removed = resp.removed(); return absl::OkStatus(); } Status DataServiceDispatcherClient::ClientHeartbeat( ClientHeartbeatRequest& req, ClientHeartbeatResponse& resp) { TF_RETURN_IF_ERROR(EnsureInitialized()); grpc::ClientContext ctx; grpc::Status s = stub_->ClientHeartbeat(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get tasks", s); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetWorkers( std::vector<WorkerInfo>& workers) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetWorkersRequest req; GetWorkersResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetWorkers(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get workers", s); } workers.clear(); for (auto& worker : resp.workers()) { workers.push_back(worker); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDataServiceMetadata( const std::string& dataset_id, DataServiceMetadata& metadata) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetDataServiceMetadataRequest req; req.set_dataset_id(dataset_id); GetDataServiceMetadataResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetDataServiceMetadata(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get data service metadata", s); } metadata = resp.metadata(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDataServiceConfig( DataServiceConfig& config) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetDataServiceConfigRequest request; GetDataServiceConfigResponse response; grpc::ClientContext ctx; grpc::Status s = stub_->GetDataServiceConfig(&ctx, request, &response); if (!s.ok()) { return grpc_util::WrapError("Failed to get data service config", s); } config = response.config(); return absl::OkStatus(); } Status DataServiceDispatcherClient::DisableCompressionAtRuntime( const std::string& dataset_id, bool disable_compression_at_runtime, DisableCompressionAtRuntimeResponse& response) { TF_RETURN_IF_ERROR(EnsureInitialized()); grpc::ClientContext ctx; DisableCompressionAtRuntimeRequest request; request.set_dataset_id(dataset_id); request.set_disable_compression_at_runtime(disable_compression_at_runtime); grpc::Status s = stub_->DisableCompressionAtRuntime(&ctx, request, &response); if (!s.ok()) { return grpc_util::WrapError( "Failed to get runtime compression disabling decision", s); } return absl::OkStatus(); } Status DataServiceDispatcherClient::EnsureInitialized() { return grpc_util::Retry([this] { return Initialize(); }, "Initialize dispatcher client", kint64max); } } }
#include "tensorflow/core/data/service/dispatcher_client.h" #include <cstdint> #include <cstdlib> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dataset_store.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tensorflow/core/protobuf/struct.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::experimental::DistributedSnapshotMetadata; using ::tensorflow::data::testing::CreateDummyDistributedSnapshotMetadata; using ::tensorflow::data::testing::EqualsProto; using ::tensorflow::data::testing::InfiniteDataset; using ::tensorflow::data::testing::LocalTempFilename; using ::tensorflow::data::testing::RangeDataset; using ::tensorflow::testing::StatusIs; using ::testing::AllOf; using ::testing::ContainsRegex; using ::testing::HasSubstr; constexpr const char kProtocol[] = "grpc"; DataServiceMetadata GetDefaultMetadata() { StructuredValue decoded_spec; TensorShapeProto::Dim* dim = decoded_spec.mutable_tensor_shape_value()->add_dim(); dim->set_size(1); dim->set_name(absl::StrCat("dim")); DataServiceMetadata metadata; metadata.set_element_spec(decoded_spec.SerializeAsString()); metadata.set_compression(DataServiceMetadata::COMPRESSION_SNAPPY); metadata.set_cardinality(kUnknownCardinality); return metadata; } class DispatcherClientTest : public ::testing::Test { protected: absl::Status SetUpTfDataService(int64_t num_workers, int64_t worker_max_concurrent_snapshots = 0) { TestCluster::Config config; config.num_workers = num_workers; config.work_dir = tsl::io::JoinPath(tsl::testing::TmpDir(), "work_dir"); config.worker_max_concurrent_snapshots = worker_max_concurrent_snapshots; test_cluster_ = std::make_unique<TestCluster>(config); TF_RETURN_IF_ERROR(test_cluster_->Initialize()); dispatcher_client_ = std::make_unique<DataServiceDispatcherClient>( test_cluster_->DispatcherAddress(), kProtocol); return absl::OkStatus(); } absl::StatusOr<std::string> RegisterDataset( const DatasetDef& dataset, const DataServiceMetadata& metadata, const std::optional<std::string>& requested_dataset_id = std::nullopt) { std::string dataset_id; TF_RETURN_IF_ERROR(dispatcher_client_->RegisterDataset( dataset, metadata, requested_dataset_id, dataset_id)); return dataset_id; } absl::StatusOr<absl::flat_hash_set<std::string>> StartDummySnapshots( int64_t num_snapshots) { DistributedSnapshotMetadata metadata = CreateDummyDistributedSnapshotMetadata(); absl::flat_hash_set<std::string> directories; for (int64_t i = 0; i < num_snapshots; ++i) { directories.insert(LocalTempFilename()); } for (const auto& directory : directories) { TF_RETURN_IF_ERROR( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata)); } return directories; } std::unique_ptr<TestCluster> test_cluster_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_client_; }; TEST_F(DispatcherClientTest, GetDataServiceMetadata) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); DataServiceMetadata result; TF_ASSERT_OK(dispatcher_client_->GetDataServiceMetadata(dataset_id, result)); EXPECT_THAT(result, EqualsProto(metadata)); } TEST_F(DispatcherClientTest, DatasetDoesNotExist) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); EXPECT_THAT( dispatcher_client_->GetDataServiceMetadata( "not-found", metadata), StatusIs(error::NOT_FOUND, HasSubstr("Dataset id not-found not found"))); } TEST_F(DispatcherClientTest, SnapshotAlreadyStarted) { TF_ASSERT_OK(SetUpTfDataService(1)); DistributedSnapshotMetadata metadata = CreateDummyDistributedSnapshotMetadata(); std::string directory = LocalTempFilename(); TF_ASSERT_OK( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata)); EXPECT_THAT( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata), StatusIs(error::ALREADY_EXISTS, HasSubstr("already started"))); } TEST_F(DispatcherClientTest, GetDataServiceConfig) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceConfig config; TF_ASSERT_OK(dispatcher_client_->GetDataServiceConfig(config)); EXPECT_EQ(config.deployment_mode(), DEPLOYMENT_MODE_COLOCATED); } TEST_F(DispatcherClientTest, SnapshotSkeletonWritten) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); for (const auto& path : paths) { TF_ASSERT_OK(Env::Default()->FileExists(CommittedChunksDirectory(path))); TF_ASSERT_OK(Env::Default()->FileExists(StreamsDirectory(path))); } } TEST_F(DispatcherClientTest, SnapshotMetadataAndDatasetDefWritten) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); for (const auto& path : paths) { TF_ASSERT_OK( Env::Default()->FileExists(io::JoinPath(path, "snapshot.metadata"))); TF_ASSERT_OK( Env::Default()->FileExists(io::JoinPath(path, "dataset_def.proto"))); } } TEST_F(DispatcherClientTest, SnapshotsInHeartbeat) { TF_ASSERT_OK(SetUpTfDataService(1, 3)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); for (int64_t i = 1; i <= 3; ++i) { TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); ASSERT_EQ(worker_heartbeat_response.snapshot_tasks_size(), i); for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { ASSERT_TRUE(paths.count(snapshot_task.base_path())); ASSERT_EQ(snapshot_task.stream_index(), 0); } } } TEST_F(DispatcherClientTest, GetSnapshotSplit) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); for (int64_t i = 0; i < 5; ++i) { for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { GetSnapshotSplitRequest get_snapshot_split_request; Tensor split; int64_t local_split_index = 0; bool end_of_splits = false; TF_ASSERT_OK(dispatcher_client_->GetSnapshotSplit( test_cluster_->WorkerAddress(0), snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0, split, local_split_index, end_of_splits)); EXPECT_EQ(local_split_index, i); EXPECT_FALSE(end_of_splits); } } } TEST_F(DispatcherClientTest, GetSnapshotSplitMultipleStreams) { TF_ASSERT_OK(SetUpTfDataService(3, 1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); absl::flat_hash_set<std::string> snapshots_in_progress; for (int64_t i = 0; i < 3; ++i) { WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address( test_cluster_->WorkerAddress(i)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); EXPECT_EQ(worker_heartbeat_response.snapshot_tasks().size(), 1); for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { snapshots_in_progress.insert(snapshot_task.base_path()); GetSnapshotSplitRequest get_snapshot_split_request; Tensor split; int64_t local_split_index = 0; bool end_of_splits = false; TF_ASSERT_OK(dispatcher_client_->GetSnapshotSplit( test_cluster_->WorkerAddress(i), snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0, split, local_split_index, end_of_splits)); EXPECT_EQ(local_split_index, 0); EXPECT_FALSE(end_of_splits); } } EXPECT_EQ(snapshots_in_progress, paths); } TEST_F(DispatcherClientTest, RegisterDatasetWithExplicitId) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id1, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, "dataset_id"); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id2, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, dataset_id2); } TEST_F(DispatcherClientTest, DatasetsDoNotMatch) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id1, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, "dataset_id"); metadata.set_cardinality(kInfiniteCardinality); EXPECT_THAT( RegisterDataset(InfiniteDataset(), metadata, "dataset_id"), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Datasets with the same ID should have the same structure"))); } TEST_F(DispatcherClientTest, EnableCrossTrainerCache) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(kInfiniteCardinality); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(InfiniteDataset(), metadata)); ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; int64_t job_id; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id)); int64_t iteration_client_id; TF_ASSERT_OK(dispatcher_client_->GetOrCreateIteration( job_id, 0, iteration_client_id)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); ASSERT_EQ(worker_heartbeat_response.new_tasks_size(), 1); EXPECT_TRUE(worker_heartbeat_response.new_tasks(0).use_cross_trainer_cache()); } TEST_F(DispatcherClientTest, CreateNamedJob) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; int64_t job_id_1 = -1; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id_1)); int64_t job_id_2 = -2; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id_2)); ASSERT_EQ(job_id_1, job_id_2); } TEST_F(DispatcherClientTest, NamedJobsDoNotMatch) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); int64_t job_id = 0; ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, false, TARGET_WORKERS_AUTO, job_id)); processing_mode.set_sharding_policy(ProcessingModeDef::DYNAMIC); EXPECT_THAT( dispatcher_client_->GetOrCreateJob(dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id), StatusIs(error::INVALID_ARGUMENT, AllOf(HasSubstr("but found an existing job with different " "parameters: "), ContainsRegex("Existing processing mode: <\\w*std::nullopt, dataset_id)); EXPECT_EQ(dataset_id, "1000"); std::string datasets_dir = tsl::io::JoinPath(config.work_dir, "datasets"); FileSystemDatasetStore dataset_store(datasets_dir); TF_ASSERT_OK(dataset_store.Put("1001", dataset_def)); if (requested_dataset_id.has_value()) { TF_ASSERT_OK(dataset_store.Put(*requested_dataset_id, dataset_def)); } TF_ASSERT_OK(dispatcher_client_->RegisterDataset( dataset_def, GetDefaultMetadata(), requested_dataset_id, dataset_id)); if (requested_dataset_id.has_value()) { EXPECT_EQ(dataset_id, *requested_dataset_id); } else { EXPECT_EQ(dataset_id, "1001"); } } INSTANTIATE_TEST_SUITE_P(DatasetId, DispatcherClientTest_DatasetId, ::testing::Values(std::nullopt, "dataset_id")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dispatcher_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dispatcher_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d7a0dd09-19cd-4e14-ba62-dc1cebe0e8e2
cpp
tensorflow/tensorflow
schema
tensorflow/core/summary/schema.cc
tensorflow/core/summary/schema_test.cc
#include "tensorflow/core/summary/schema.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace { Status Run(Sqlite* db, const char* sql) { SqliteStatement stmt; TF_RETURN_IF_ERROR(db->Prepare(sql, &stmt)); return stmt.StepAndReset(); } } Status SetupTensorboardSqliteDb(Sqlite* db) { TF_RETURN_IF_ERROR( db->PrepareOrDie(strings::StrCat("PRAGMA application_id=", kTensorboardSqliteApplicationId)) .StepAndReset()); db->PrepareOrDie("PRAGMA user_version=0").StepAndResetOrDie(); Status s; s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Ids ( id INTEGER PRIMARY KEY ) )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Descriptions ( id INTEGER PRIMARY KEY, description TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Tensors ( rowid INTEGER PRIMARY KEY, series INTEGER, step INTEGER, dtype INTEGER, computed_time REAL, shape TEXT, data BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TensorSeriesStepIndex ON Tensors (series, step) WHERE series IS NOT NULL AND step IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS TensorStrings ( rowid INTEGER PRIMARY KEY, tensor_rowid INTEGER NOT NULL, idx INTEGER NOT NULL, data BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TensorStringIndex ON TensorStrings (tensor_rowid, idx) )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Tags ( rowid INTEGER PRIMARY KEY, run_id INTEGER, tag_id INTEGER NOT NULL, inserted_time DOUBLE, tag_name TEXT, display_name TEXT, plugin_name TEXT, plugin_data BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TagIdIndex ON Tags (tag_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TagRunNameIndex ON Tags (run_id, tag_name) WHERE run_id IS NOT NULL AND tag_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Runs ( rowid INTEGER PRIMARY KEY, experiment_id INTEGER, run_id INTEGER NOT NULL, inserted_time REAL, started_time REAL, finished_time REAL, run_name TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS RunIdIndex ON Runs (run_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS RunNameIndex ON Runs (experiment_id, run_name) WHERE run_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Experiments ( rowid INTEGER PRIMARY KEY, user_id INTEGER, experiment_id INTEGER NOT NULL, inserted_time REAL, started_time REAL, is_watching INTEGER, experiment_name TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS ExperimentIdIndex ON Experiments (experiment_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS ExperimentNameIndex ON Experiments (user_id, experiment_name) WHERE experiment_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Users ( rowid INTEGER PRIMARY KEY, user_id INTEGER NOT NULL, inserted_time REAL, user_name TEXT, email TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS UserIdIndex ON Users (user_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS UserNameIndex ON Users (user_name) WHERE user_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS UserEmailIndex ON Users (email) WHERE email IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Graphs ( rowid INTEGER PRIMARY KEY, run_id INTEGER, graph_id INTEGER NOT NULL, inserted_time REAL, graph_def BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS GraphIdIndex ON Graphs (graph_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS GraphRunIndex ON Graphs (run_id) WHERE run_id IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Nodes ( rowid INTEGER PRIMARY KEY, graph_id INTEGER NOT NULL, node_id INTEGER NOT NULL, node_name TEXT, op TEXT, device TEXT, node_def BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS NodeIdIndex ON Nodes (graph_id, node_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS NodeNameIndex ON Nodes (graph_id, node_name) WHERE node_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS NodeInputs ( rowid INTEGER PRIMARY KEY, graph_id INTEGER NOT NULL, node_id INTEGER NOT NULL, idx INTEGER NOT NULL, input_node_id INTEGER NOT NULL, input_node_idx INTEGER, is_control INTEGER ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS NodeInputsIndex ON NodeInputs (graph_id, node_id, idx) )sql")); return s; } }
#include "tensorflow/core/summary/schema.h" #include <memory> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(SchemaTest, SmokeTestTensorboardSchema) { Sqlite* db; TF_ASSERT_OK(Sqlite::Open(":memory:", SQLITE_OPEN_READWRITE, &db)); core::ScopedUnref unref_db(db); TF_ASSERT_OK(SetupTensorboardSqliteDb(db)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/schema.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/schema_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
558067bd-0e7a-47f3-aa77-bf649891f270
cpp
google/arolla
logic_operators
arolla/qexpr/operators/core/logic_operators.h
arolla/qexpr/operators/core/logic_operators_test.cc
#ifndef AROLLA_OPERATORS_CORE_LOGIC_OPERATORS_H_ #define AROLLA_OPERATORS_CORE_LOGIC_OPERATORS_H_ #include <memory> #include <type_traits> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/array/qtype/types.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/operator_errors.h" #include "arolla/qexpr/operators.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/standard_type_properties/common_qtype.h" #include "arolla/util/status.h" #include "arolla/util/unit.h" namespace arolla { struct HasOp { using run_on_missing = std::true_type; template <typename T> std::enable_if_t<is_optional_v<T>, OptionalUnit> operator()( const T& arg) const { return OptionalUnit{arg.present}; } }; struct PresenceOrOp { using run_on_missing = std::true_type; template <typename T> T operator()(const OptionalValue<T>& lhs, const T& rhs) const { return lhs.present ? lhs.value : rhs; } template <typename T> OptionalValue<T> operator()(const OptionalValue<T>& lhs, const OptionalValue<T>& rhs) const { return lhs.present ? lhs : rhs; } template <typename T> T operator()(const T& lhs, const OptionalValue<T>& rhs) const { return lhs; } template <typename T> T operator()(const T& lhs, const T& rhs) const { return lhs; } template <typename T, class Fn> auto operator()(const OptionalValue<T>& lhs, const Fn& rhs) const { using result_t = strip_statusor_t<std::decay_t<decltype(rhs())>>; if constexpr (std::is_same_v<result_t, T>) { return lhs.present ? lhs.value : rhs(); } else { return lhs.present ? lhs : rhs(); } } template <typename T, class Fn> T operator()(const T& lhs, const Fn&) const { return lhs; } }; struct PresenceAndOp { using run_on_missing = std::true_type; template <typename T, std::enable_if_t<!std::is_invocable_v<T>, bool> = true> const T& operator()(const T& lhs, Unit) const { return lhs; } template <typename T, std::enable_if_t<!std::is_invocable_v<T>, bool> = true> OptionalValue<T> operator()(const T& lhs, OptionalUnit rhs) const { return rhs ? lhs : OptionalValue<T>{}; } template <typename T> OptionalValue<T> operator()(const OptionalValue<T>& lhs, OptionalUnit rhs) const { return rhs ? lhs : OptionalValue<T>{}; } template <typename Fn, std::enable_if_t<std::is_invocable_v<Fn>, bool> = true> auto operator()(const Fn& lhs, Unit) const { return lhs(); } template <typename Fn, std::enable_if_t<std::is_invocable_v<Fn>, bool> = true> auto operator()(const Fn& lhs, OptionalUnit rhs) const { using T = strip_optional_t<strip_statusor_t<std::decay_t<decltype(lhs())>>>; constexpr bool is_status = IsStatusOrT<std::decay_t<decltype(lhs())>>::value; constexpr bool is_optional = is_optional_v<strip_statusor_t<std::decay_t<decltype(lhs())>>>; if constexpr (is_status) { if constexpr (is_optional) { return rhs ? lhs() : OptionalValue<T>{}; } else { return rhs ? MakeStatusOrOptionalValue(lhs()) : OptionalValue<T>{}; } } else { return rhs ? lhs() : OptionalValue<T>{}; } } }; struct WhereOp { using run_on_missing = std::true_type; template <typename T, std::enable_if_t<!std::is_invocable_v<T>, bool> = true> T operator()(OptionalUnit c, const T& a, const T& b) const { return c.present ? a : b; } template < typename AFn, typename BFn, std::enable_if_t<std::is_invocable_v<AFn> && std::is_invocable_v<BFn>, bool> = true> auto operator()(OptionalUnit c, const AFn& a, const BFn& b) const { return c.present ? a() : b(); } template < typename AFn, typename T, std::enable_if_t<std::is_invocable_v<AFn> && !std::is_invocable_v<T>, bool> = true> auto operator()(OptionalUnit c, const AFn& a, const T& b) const { return c.present ? a() : b; } template < typename BFn, typename T, std::enable_if_t<!std::is_invocable_v<T> && std::is_invocable_v<BFn>, bool> = true> auto operator()(OptionalUnit c, const T& a, const BFn& b) const { return c.present ? a : b(); } }; struct PresenceAndOrOp { using run_on_missing = std::true_type; template <typename T> OptionalValue<T> operator()(const OptionalValue<T>& a, OptionalUnit b, const OptionalValue<T>& c) const { return b && a.present ? a : c; } template <typename T> T operator()(const OptionalValue<T>& a, OptionalUnit b, const T& c) const { return b && a.present ? a.value : c; } template <typename T> OptionalValue<T> operator()(const T& a, OptionalUnit b, const OptionalValue<T>& c) const { return b ? MakeOptionalValue(a) : c; } template <typename T> T operator()(const T& a, OptionalUnit b, const T& c) const { return b ? a : c; } template <typename T, class Fn> auto operator()(const OptionalValue<T>& a, OptionalUnit b, const Fn& c) const { using result_t = strip_statusor_t<std::decay_t<decltype(c())>>; if constexpr (std::is_same_v<result_t, T>) { return b && a.present ? a.value : c(); } else { return b && a.present ? a : c(); } } template <typename T, class Fn> auto operator()(const T& a, OptionalUnit b, const Fn& c) const { using result_t = strip_statusor_t<std::decay_t<decltype(c())>>; if constexpr (std::is_same_v<result_t, T>) { return b ? a : c(); } else { return b ? MakeOptionalValue(a) : c(); } } }; struct PresenceNotOp { using run_on_missing = std::true_type; template <class T> OptionalUnit operator()(const OptionalValue<T>& arg) const { return OptionalUnit{!arg.present}; } }; struct MaskEqualOp { using run_on_missing = std::true_type; template <typename T> OptionalUnit operator()(const T& lhs, const T& rhs) const { return OptionalUnit{lhs == rhs}; } }; struct MaskNotEqualOp { using run_on_missing = std::true_type; template <typename T> OptionalUnit operator()(const T& lhs, const T& rhs) const { return OptionalUnit{lhs != rhs}; } }; struct MaskLessOp { using run_on_missing = std::true_type; template <typename T> OptionalUnit operator()(const T& lhs, const T& rhs) const { return OptionalUnit{lhs < rhs}; } }; struct MaskLessEqualOp { using run_on_missing = std::true_type; template <typename T> OptionalUnit operator()(const T& lhs, const T& rhs) const { return OptionalUnit{(lhs < rhs) || (lhs == rhs)}; } }; class FakeShortCircuitWhereOperatorFamily final : public OperatorFamily { absl::StatusOr<OperatorPtr> DoGetOperator( absl::Span<const QTypePtr> input_types, QTypePtr output_type) const final { auto not_defined_error = [&](absl::string_view detail) { return OperatorNotDefinedError("core._short_circuit_where", input_types, detail); }; if (input_types.size() < 3) { return not_defined_error("expected 3 arguments"); } if (input_types[0] != GetQType<OptionalUnit>()) { return not_defined_error("first argument must be OPTIONAL_UNIT"); } QTypePtr true_type = input_types[1]; QTypePtr false_type = input_types[2]; const QType* common_type = CommonQType(true_type, false_type, false); if (common_type == nullptr) { return not_defined_error("no common type between operator branches"); } return EnsureOutputQTypeMatches( std::make_unique<FakeShortCircuitWhereOperator>( QExprOperatorSignature::Get( {GetQType<OptionalUnit>(), common_type, common_type}, common_type)), input_types, output_type); } class FakeShortCircuitWhereOperator final : public QExprOperator { public: explicit FakeShortCircuitWhereOperator( const QExprOperatorSignature* signature) : QExprOperator(signature) {} private: absl::StatusOr<std::unique_ptr<BoundOperator>> DoBind( absl::Span<const TypedSlot> input_slots, TypedSlot output_slot) const override { return absl::InternalError( "FakeShortCircuitWhereOperator is not supposed to be used"); } }; }; } #endif
#include "arolla/qexpr/operators/core/logic_operators.h" #include <cstdint> #include <string> #include <type_traits> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/array/qtype/types.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/operators.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/text.h" #include "arolla/util/unit.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::Pointee; using ::testing::Property; using Oi64 = OptionalValue<int64_t>; using DAi64 = DenseArray<int64_t>; const int64_t one = 1; const int64_t two = 2; const Oi64 optional_one = 1; const Oi64 optional_two = 2; const Oi64 missing; TEST(LogicOperatorsTest, PresenceOr) { EXPECT_THAT( InvokeOperator<OptionalUnit>("core.presence_or", kPresent, kPresent), IsOkAndHolds(kPresent)); EXPECT_THAT( InvokeOperator<OptionalUnit>("core.presence_or", kPresent, kMissing), IsOkAndHolds(kPresent)); EXPECT_THAT( InvokeOperator<OptionalUnit>("core.presence_or", kMissing, kMissing), IsOkAndHolds(kMissing)); EXPECT_THAT(InvokeOperator<int64_t>("core.presence_or", one, one), IsOkAndHolds(one)); EXPECT_THAT(InvokeOperator<int64_t>("core.presence_or", one, optional_two), IsOkAndHolds(one)); EXPECT_THAT(InvokeOperator<int64_t>("core.presence_or", missing, one), IsOkAndHolds(one)); EXPECT_THAT(InvokeOperator<int64_t>("core.presence_or", optional_two, one), IsOkAndHolds(two)); EXPECT_THAT( InvokeOperator<Oi64>("core.presence_or", optional_two, optional_one), IsOkAndHolds(optional_two)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_or", optional_two, missing), IsOkAndHolds(optional_two)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_or", missing, optional_two), IsOkAndHolds(optional_two)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_or", missing, missing), IsOkAndHolds(missing)); } TEST(LogicOperatorsTest, LazyPresenceOrFunctor) { auto as_fn = [](auto x) { return [x]() { return x; }; }; auto as_no_call_fn = [](auto x) { return [x]() { ADD_FAILURE() << "function shouldn't be called"; return x; }; }; EXPECT_EQ(PresenceOrOp{}(kPresent, as_no_call_fn(kPresent)), kPresent); EXPECT_EQ(PresenceOrOp{}(kPresent, as_no_call_fn(kMissing)), kPresent); EXPECT_EQ(PresenceOrOp{}(kMissing, as_fn(kMissing)), kMissing); EXPECT_EQ(PresenceOrOp{}(one, as_no_call_fn(one)), one); EXPECT_EQ(PresenceOrOp{}(one, as_no_call_fn(optional_two)), one); EXPECT_EQ(PresenceOrOp{}(missing, as_fn(one)), one); EXPECT_EQ(PresenceOrOp{}(optional_two, as_no_call_fn(one)), two); EXPECT_EQ(PresenceOrOp{}(optional_two, as_no_call_fn(optional_one)), optional_two); EXPECT_EQ(PresenceOrOp{}(optional_two, as_no_call_fn(missing)), optional_two); EXPECT_EQ(PresenceOrOp{}(missing, as_fn(optional_two)), optional_two); EXPECT_EQ(PresenceOrOp{}(missing, as_fn(missing)), missing); } TEST(LogicOperatorsTest, WhereOperatorFamily) { EXPECT_THAT(OperatorRegistry::GetInstance()->LookupOperator( "core.where", {GetQType<OptionalUnit>(), GetQType<int32_t>(), GetOptionalQType<int64_t>()}, GetOptionalQType<int64_t>()), IsOkAndHolds(Pointee(Property( &QExprOperator::signature, Eq(QExprOperatorSignature::Get( {GetQType<OptionalUnit>(), GetOptionalQType<int64_t>(), GetOptionalQType<int64_t>()}, GetOptionalQType<int64_t>())))))); EXPECT_THAT(OperatorRegistry::GetInstance()->LookupOperator( "core.where", {GetQType<OptionalUnit>(), GetQType<int32_t>(), GetDenseArrayQType<int64_t>()}, GetDenseArrayQType<int64_t>()), IsOkAndHolds(Pointee(Property( &QExprOperator::signature, Eq(QExprOperatorSignature::Get( {GetQType<OptionalUnit>(), GetDenseArrayQType<int64_t>(), GetDenseArrayQType<int64_t>()}, GetDenseArrayQType<int64_t>())))))); EXPECT_THAT(OperatorRegistry::GetInstance()->LookupOperator( "core.where", {GetQType<OptionalUnit>(), GetQType<int32_t>(), GetArrayQType<int64_t>()}, GetArrayQType<int64_t>()), IsOkAndHolds(Pointee(Property( &QExprOperator::signature, Eq(QExprOperatorSignature::Get( {GetQType<OptionalUnit>(), GetArrayQType<int64_t>(), GetArrayQType<int64_t>()}, GetArrayQType<int64_t>())))))); EXPECT_THAT( OperatorRegistry::GetInstance()->LookupOperator( "core.where", {GetDenseArrayQType<Unit>(), GetQType<int32_t>(), GetQType<int64_t>()}, GetDenseArrayQType<int64_t>()), IsOkAndHolds(Pointee(Property( &QExprOperator::signature, Eq(QExprOperatorSignature::Get( {GetDenseArrayQType<Unit>(), GetDenseArrayQType<int64_t>(), GetDenseArrayQType<int64_t>()}, GetDenseArrayQType<int64_t>())))))); EXPECT_THAT( OperatorRegistry::GetInstance()->LookupOperator( "core.where", {GetArrayQType<Unit>(), GetQType<int32_t>(), GetQType<int64_t>()}, GetArrayQType<int64_t>()), IsOkAndHolds( Pointee(Property(&QExprOperator::signature, Eq(QExprOperatorSignature::Get( {GetArrayQType<Unit>(), GetArrayQType<int64_t>(), GetArrayQType<int64_t>()}, GetArrayQType<int64_t>())))))); } TEST(LogicOperatorsTest, LazyWhereFunctor) { auto as_fn = [](auto x) { return [x]() { return x; }; }; auto as_no_call_fn = [](auto x) { return [x]() { ADD_FAILURE() << "function shouldn't be called"; return x; }; }; EXPECT_EQ(WhereOp{}(kPresent, as_fn(kPresent), as_no_call_fn(kPresent)), kPresent); EXPECT_EQ(WhereOp{}(kPresent, as_fn(kMissing), as_no_call_fn(kPresent)), kMissing); EXPECT_EQ(WhereOp{}(kMissing, as_no_call_fn(kPresent), as_fn(kPresent)), kPresent); EXPECT_EQ(WhereOp{}(kMissing, as_no_call_fn(kPresent), as_fn(kMissing)), kMissing); EXPECT_EQ(WhereOp{}(kPresent, kPresent, as_no_call_fn(kPresent)), kPresent); EXPECT_EQ(WhereOp{}(kPresent, kMissing, as_no_call_fn(kPresent)), kMissing); EXPECT_EQ(WhereOp{}(kMissing, as_no_call_fn(kPresent), kPresent), kPresent); EXPECT_EQ(WhereOp{}(kMissing, as_no_call_fn(kPresent), kMissing), kMissing); auto as_status_fn = [](auto x) { return [x]() { return absl::StatusOr<OptionalUnit>(x); }; }; EXPECT_THAT(WhereOp{}(kPresent, as_status_fn(kPresent), kPresent), IsOkAndHolds(kPresent)); EXPECT_THAT(WhereOp{}(kMissing, kPresent, as_status_fn(kPresent)), IsOkAndHolds(kPresent)); EXPECT_THAT( WhereOp{}(kPresent, as_status_fn(kPresent), as_no_call_fn(kPresent)), IsOkAndHolds(kPresent)); EXPECT_THAT( WhereOp{}(kMissing, as_no_call_fn(kPresent), as_status_fn(kPresent)), IsOkAndHolds(kPresent)); EXPECT_THAT( WhereOp{}(kPresent, as_status_fn(kPresent), as_status_fn(kPresent)), IsOkAndHolds(kPresent)); auto as_error_status_fn = []() { return []() { return absl::StatusOr<OptionalUnit>(absl::UnimplementedError("")); }; }; EXPECT_THAT(WhereOp{}(kPresent, as_status_fn(kPresent), as_error_status_fn()), IsOkAndHolds(kPresent)); EXPECT_THAT(WhereOp{}(kPresent, as_error_status_fn(), as_status_fn(kPresent)) .status(), StatusIs(absl::StatusCode::kUnimplemented)); EXPECT_THAT( WhereOp{}(kPresent, as_error_status_fn(), as_fn(kPresent)).status(), StatusIs(absl::StatusCode::kUnimplemented)); EXPECT_THAT(WhereOp{}(kPresent, as_error_status_fn(), kPresent).status(), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(LogicOperatorsTest, LazyPresenceOrWithStatusFunctor) { auto as_fn = [](auto x) { return [x]() { return absl::StatusOr<std::decay_t<decltype(x)>>(x); }; }; EXPECT_THAT(PresenceOrOp{}(kPresent, as_fn(kPresent)), IsOkAndHolds(kPresent)); EXPECT_THAT(PresenceOrOp{}(kPresent, as_fn(kMissing)), IsOkAndHolds(kPresent)); EXPECT_THAT(PresenceOrOp{}(kMissing, as_fn(kMissing)), IsOkAndHolds(kMissing)); EXPECT_THAT(PresenceOrOp{}(one, as_fn(one)), Eq(one)); EXPECT_THAT(PresenceOrOp{}(one, as_fn(optional_two)), Eq(one)); EXPECT_THAT(PresenceOrOp{}(missing, as_fn(one)), IsOkAndHolds(one)); EXPECT_THAT(PresenceOrOp{}(optional_two, as_fn(one)), IsOkAndHolds(two)); EXPECT_THAT(PresenceOrOp{}(optional_two, as_fn(optional_one)), IsOkAndHolds(optional_two)); EXPECT_THAT(PresenceOrOp{}(optional_two, as_fn(missing)), IsOkAndHolds(optional_two)); EXPECT_THAT(PresenceOrOp{}(missing, as_fn(optional_two)), IsOkAndHolds(optional_two)); EXPECT_THAT(PresenceOrOp{}(missing, as_fn(missing)), IsOkAndHolds(missing)); auto error_fn = []() { return absl::StatusOr<OptionalUnit>(absl::InternalError("fake")); }; EXPECT_THAT(PresenceOrOp{}(kMissing, error_fn), StatusIs(absl::StatusCode::kInternal, HasSubstr("fake"))); EXPECT_THAT(PresenceOrOp{}(kPresent, error_fn), IsOkAndHolds(kPresent)); } TEST(LogicOperatorsTest, PresenceAndOr) { EXPECT_THAT( InvokeOperator<int64_t>("core._presence_and_or", one, kPresent, two), IsOkAndHolds(one)); EXPECT_THAT( InvokeOperator<int64_t>("core._presence_and_or", one, kMissing, two), IsOkAndHolds(two)); EXPECT_THAT(InvokeOperator<Oi64>("core._presence_and_or", optional_one, kPresent, optional_two), IsOkAndHolds(optional_one)); EXPECT_THAT(InvokeOperator<Oi64>("core._presence_and_or", optional_one, kMissing, optional_two), IsOkAndHolds(optional_two)); EXPECT_THAT(InvokeOperator<Oi64>("core._presence_and_or", optional_one, kPresent, missing), IsOkAndHolds(optional_one)); EXPECT_THAT(InvokeOperator<Oi64>("core._presence_and_or", missing, kMissing, optional_two), IsOkAndHolds(optional_two)); EXPECT_THAT(InvokeOperator<Oi64>("core._presence_and_or", missing, kPresent, optional_two), IsOkAndHolds(optional_two)); EXPECT_THAT( InvokeOperator<int64_t>("core._presence_and_or", missing, kPresent, two), IsOkAndHolds(two)); EXPECT_THAT(InvokeOperator<Oi64>("core._presence_and_or", optional_one, kMissing, missing), IsOkAndHolds(missing)); } TEST(LogicOperatorsTest, LazyPresenceAndOrFunctor) { auto as_fn = [](auto x) { return [x]() { return x; }; }; auto as_no_call_fn = [](auto x) { return [x]() { ADD_FAILURE() << "function shouldn't be called"; return x; }; }; EXPECT_EQ(PresenceAndOrOp{}(one, kPresent, as_no_call_fn(two)), one); EXPECT_EQ(PresenceAndOrOp{}(one, kMissing, as_fn(two)), two); EXPECT_EQ( PresenceAndOrOp{}(optional_one, kPresent, as_no_call_fn(optional_two)), optional_one); EXPECT_EQ(PresenceAndOrOp{}(optional_one, kMissing, as_fn(optional_two)), optional_two); EXPECT_EQ(PresenceAndOrOp{}(optional_one, kPresent, as_no_call_fn(missing)), optional_one); EXPECT_EQ(PresenceAndOrOp{}(missing, kMissing, as_fn(optional_two)), optional_two); EXPECT_EQ(PresenceAndOrOp{}(missing, kPresent, as_fn(optional_two)), optional_two); EXPECT_EQ(PresenceAndOrOp{}(missing, kPresent, as_fn(two)), two); EXPECT_EQ(PresenceAndOrOp{}(optional_one, kMissing, as_fn(missing)), missing); } TEST(LogicOperatorsTest, LazyPresenceAndOrWithStatusFunctor) { auto as_fn = [](auto x) { return [x]() { return absl::StatusOr<std::decay_t<decltype(x)>>(x); }; }; EXPECT_THAT(PresenceAndOrOp{}(one, kPresent, as_fn(two)), IsOkAndHolds(one)); EXPECT_THAT(PresenceAndOrOp{}(one, kMissing, as_fn(two)), IsOkAndHolds(two)); EXPECT_THAT(PresenceAndOrOp{}(optional_one, kPresent, as_fn(optional_two)), IsOkAndHolds(optional_one)); EXPECT_THAT(PresenceAndOrOp{}(optional_one, kMissing, as_fn(optional_two)), IsOkAndHolds(optional_two)); EXPECT_THAT(PresenceAndOrOp{}(optional_one, kPresent, as_fn(missing)), IsOkAndHolds(optional_one)); EXPECT_THAT(PresenceAndOrOp{}(missing, kMissing, as_fn(optional_two)), IsOkAndHolds(optional_two)); EXPECT_THAT(PresenceAndOrOp{}(missing, kPresent, as_fn(optional_two)), IsOkAndHolds(optional_two)); EXPECT_THAT(PresenceAndOrOp{}(missing, kPresent, as_fn(two)), IsOkAndHolds(two)); EXPECT_THAT(PresenceAndOrOp{}(optional_one, kMissing, as_fn(missing)), IsOkAndHolds(missing)); auto error_fn = []() { return absl::StatusOr<OptionalUnit>(absl::InternalError("fake")); }; EXPECT_THAT(PresenceAndOrOp{}(kMissing, kMissing, error_fn), StatusIs(absl::StatusCode::kInternal, HasSubstr("fake"))); EXPECT_THAT(PresenceAndOrOp{}(kPresent, kMissing, error_fn), StatusIs(absl::StatusCode::kInternal, HasSubstr("fake"))); EXPECT_THAT(PresenceAndOrOp{}(kPresent, kPresent, error_fn), IsOkAndHolds(kPresent)); } TEST(LogicOperatorsTest, PresenceAnd) { EXPECT_THAT(InvokeOperator<int64_t>("core.presence_and", one, kUnit), IsOkAndHolds(one)); EXPECT_THAT( InvokeOperator<OptionalUnit>("core.presence_and", kPresent, kPresent), IsOkAndHolds(kPresent)); EXPECT_THAT( InvokeOperator<OptionalUnit>("core.presence_and", kPresent, kMissing), IsOkAndHolds(kMissing)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_and", one, kPresent), IsOkAndHolds(optional_one)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_and", one, kMissing), IsOkAndHolds(missing)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_and", missing, kPresent), IsOkAndHolds(missing)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_and", optional_one, kPresent), IsOkAndHolds(optional_one)); EXPECT_THAT(InvokeOperator<Oi64>("core.presence_and", optional_one, kMissing), IsOkAndHolds(missing)); } TEST(LogicOperatorsTest, LazyPresenceAndFunctor) { auto as_fn = [](auto x) { return [x]() { return x; }; }; auto as_no_call_fn = [](auto x) { return [x]() { ADD_FAILURE() << "function shouldn't be called"; return x; }; }; EXPECT_EQ(PresenceAndOp{}(as_fn(one), kUnit), one); EXPECT_EQ(PresenceAndOp{}(as_fn(kPresent), kPresent), kPresent); EXPECT_EQ(PresenceAndOp{}(as_no_call_fn(kPresent), kMissing), kMissing); EXPECT_EQ(PresenceAndOp{}(as_fn(one), kPresent), optional_one); EXPECT_EQ(PresenceAndOp{}(as_no_call_fn(one), kMissing), missing); EXPECT_EQ(PresenceAndOp{}(as_fn(missing), kPresent), missing); EXPECT_EQ(PresenceAndOp{}(as_fn(optional_one), kPresent), optional_one); EXPECT_EQ(PresenceAndOp{}(as_no_call_fn(optional_one), kMissing), missing); } TEST(LogicOperatorsTest, LazyPresenceAndWithStatusFunctor) { auto as_fn = [](auto x) { return [x]() { return absl::StatusOr<std::decay_t<decltype(x)>>(x); }; }; EXPECT_THAT(PresenceAndOp{}(as_fn(one), kUnit), IsOkAndHolds(one)); EXPECT_THAT(PresenceAndOp{}(as_fn(kPresent), kPresent), IsOkAndHolds(kPresent)); EXPECT_THAT(PresenceAndOp{}(as_fn(kPresent), kMissing), IsOkAndHolds(kMissing)); EXPECT_THAT(PresenceAndOp{}(as_fn(one), kPresent), IsOkAndHolds(optional_one)); EXPECT_THAT(PresenceAndOp{}(as_fn(one), kMissing), IsOkAndHolds(missing)); EXPECT_THAT(PresenceAndOp{}(as_fn(missing), kPresent), IsOkAndHolds(missing)); EXPECT_THAT(PresenceAndOp{}(as_fn(optional_one), kPresent), IsOkAndHolds(optional_one)); EXPECT_THAT(PresenceAndOp{}(as_fn(optional_one), kMissing), IsOkAndHolds(missing)); auto error_fn = []() { return absl::StatusOr<OptionalUnit>(absl::InternalError("fake")); }; EXPECT_THAT(PresenceAndOp{}(error_fn, kPresent), StatusIs(absl::StatusCode::kInternal, HasSubstr("fake"))); EXPECT_THAT(PresenceAndOp{}(error_fn, kMissing), IsOkAndHolds(kMissing)); } TEST(LogicOperatorsTest, PresenceNot) { EXPECT_THAT( InvokeOperator<OptionalUnit>("core.presence_not._builtin", kPresent), IsOkAndHolds(kMissing)); EXPECT_THAT(InvokeOperator<OptionalUnit>("core.presence_not._builtin", OptionalValue<float>{0.0f}), IsOkAndHolds(kMissing)); EXPECT_THAT(InvokeOperator<OptionalUnit>("core.presence_not._builtin", OptionalValue<float>{}), IsOkAndHolds(kPresent)); } #define EXPECT_LOGIC_OPERATOR(op_name, lhs, rhs, result) \ EXPECT_THAT(InvokeOperator<OptionalUnit>(op_name, lhs, rhs), \ IsOkAndHolds(result)); TEST(LogicOperatorsTest, MaskEqual) { Text foo("foo"); Text bar("bar"); OptionalValue<Text> optional_foo = Text("foo"); OptionalValue<Text> optional_bar = Text("bar"); OptionalValue<Text> missing_text; const std::string op_name = "core.equal"; EXPECT_LOGIC_OPERATOR(op_name, one, one, kPresent); EXPECT_LOGIC_OPERATOR(op_name, one, two, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_one, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_two, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_one, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, missing, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, foo, foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, foo, bar, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_bar, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, missing_text, kMissing); } TEST(LogicOperatorsTest, MaskNotEqual) { Text foo("foo"); Text bar("bar"); OptionalValue<Text> optional_foo = Text("foo"); OptionalValue<Text> optional_bar = Text("bar"); OptionalValue<Text> missing_text; const std::string op_name = "core.not_equal"; EXPECT_LOGIC_OPERATOR(op_name, one, one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, one, two, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_two, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_one, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, missing, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, foo, foo, kMissing); EXPECT_LOGIC_OPERATOR(op_name, foo, bar, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_foo, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_bar, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, missing_text, kMissing); } TEST(LogicOperatorsTest, MaskLess) { Text foo("foo"); Text bar("bar"); OptionalValue<Text> optional_foo = Text("foo"); OptionalValue<Text> optional_bar = Text("bar"); OptionalValue<Text> missing_text; const std::string op_name = "core.less"; EXPECT_LOGIC_OPERATOR(op_name, one, one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, one, two, kPresent); EXPECT_LOGIC_OPERATOR(op_name, two, one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_two, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_two, optional_one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_one, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, missing, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, foo, foo, kMissing); EXPECT_LOGIC_OPERATOR(op_name, foo, bar, kMissing); EXPECT_LOGIC_OPERATOR(op_name, bar, foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_foo, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_bar, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_bar, optional_foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, missing_text, kMissing); } TEST(LogicOperatorsTest, MaskLessEqual) { Text foo("foo"); Text bar("bar"); OptionalValue<Text> optional_foo = Text("foo"); OptionalValue<Text> optional_bar = Text("bar"); OptionalValue<Text> missing_text; const std::string op_name = "core.less_equal"; EXPECT_LOGIC_OPERATOR(op_name, one, one, kPresent); EXPECT_LOGIC_OPERATOR(op_name, one, two, kPresent); EXPECT_LOGIC_OPERATOR(op_name, two, one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_two, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_one, optional_one, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_two, optional_one, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_one, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, missing, missing, kMissing); EXPECT_LOGIC_OPERATOR(op_name, foo, foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, foo, bar, kMissing); EXPECT_LOGIC_OPERATOR(op_name, bar, foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, optional_bar, kMissing); EXPECT_LOGIC_OPERATOR(op_name, optional_bar, optional_foo, kPresent); EXPECT_LOGIC_OPERATOR(op_name, optional_foo, missing_text, kMissing); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/core/logic_operators.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/core/logic_operators_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
56e50346-9b28-42eb-bd12-b78a59d61181
cpp
tensorflow/tensorflow
ef57
third_party/xla/xla/ef57.cc
third_party/xla/xla/ef57_test.cc
#include "xla/ef57.h" #include <limits> #include <tuple> #include "absl/types/span.h" #include "xla/compiler_macros.h" #include "tsl/platform/logging.h" #ifdef XLA_HAS_SSE2 #include <immintrin.h> #endif #if defined(XLA_HAS_ARM_NEON) && defined(XLA_HAS_ARM64) #include <arm_neon.h> #endif namespace xla { void ConvertF64ToEf57(absl::Span<const double> input, absl::Span<float> output) { DCHECK_EQ(input.size() * 2, output.size()); #ifdef __AVX__ constexpr int kDoublesPerAvxIteration = sizeof(__m256d) / sizeof(double); constexpr int kFloatsPerSseRegister = sizeof(__m128) / sizeof(float); while (input.size() >= kDoublesPerAvxIteration) { __m256d x = _mm256_loadu_pd(input.data()); __m128 x_hi_f32 = _mm256_cvtpd_ps(x); __m256d x_hi_f64 = _mm256_cvtps_pd(x_hi_f32); __m256d x_lo_f64 = _mm256_sub_pd(x, x_hi_f64); __m128 x_lo_f32 = _mm256_cvtpd_ps(x_lo_f64); const __m128 inf = _mm_set1_ps(std::numeric_limits<float>::infinity()); __m128 x_hi_exponent = _mm_and_ps(x_hi_f32, inf); __m128 x_is_finite = _mm_cmplt_ps(x_hi_exponent, inf); x_lo_f32 = _mm_and_ps(x_lo_f32, x_is_finite); _mm_storeu_ps(output.data(), _mm_unpacklo_ps(x_hi_f32, x_lo_f32)); output.remove_prefix(kFloatsPerSseRegister); _mm_storeu_ps(output.data(), _mm_unpackhi_ps(x_hi_f32, x_lo_f32)); output.remove_prefix(kFloatsPerSseRegister); input.remove_prefix(kDoublesPerAvxIteration); } #endif #ifdef XLA_HAS_SSE2 constexpr int kDoublesPerSseIteration = sizeof(__m128d) / sizeof(double); constexpr int kFloatsPerSseIteration = sizeof(__m128) / sizeof(float); while (input.size() >= kDoublesPerSseIteration) { __m128d x = _mm_loadu_pd(input.data()); __m128 x_hi_f32 = _mm_cvtpd_ps(x); __m128d x_hi_f64 = _mm_cvtps_pd(x_hi_f32); __m128d x_lo_f64 = _mm_sub_pd(x, x_hi_f64); __m128 x_lo_f32 = _mm_cvtpd_ps(x_lo_f64); const __m128 inf = _mm_set1_ps(std::numeric_limits<float>::infinity()); __m128 x_hi_exponent = _mm_and_ps(x_hi_f32, inf); __m128 x_is_finite = _mm_cmplt_ps(x_hi_exponent, inf); x_lo_f32 = _mm_and_ps(x_lo_f32, x_is_finite); __m128 to_store = _mm_unpacklo_ps(x_hi_f32, x_lo_f32); _mm_storeu_ps(output.data(), to_store); input.remove_prefix(kDoublesPerSseIteration); output.remove_prefix(kFloatsPerSseIteration); } #endif #if defined(XLA_HAS_ARM_NEON) && defined(XLA_HAS_ARM64) constexpr int kDoublesPerNeonIteration = sizeof(float64x2_t) / sizeof(double); constexpr int kFloatsPerNeonIteration = sizeof(float32x2x2_t) / sizeof(float); while (input.size() >= kDoublesPerNeonIteration) { float64x2_t x = vld1q_f64(input.data()); float32x2_t x_hi_f32 = vcvt_f32_f64(x); float64x2_t x_hi_f64 = vcvt_f64_f32(x_hi_f32); float64x2_t x_lo_f64 = vsubq_f64(x, x_hi_f64); float32x2_t x_lo_f32 = vcvt_f32_f64(x_lo_f64); uint32x2_t x_is_finite = vcalt_f32(x_hi_f32, vdup_n_f32(std::numeric_limits<float>::infinity())); x_lo_f32 = vreinterpret_f32_u32( vand_u32(vreinterpret_u32_f32(x_lo_f32), x_is_finite)); float32x2x2_t to_store; to_store.val[0] = x_hi_f32; to_store.val[1] = x_lo_f32; vst2_f32(output.data(), to_store); input.remove_prefix(kDoublesPerNeonIteration); output.remove_prefix(kFloatsPerNeonIteration); } #endif while (input.size() >= 1) { std::tie(output[0], output[1]) = SplitF64ToF32(input.front()); input.remove_prefix(1); output.remove_prefix(2); } } }
#include "xla/ef57.h" #include <cmath> #include <limits> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/log_streamer.h" #include "absl/random/random.h" #include "absl/types/span.h" #include "xla/test.h" namespace xla { namespace { TEST(Ef57Test, DoubleMax) { auto [high, low] = SplitF64ToF32(std::numeric_limits<double>::max()); EXPECT_EQ(high, std::numeric_limits<float>::infinity()); EXPECT_EQ(low, 0.0f); } TEST(Ef57Test, Overflow) { auto [high, low] = SplitF64ToF32(0x1.ffffffp+127); EXPECT_EQ(high, std::numeric_limits<float>::infinity()); EXPECT_EQ(low, 0.0f); } TEST(Ef57Test, CheckPrecision) { auto [high, low] = SplitF64ToF32(2.0 - 0x1p-52); EXPECT_EQ(high, 2.0f); EXPECT_EQ(low, -0x1p-52f); } TEST(Ef57Test, SimpleArray) { std::vector<double> inputs(127); absl::BitGen gen; for (double& input : inputs) { input = absl::Uniform<float>(gen, 0.0f, 1.0f); } std::vector<float> outputs(inputs.size() * 2); ConvertF64ToEf57(inputs, absl::MakeSpan(outputs)); for (int i = 0; i < inputs.size(); ++i) { EXPECT_EQ(outputs[i * 2], inputs[i]); EXPECT_EQ(outputs[i * 2 + 1], 0.0f); } } TEST(Ef57Test, RelativeSplit) { const float distance = std::scalbnf(1.0f, std::numeric_limits<float>::digits); std::vector<double> inputs(127); absl::BitGen gen; for (double& input : inputs) { input = absl::Uniform<double>(gen, 0.0, 1.0); } std::vector<float> outputs(inputs.size() * 2); ConvertF64ToEf57(inputs, absl::MakeSpan(outputs)); for (int i = 0; i < outputs.size(); i += 2) { auto most_significant = outputs[i]; auto least_significant = outputs[i + 1]; auto most_significant_mag = std::fabs(most_significant); auto least_significant_mag = std::fabs(least_significant); EXPECT_FALSE(std::isnan(most_significant_mag)); if (most_significant_mag == 0.0f) { EXPECT_EQ(least_significant_mag, 0.0f); } else { EXPECT_GT(most_significant_mag, least_significant_mag * distance); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ef57.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ef57_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d19e6e02-4edc-4ad0-84de-f8a2f4b058e1
cpp
tensorflow/tensorflow
autotune_buffer_sizes
tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.cc
tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes_test.cc
#include "tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kBufferSizeMin[] = "buffer_size_min"; constexpr char kPrefetchDataset[] = "PrefetchDataset"; constexpr std::array<const char*, 8> kAsyncDatasetOps = { "ExperimentalMapAndBatchDataset", "MapAndBatchDataset", "ParallelBatchDataset", "ParallelInterleaveDatasetV2", "ParallelInterleaveDatasetV3", "ParallelInterleaveDatasetV4", "ParallelMapDataset", "ParallelMapDatasetV2", }; } Status AutotuneBufferSizes::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization autotune_buffer_sizes is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); NodeDef* autotune_value = graph_utils::AddScalarConstNode(data::model::kAutotune, &graph); absl::flat_hash_set<string> already_prefetched; for (NodeDef& node : *output->mutable_node()) { if (node.op() == kPrefetchDataset) { NodeDef* buffer_size_node = graph.GetNode(node.input(1)); if (buffer_size_node->op() == "Const") { int64_t initial_buffer_size = buffer_size_node->attr().at("value").tensor().int64_val(0); if (initial_buffer_size != data::model::kAutotune) { TF_RETURN_IF_ERROR(graph.UpdateFanin(node.name(), {buffer_size_node->name(), 0}, {autotune_value->name(), 0})); node.mutable_attr()->at(kBufferSizeMin).set_i(initial_buffer_size); stats->num_changes++; } } else { return absl::FailedPreconditionError( "The autotune_buffer_sizes rewrite does not currently support " "non-constant buffer_size input."); } NodeDef* prefetched_node = graph_utils::GetInputNode(node, graph); if (prefetched_node) { already_prefetched.insert(prefetched_node->name()); } } } std::vector<const NodeDef*> async_datasets; for (const NodeDef& node : item.graph.node()) { if (already_prefetched.find(node.name()) != already_prefetched.end()) { continue; } for (const auto& async_dataset_op : kAsyncDatasetOps) { if (node.op() == async_dataset_op) { async_datasets.push_back(&node); stats->num_changes++; break; } } } if (async_datasets.empty()) return absl::OkStatus(); for (const NodeDef* async_dataset_node : async_datasets) { NodeDef prefetch_node; graph_utils::SetUniqueGraphNodeName( strings::StrCat("inject/prefetch_", async_dataset_node->name()), graph.graph(), &prefetch_node); prefetch_node.set_op(kPrefetchDataset); *prefetch_node.mutable_input()->Add() = async_dataset_node->name(); *prefetch_node.mutable_input()->Add() = autotune_value->name(); graph_utils::CopyShapesAndTypesAttrs(*async_dataset_node, &prefetch_node); auto* added_node = graph.AddNode(std::move(prefetch_node)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(async_dataset_node->name(), added_node->name())); } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(AutotuneBufferSizes, "autotune_buffer_sizes"); } }
#include "tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { Status OptimizeWithAutotuneBufferSizes(const GrapplerItem &item, GraphDef *output, bool autotune) { AutotuneBufferSizes optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } class SimpleInject : public ::testing::TestWithParam<string> {}; TEST_P(SimpleInject, AutotuneBufferSizesTest) { const string async_dataset = GetParam(); using test::function::NDef; GrapplerItem item; if (async_dataset == "map") { item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapNode( "map", "range", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); } else if (async_dataset == "interleave") { item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV2Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); } else if (async_dataset == "map_and_batch") { item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 32}, {"dtype", DT_INT64}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT64}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), graph_tests_utils::MakeMapAndBatchNode( "map_and_batch", "range", "batch_size", "num_parallel_calls", "drop_remainder", "XTimesTwo")}, { test::function::XTimesTwo(), }); } GraphDef output; TF_ASSERT_OK(OptimizeWithAutotuneBufferSizes(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("PrefetchDataset", output)); int index = graph_utils::FindGraphNodeWithOp("PrefetchDataset", output); const NodeDef prefetch_node = output.node(index); EXPECT_TRUE(prefetch_node.attr().find("legacy_autotune") == prefetch_node.attr().end()); EXPECT_EQ(prefetch_node.input_size(), 2); NodeDef async_node = output.node( graph_utils::FindGraphNodeWithName(prefetch_node.input(0), output)); EXPECT_EQ(async_node.name(), async_dataset); NodeDef buffer_size_val = output.node( graph_utils::FindGraphNodeWithName(prefetch_node.input(1), output)); EXPECT_EQ(buffer_size_val.attr().at("value").tensor().int64_val(0), -1); } INSTANTIATE_TEST_SUITE_P(Test, SimpleInject, ::testing::Values("map", "interleave", "map_and_batch")); class AutotuneSetting : public ::testing::TestWithParam<bool> {}; TEST_P(AutotuneSetting, AutotuneBufferSizesTest) { const bool autotune = GetParam(); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapNode("map", "range", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); GraphDef output; TF_ASSERT_OK(OptimizeWithAutotuneBufferSizes(item, &output, autotune)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("PrefetchDataset", output), autotune); } class MultipleNodes : public ::testing::TestWithParam<std::tuple<bool, int64_t>> {}; TEST_P(MultipleNodes, AutotuneBufferSizesTest) { const bool legacy_autotune = std::get<0>(GetParam()); const int64_t initial_buffer_size = std::get<1>(GetParam()); GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_val = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_val = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_val = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_val->name(); range_inputs[1] = stop_val->name(); range_inputs[2] = step_val->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("range", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *parallelism_val = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> map_inputs1(2); map_inputs1[0] = range_node->name(); map_inputs1[1] = parallelism_val->name(); std::vector<std::pair<string, AttrValue>> map_attrs(4); AttrValue attr_val; SetAttrValue("value", &attr_val); map_attrs[0] = std::make_pair("f", attr_val); map_attrs[1] = std::make_pair("Targuments", attr_val); map_attrs[2] = std::make_pair("output_types", attr_val); map_attrs[3] = std::make_pair("output_shapes", attr_val); NodeDef *map_node1 = graph_utils::AddNode("map1", "ParallelMapDatasetV2", map_inputs1, map_attrs, &graph); NodeDef *buffer_size_val = graph_utils::AddScalarConstNode<int64_t>(initial_buffer_size, &graph); std::vector<string> prefetch_inputs(2); prefetch_inputs[0] = map_node1->name(); prefetch_inputs[1] = buffer_size_val->name(); std::vector<std::pair<string, AttrValue>> prefetch_attrs(4); AttrValue legacy_autotune_attr; SetAttrValue(legacy_autotune, &legacy_autotune_attr); AttrValue buffer_size_min_attr; SetAttrValue(0, &buffer_size_min_attr); prefetch_attrs[0] = std::make_pair("legacy_autotune", legacy_autotune_attr); prefetch_attrs[1] = std::make_pair("buffer_size_min", buffer_size_min_attr); prefetch_attrs[2] = std::make_pair("output_types", attr_val); prefetch_attrs[3] = std::make_pair("output_shapes", attr_val); NodeDef *prefetch_node = graph_utils::AddNode( "prefetch", "PrefetchDataset", prefetch_inputs, prefetch_attrs, &graph); std::vector<string> map_inputs2(2); map_inputs2[0] = prefetch_node->name(); map_inputs2[1] = parallelism_val->name(); NodeDef *map_node2 = graph_utils::AddNode("map2", "ParallelMapDatasetV2", map_inputs2, map_attrs, &graph); std::vector<string> map_inputs3(1); map_inputs3[0] = map_node2->name(); graph_utils::AddNode("map3", "MapDataset", map_inputs3, map_attrs, &graph); GraphDef output; TF_ASSERT_OK(OptimizeWithAutotuneBufferSizes(item, &output, true)); std::vector<int> prefetch_indices = graph_utils::FindAllGraphNodesWithOp("PrefetchDataset", output); EXPECT_EQ(prefetch_indices.size(), 2); NodeDef new_map_node3 = output.node(graph_utils::FindGraphNodeWithName("map3", output)); NodeDef new_prefetch_node2 = output.node( graph_utils::FindGraphNodeWithName(new_map_node3.input(0), output)); EXPECT_EQ(new_prefetch_node2.op(), "PrefetchDataset"); EXPECT_EQ(new_prefetch_node2.input_size(), 2); EXPECT_TRUE(new_prefetch_node2.attr().find("legacy_autotune") == new_prefetch_node2.attr().end()); EXPECT_TRUE(new_prefetch_node2.attr().find("buffer_size_min") == new_prefetch_node2.attr().end()); NodeDef new_buffer_size_val2 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node2.input(1), output)); EXPECT_EQ(new_buffer_size_val2.attr().at("value").tensor().int64_val(0), -1); NodeDef new_map_node2 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node2.input(0), output)); EXPECT_EQ(new_map_node2.name(), "map2"); NodeDef new_prefetch_node1 = output.node( graph_utils::FindGraphNodeWithName(new_map_node2.input(0), output)); EXPECT_EQ(new_prefetch_node1.op(), "PrefetchDataset"); EXPECT_EQ(new_prefetch_node1.input_size(), 2); EXPECT_EQ(new_prefetch_node1.attr().at("legacy_autotune").b(), legacy_autotune); EXPECT_EQ(new_prefetch_node1.attr().at("buffer_size_min").i(), (initial_buffer_size == -1 ? 0 : initial_buffer_size)); NodeDef new_buffer_size_val1 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node1.input(1), output)); EXPECT_EQ(new_buffer_size_val1.attr().at("value").tensor().int64_val(0), -1); NodeDef new_map_node1 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node1.input(0), output)); EXPECT_EQ(new_map_node1.name(), "map1"); } INSTANTIATE_TEST_SUITE_P(Test, MultipleNodes, ::testing::Combine(::testing::Values(true, false), ::testing::Values(-1, 3))); INSTANTIATE_TEST_SUITE_P(Test, AutotuneSetting, ::testing::Values(false, true)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ceb9b732-936e-47e9-ba8d-ae0b7dd21e7e
cpp
tensorflow/tensorflow
compactptrset
tensorflow/core/lib/gtl/compactptrset.h
third_party/xla/xla/tsl/lib/gtl/compactptrset_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_COMPACTPTRSET_H_ #define TENSORFLOW_CORE_LIB_GTL_COMPACTPTRSET_H_ #include "xla/tsl/lib/gtl/compactptrset.h" namespace tensorflow { namespace gtl { using ::tsl::gtl::CompactPointerSet; } } #endif
#include "xla/tsl/lib/gtl/compactptrset.h" #include "tsl/platform/hash.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace gtl { namespace { typedef CompactPointerSet<const char*> StringSet; static std::vector<const char*> SortedContents(const StringSet& set) { std::vector<const char*> contents(set.begin(), set.end()); std::sort(contents.begin(), contents.end()); return contents; } TEST(CompactPointerSetTest, Simple) { string data = "ABCDEFG"; const char* a = &data[0]; const char* b = &data[1]; const char* c = &data[2]; const char* d = &data[3]; const char* e = &data[4]; const char* f = &data[5]; const char* g = &data[6]; for (const auto& list : std::vector<std::vector<const char*>>({{ {}, {a}, {b}, {nullptr}, {a, b, c, d, e, f, g}, }})) { LOG(INFO) << list.size(); StringSet set; ASSERT_TRUE(set.empty()); for (auto p : list) { ASSERT_EQ(set.count(p), 0); ASSERT_TRUE(set.insert(p).second); ASSERT_EQ(set.count(p), 1); ASSERT_TRUE(set.find(p) != set.end()); } ASSERT_EQ(set.size(), list.size()); ASSERT_EQ(SortedContents(set), list); { StringSet set2(set); ASSERT_EQ(SortedContents(set2), list); } for (const auto& initial : std::vector<std::vector<const char*>>({{ {}, {a}, {b}, {nullptr}, {a, b, c, d}, }})) { StringSet dst; for (auto p : initial) { dst.insert(p); } ASSERT_EQ(dst.size(), initial.size()); dst = set; ASSERT_EQ(SortedContents(dst), list); dst.clear(); ASSERT_EQ(dst.size(), 0); } for (auto p : list) { ASSERT_EQ(set.erase(p), 1); ASSERT_EQ(set.erase(p), 0); } ASSERT_TRUE(set.empty()); ASSERT_EQ(set.size(), 0); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/compactptrset.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/compactptrset_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5bd54841-8a92-4042-9218-e8e29fc3ef54
cpp
tensorflow/tensorflow
generate_testspec
tensorflow/lite/testing/generate_testspec.cc
tensorflow/lite/testing/generate_testspec_test.cc
#include "tensorflow/lite/testing/generate_testspec.h" #include <iostream> #include <random> #include <string> #include <utility> #include "absl/log/check.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/testing/join.h" #include "tensorflow/lite/testing/split.h" #include "tensorflow/lite/testing/test_runner.h" #include "tensorflow/lite/testing/tf_driver.h" #include "tensorflow/lite/testing/tflite_driver.h" namespace tflite { namespace testing { namespace { template <typename T, typename RandomEngine, typename RandomDistribution> void GenerateCsv(const string& name, const std::vector<int>& shape, RandomEngine* engine, RandomDistribution distribution, std::pair<string, string>* out) { std::vector<T> data = GenerateRandomTensor<T>(shape, [&]() { return distribution(*engine); }); *out = std::make_pair(name, Join(data.data(), data.size(), ",")); } template <typename RandomEngine> std::vector<std::pair<string, string>> GenerateInputValues( RandomEngine* engine, const std::vector<string>& input_layer, const std::vector<string>& input_layer_type, const std::vector<string>& input_layer_shape) { std::vector<std::pair<string, string>> input_values; input_values.resize(input_layer.size()); for (int i = 0; i < input_layer.size(); i++) { tensorflow::DataType type; CHECK(DataTypeFromString(input_layer_type[i], &type)); auto shape = Split<int>(input_layer_shape[i], ","); const auto& name = input_layer[i]; switch (type) { case tensorflow::DT_FLOAT: GenerateCsv<float>(name, shape, engine, std::uniform_real_distribution<float>(-0.5, 0.5), &input_values[i]); break; case tensorflow::DT_UINT8: GenerateCsv<uint8_t>(name, shape, engine, std::uniform_int_distribution<uint32_t>(0, 255), &input_values[i]); break; case tensorflow::DT_INT32: GenerateCsv<int32_t>(name, shape, engine, std::uniform_int_distribution<int32_t>(-100, 100), &input_values[i]); break; case tensorflow::DT_INT64: GenerateCsv<int64_t>(name, shape, engine, std::uniform_int_distribution<int64_t>(-100, 100), &input_values[i]); break; case tensorflow::DT_BOOL: GenerateCsv<int>(name, shape, engine, std::uniform_int_distribution<int>(0, 1), &input_values[i]); break; default: fprintf(stderr, "Unsupported type %d (%s) when generating testspec.\n", type, input_layer_type[i].c_str()); input_values.clear(); return input_values; } } return input_values; } bool GenerateTestSpecFromRunner(std::iostream& stream, int num_invocations, const std::vector<string>& input_layer, const std::vector<string>& input_layer_type, const std::vector<string>& input_layer_shape, const std::vector<string>& output_layer, TestRunner* runner) { auto input_size = input_layer.size(); if (input_layer_shape.size() != input_size || input_layer_type.size() != input_size) { fprintf(stderr, "Input size not match. Expected %lu, got %lu input types, %lu " "input shapes.\n", input_size, input_layer_type.size(), input_layer_shape.size()); return false; } stream << "reshape {\n"; for (int i = 0; i < input_size; i++) { const auto& name = input_layer[i]; const auto& shape = input_layer_shape[i]; stream << " input { key: \"" << name << "\" value: \"" << shape << "\" }\n"; } stream << "}\n"; std::mt19937 random_engine; for (int i = 0; i < num_invocations; ++i) { auto input_values = GenerateInputValues( &random_engine, input_layer, input_layer_type, input_layer_shape); if (input_values.empty()) { std::cerr << "Unable to generate input values for the TensorFlow model. " "Make sure the correct values are defined for " "input_layer, input_layer_type, and input_layer_shape." << std::endl; return false; } runner->Invoke(input_values); if (!runner->IsValid()) { std::cerr << runner->GetErrorMessage() << std::endl; return false; } stream << "invoke {\n"; for (const auto& entry : input_values) { stream << " input { key: \"" << entry.first << "\" value: \"" << entry.second << "\" }\n"; } for (const auto& name : output_layer) { stream << " output { key: \"" << name << "\" value: \"" << runner->ReadOutput(name) << "\" }\n"; if (!runner->IsValid()) { std::cerr << runner->GetErrorMessage() << std::endl; return false; } } stream << "}\n"; } return true; } } bool GenerateTestSpecFromTensorflowModel( std::iostream& stream, const string& tensorflow_model_path, const string& tflite_model_path, int num_invocations, const std::vector<string>& input_layer, const std::vector<string>& input_layer_type, const std::vector<string>& input_layer_shape, const std::vector<string>& output_layer) { CHECK_EQ(input_layer.size(), input_layer_type.size()); CHECK_EQ(input_layer.size(), input_layer_shape.size()); TfDriver runner(input_layer, input_layer_type, input_layer_shape, output_layer); if (!runner.IsValid()) { std::cerr << runner.GetErrorMessage() << std::endl; return false; } runner.LoadModel(tensorflow_model_path); if (!runner.IsValid()) { std::cerr << runner.GetErrorMessage() << std::endl; return false; } stream << "load_model: " << tflite_model_path << "\n"; return GenerateTestSpecFromRunner(stream, num_invocations, input_layer, input_layer_type, input_layer_shape, output_layer, &runner); } bool GenerateTestSpecFromTFLiteModel( std::iostream& stream, const string& tflite_model_path, int num_invocations, const std::vector<string>& input_layer, const std::vector<string>& input_layer_type, const std::vector<string>& input_layer_shape, const std::vector<string>& output_layer) { TfLiteDriver runner; runner.LoadModel(tflite_model_path); if (!runner.IsValid()) { std::cerr << runner.GetErrorMessage() << std::endl; return false; } runner.AllocateTensors(); return GenerateTestSpecFromRunner(stream, num_invocations, input_layer, input_layer_type, input_layer_shape, output_layer, &runner); } } }
#include "tensorflow/lite/testing/generate_testspec.h" #include <random> #include <gtest/gtest.h> namespace tflite { namespace testing { namespace { TEST(GenerateRandomTensor, FloatValue) { std::mt19937 random_engine; auto random_func = [&]() { return std::uniform_real_distribution<float>(-0.5, 0.5)(random_engine); }; std::set<float> values; float sum_x_square = 0.0f; float sum_x = 0.0f; for (int i = 0; i < 100; i++) { const auto& data = GenerateRandomTensor<float>({1, 3, 4}, random_func); for (float value : data) { values.insert(value); sum_x_square += value * value; sum_x += value; } } EXPECT_GT(values.size(), 200); int num = 1 * 3 * 4 * 100; float stddev = sum_x_square / num - (sum_x / num) * (sum_x / num); float minstddev = 1.0f / 12 / 2; EXPECT_GT(stddev, minstddev); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/generate_testspec.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/generate_testspec_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7337069a-bced-4adb-9f27-e26dd49f1d5e
cpp
google/arolla
typed_value
arolla/qtype/typed_value.cc
arolla/qtype/typed_value_test.cc
#include "arolla/qtype/typed_value.h" #include <cstddef> #include <memory> #include <new> #include <utility> #include "absl/base/call_once.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/util/fingerprint.h" #include "arolla/util/memory.h" namespace arolla { namespace { template <typename TypedRef > absl::Status CheckPreconditionsForInitCompound( QTypePtr compound_qtype, absl::Span<const TypedRef> field_refs) { const auto& field_slots = compound_qtype->type_fields(); if (field_slots.size() != field_refs.size()) { return absl::InvalidArgumentError(absl::StrFormat( "expected %d values, got %d; compound_qtype=%s", field_slots.size(), field_refs.size(), compound_qtype->name())); } for (size_t i = 0; i < field_refs.size(); ++i) { if (field_refs[i].GetType() != field_slots[i].GetType()) { return absl::InvalidArgumentError(absl::StrFormat( "expected fields[%d]: %s, got %s; compound_qtype=%s", i, field_slots[i].GetType()->name(), field_refs[i].GetType()->name(), compound_qtype->name())); } } return absl::OkStatus(); } template <typename TypedRef > void InitCompound(QTypePtr compound_qtype, absl::Span<const TypedRef> field_refs, void* destination) { compound_qtype->type_layout().InitializeAlignedAlloc(destination); const auto& field_slots = compound_qtype->type_fields(); FramePtr frame(destination, &compound_qtype->type_layout()); for (size_t i = 0; i < field_refs.size(); ++i) { const auto& field_ref = field_refs[i]; field_ref.GetType()->UnsafeCopy( field_ref.GetRawPointer(), frame.GetRawPointer(field_slots[i].byte_offset())); } } } TypedValue::Impl* TypedValue::AllocRawImpl(QTypePtr qtype) { const auto& type_layout = qtype->type_layout(); const size_t alignment = type_layout.AllocAlignment().value; size_t extra_space = type_layout.AllocSize() + alignment; void* buffer = ::operator new(sizeof(Impl) + extra_space); Impl* impl = new (buffer) Impl; impl->qtype = qtype; impl->data = static_cast<char*>(buffer) + sizeof(Impl); void* tmp = std::align(alignment, extra_space, impl->data, extra_space); DCHECK_NE(tmp, nullptr); return impl; } TypedValue::Impl* TypedValue::AllocImpl(QTypePtr qtype, const void* value) { auto* impl = AllocRawImpl(qtype); qtype->type_layout().InitializeAlignedAlloc(impl->data); qtype->UnsafeCopy(value, impl->data); return impl; } TypedValue TypedValue::UnsafeFromTypeDefaultConstructed(QTypePtr qtype) { auto* impl = AllocRawImpl(qtype); qtype->type_layout().InitializeAlignedAlloc(impl->data); return TypedValue(impl); } absl::StatusOr<TypedValue> TypedValue::FromFields( QTypePtr compound_qtype, absl::Span<const TypedRef> fields) { if (auto status = CheckPreconditionsForInitCompound(compound_qtype, fields); !status.ok()) { return status; } auto* impl = AllocRawImpl(compound_qtype); InitCompound(compound_qtype, fields, impl->data); return TypedValue(impl); } absl::StatusOr<TypedValue> TypedValue::FromFields( QTypePtr compound_qtype, absl::Span<const TypedValue> fields) { if (auto status = CheckPreconditionsForInitCompound(compound_qtype, fields); !status.ok()) { return status; } auto* impl = AllocRawImpl(compound_qtype); InitCompound(compound_qtype, fields, impl->data); return TypedValue(impl); } const Fingerprint& TypedValue::GetFingerprint() const { absl::call_once(impl_->fingerprint_once, [impl = impl_] { FingerprintHasher hasher("TypedValue"); hasher.Combine(impl->qtype); impl->qtype->UnsafeCombineToFingerprintHasher(impl->data, &hasher); impl->fingerprint = std::move(hasher).Finish(); }); return impl_->fingerprint; } }
#include "arolla/qtype/typed_value.h" #include <cstdint> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/bytes.h" #include "arolla/util/fingerprint.h" struct WithoutQTypeTraits {}; namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::Eq; using ::testing::HasSubstr; TEST(TypedValueTest, ReprBasic) { EXPECT_EQ(TypedValue::FromValue<bool>(true).Repr(), "true"); EXPECT_EQ(TypedValue::FromValue<int32_t>(5).Repr(), "5"); EXPECT_EQ(TypedValue::FromValue<int64_t>(5).Repr(), "int64{5}"); EXPECT_EQ(TypedValue::FromValue<uint64_t>(5).Repr(), "uint64{5}"); EXPECT_EQ(TypedValue::FromValue<float>(5.0f).Repr(), "5."); EXPECT_EQ(TypedValue::FromValue<double>(5.0).Repr(), "float64{5}"); } TEST(TypedValueTest, FromValue) { auto tval = TypedValue::FromValue<int64_t>(1); EXPECT_THAT(tval.GetType(), Eq(GetQType<int64_t>())); EXPECT_THAT(tval.As<int64_t>(), IsOkAndHolds(int64_t{1})); EXPECT_THAT(tval.As<float>().status(), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(TypedValueTest, As) { auto int_value = TypedValue::FromValue<double>(1.0); EXPECT_THAT(int_value.As<double>(), IsOkAndHolds(1.0)); EXPECT_THAT(int_value.As<float>().status(), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("type mismatch: expected C++ type `double` " "(FLOAT64), got `float`"))); EXPECT_THAT(int_value.As<WithoutQTypeTraits>().status(), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("type mismatch: expected C++ type `double` " "(FLOAT64), got `WithoutQTypeTraits`"))); } TEST(TypedValueTest, FromValueWithQType) { auto f64 = GetQType<double>(); absl::StatusOr<TypedValue> tmp = TypedValue::FromValueWithQType(1.0, f64); auto tval = std::move(tmp).value(); EXPECT_THAT(tval.GetType(), Eq(f64)); EXPECT_THAT(tval.As<double>(), IsOkAndHolds(1.0)); EXPECT_THAT(tval.As<float>(), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("type mismatch: expected C++ type `double` " "(FLOAT64), got `float`"))); EXPECT_THAT(TypedValue::FromValueWithQType(1.0f, f64).status(), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(TypedValueTest, UnsafeFromTypeDefaultConstructed) { { auto f64 = GetQType<double>(); auto tval = TypedValue::UnsafeFromTypeDefaultConstructed(f64); EXPECT_THAT(tval.GetType(), Eq(GetQType<double>())); EXPECT_THAT(tval.As<double>(), IsOkAndHolds(double{0.})); EXPECT_THAT(tval.As<float>().status(), StatusIs(absl::StatusCode::kFailedPrecondition)); } { auto bytes = GetQType<Bytes>(); auto tval = TypedValue::UnsafeFromTypeDefaultConstructed(bytes); EXPECT_THAT(tval.GetType(), Eq(GetQType<Bytes>())); ASSERT_OK_AND_ASSIGN(auto val_ref, tval.As<Bytes>()); EXPECT_THAT(val_ref.get(), Eq(Bytes())); EXPECT_THAT(tval.As<float>().status(), StatusIs(absl::StatusCode::kFailedPrecondition)); } { auto of64 = GetQType<OptionalValue<double>>(); auto tval = TypedValue::UnsafeFromTypeDefaultConstructed(of64); EXPECT_THAT(tval.GetType(), Eq(GetQType<OptionalValue<double>>())); ASSERT_OK_AND_ASSIGN(auto val_ref, tval.As<OptionalValue<double>>()); EXPECT_THAT(val_ref.get(), Eq(OptionalValue<double>())); EXPECT_THAT(tval.As<OptionalValue<float>>().status(), StatusIs(absl::StatusCode::kFailedPrecondition)); } } TEST(TypedValueTest, FromSlot) { FrameLayout::Builder builder; QTypePtr f32 = GetQType<float>(); TypedSlot tslot = AddSlot(f32, &builder); auto layout = std::move(builder).Build(); MemoryAllocation alloc(&layout); FramePtr ptr = alloc.frame(); EXPECT_OK(TypedValue::FromValue(7.5f).CopyToSlot(tslot, ptr)); auto tval = TypedValue::FromSlot(tslot, ptr); EXPECT_THAT(tval.GetType(), Eq(f32)); EXPECT_THAT(tval.As<float>(), IsOkAndHolds(7.5f)); } TEST(TypedValueTest, ToSlot) { FrameLayout::Builder builder; QTypePtr f64 = GetQType<double>(); TypedSlot tslot = AddSlot(f64, &builder); auto layout = std::move(builder).Build(); MemoryAllocation alloc(&layout); FramePtr ptr = alloc.frame(); auto tval = TypedValue::FromValue(double{1.0}); EXPECT_OK(tval.CopyToSlot(tslot, ptr)); auto slot = tslot.ToSlot<double>().value(); EXPECT_THAT(ptr.Get(slot), Eq(1.0)); } TEST(TypedValueTest, Copy) { auto tval = TypedValue::FromValue(double{1.0}); auto tval_copy = tval; EXPECT_THAT(tval_copy.As<double>(), IsOkAndHolds(1.0)); } TEST(TypedValueTest, FingerprintUniqueness) { absl::flat_hash_set<Fingerprint> fingerprints; EXPECT_TRUE( fingerprints.insert(TypedValue::FromValue(int32_t{0}).GetFingerprint()) .second); EXPECT_TRUE( fingerprints.insert(TypedValue::FromValue(int64_t{0}).GetFingerprint()) .second); EXPECT_TRUE( fingerprints.insert(TypedValue::FromValue(uint64_t{0}).GetFingerprint()) .second); EXPECT_TRUE( fingerprints.insert(TypedValue::FromValue(double{0}).GetFingerprint()) .second); EXPECT_TRUE( fingerprints.insert(TypedValue::FromValue(float{0}).GetFingerprint()) .second); } TEST(TypedValueTest, FingerprintReproducibility) { EXPECT_EQ(TypedValue::FromValue(int32_t{0}).GetFingerprint(), TypedValue::FromValue(int32_t{0}).GetFingerprint()); EXPECT_EQ(TypedValue::FromValue(int64_t{0}).GetFingerprint(), TypedValue::FromValue(int64_t{0}).GetFingerprint()); EXPECT_EQ(TypedValue::FromValue(uint64_t{0}).GetFingerprint(), TypedValue::FromValue(uint64_t{0}).GetFingerprint()); EXPECT_EQ(TypedValue::FromValue(float{0}).GetFingerprint(), TypedValue::FromValue(float{0}).GetFingerprint()); EXPECT_EQ(TypedValue::FromValue(double{0}).GetFingerprint(), TypedValue::FromValue(double{0}).GetFingerprint()); } TEST(TypedValueTest, UnsafeAs) { auto tval = TypedValue::FromValue<int64_t>(1); ASSERT_THAT(tval.GetType(), Eq(GetQType<int64_t>())); EXPECT_THAT(tval.UnsafeAs<int64_t>(), Eq(int64_t{1})); } TEST(TypedValueTest, CopyConstructor) { TypedValue x = TypedValue::FromValue<int64_t>(1); TypedValue y = x; EXPECT_EQ(x.GetType(), y.GetType()); EXPECT_EQ(x.GetRawPointer(), y.GetRawPointer()); } TEST(TypedValueTest, CopyOperator) { TypedValue x = TypedValue::FromValue<int64_t>(1); TypedValue y = TypedValue::FromValue<int64_t>(2); y = x; EXPECT_EQ(x.GetType(), y.GetType()); EXPECT_EQ(x.GetRawPointer(), y.GetRawPointer()); } TEST(TypedValueTest, MoveConstructor) { TypedValue x = TypedValue::FromValue<int64_t>(1); auto* x_type = x.GetType(); auto* x_raw_ptr = x.GetRawPointer(); TypedValue y = std::move(x); EXPECT_EQ(y.GetType(), x_type); EXPECT_EQ(y.GetRawPointer(), x_raw_ptr); } TEST(TypedValueTest, MoveOperator) { TypedValue x = TypedValue::FromValue<int64_t>(1); TypedValue y = TypedValue::FromValue<int64_t>(2); auto* x_type = x.GetType(); auto* x_raw_ptr = x.GetRawPointer(); y = std::move(x); EXPECT_EQ(y.GetType(), x_type); EXPECT_EQ(y.GetRawPointer(), x_raw_ptr); } TEST(TypedValueTest, CopyFromValue) { const Bytes bytes("data"); TypedValue x = TypedValue::FromValue(bytes); ASSERT_OK_AND_ASSIGN(Bytes x_bytes, x.As<Bytes>()); EXPECT_THAT(x_bytes, Eq(bytes)); } TEST(TypedValueTest, CopyFromValueT) { const Bytes bytes("data"); TypedValue x = TypedValue::FromValue<Bytes>(bytes); ASSERT_OK_AND_ASSIGN(Bytes x_bytes, x.As<Bytes>()); EXPECT_THAT(x_bytes, Eq(bytes)); } TEST(TypedValueTest, MoveFromValueT) { Bytes bytes("a long string literal to ensure memory allocation"); auto* data_raw_ptr = bytes.data(); TypedValue x = TypedValue::FromValue<Bytes>(std::move(bytes)); EXPECT_EQ(x.UnsafeAs<Bytes>().data(), data_raw_ptr); } TEST(TypedValueTest, CopyFromValueWithQType) { const Bytes bytes("data"); ASSERT_OK_AND_ASSIGN( TypedValue x, TypedValue::FromValueWithQType(bytes, GetQType<Bytes>())); ASSERT_OK_AND_ASSIGN(Bytes x_bytes, x.As<Bytes>()); EXPECT_THAT(x_bytes, Eq(bytes)); } TEST(TypedValueTest, MoveFromValueWithQType) { Bytes bytes("a long string literal to ensure memory allocation"); auto* data_raw_ptr = bytes.data(); ASSERT_OK_AND_ASSIGN(TypedValue x, TypedValue::FromValueWithQType( std::move(bytes), GetQType<Bytes>())); EXPECT_EQ(x.UnsafeAs<Bytes>().data(), data_raw_ptr); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/typed_value.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/typed_value_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
550b570a-3d3c-4266-988c-aca50630b989
cpp
tensorflow/tensorflow
eigen_pooling
tensorflow/core/kernels/eigen_pooling.h
tensorflow/core/kernels/eigen_pooling_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_POOLING_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_POOLING_H_ #include "unsupported/Eigen/CXX11/Tensor" namespace Eigen { template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::MaxReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>>, const TensorImagePatchOp<Dynamic, Dynamic, const Input>>> SpatialMaxPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type, DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1); const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); static const int idxRows = isColMajor ? 1 : 2; static const int idxCols = isColMajor ? 2 : 1; Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRowsEff + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchColsEff + 1, strideCols); } else { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[3] = in.dimension(3); std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>> reduction_dims; return input .extract_image_patches( patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, Eigen::NumTraits<std::remove_const_t< typename internal::traits<Input>::Scalar>>::lowest()) .maximum(reduction_dims) .reshape(post_reduce_dims); } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::MaxReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, const Eigen::IndexList<Eigen::type2index<1>>, const TensorReshapingOp< const Eigen::DSizes<DenseIndex, 3>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input>>>> CuboidMaxPooling(const Input& input, DenseIndex patchPlanes, DenseIndex patchRows, DenseIndex patchCols, DenseIndex stridePlanes, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); static const int idxPlanes = isColMajor ? 1 : 3; static const int idxRows = 2; static const int idxCols = isColMajor ? 3 : 1; Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)) - patchPlanes + 1, stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRows + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchCols + 1, strideCols); } else { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)), stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[4] = in.dimension(4); Eigen::DSizes<DenseIndex, 3> pre_reduce_dims; pre_reduce_dims[1] = patchRows * patchCols * patchPlanes; if (isColMajor) { pre_reduce_dims[0] = post_reduce_dims[0]; pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4]; } else { pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3]; pre_reduce_dims[2] = post_reduce_dims[4]; } typedef std::remove_const_t<typename internal::traits<Input>::Scalar> CoeffReturnType; Eigen::IndexList<Eigen::type2index<1> > reduction_dims; return input .extract_volume_patches(patchPlanes, patchRows, patchCols, stridePlanes, strideRows, strideCols, padding_type, -Eigen::NumTraits<CoeffReturnType>::highest()) .reshape(pre_reduce_dims) .maximum(reduction_dims) .reshape(post_reduce_dims); } namespace internal { template <typename T> struct AvgPoolMeanReducer { #if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) && \ !defined(__HIPCC__) static constexpr bool PacketAccess = internal::is_same<T, float>::value; #else static const bool PacketAccess = false; #endif static constexpr bool IsStateful = true; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE AvgPoolMeanReducer() : scalarCount_(0) { typedef typename packet_traits<T>::type Packet; #if defined(__HIPCC__) packetCount_ = 0; #else packetCount_ = pset1<Packet>(T(0.0)); #endif } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) { if (t != -Eigen::NumTraits<T>::highest()) { (*accum) = (*accum) + t; scalarCount_++; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { return static_cast<T>(0); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { eigen_assert(scalarCount_ > 0); return accum / T(scalarCount_); } #if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) && \ !defined(__HIPCC__) #ifdef EIGEN_VECTORIZE_AVX512 #define pequal(a, b) \ _mm512_castsi512_ps( \ _mm512_maskz_set1_epi32(_mm512_cmp_ps_mask(a, b, _CMP_EQ_UQ), -1)) #define psel(a, b, false_mask) \ _mm512_castsi512_ps(_mm512_ternarylogic_epi32( \ _mm512_castps_si512(a), _mm512_castps_si512(b), \ _mm512_castps_si512(false_mask), 0xd8)) #elif defined EIGEN_VECTORIZE_AVX #define pequal(a, b) _mm256_cmp_ps(a, b, _CMP_EQ_UQ) #define psel(a, b, false_mask) _mm256_blendv_ps(a, b, false_mask) #else #define pequal(a, b) _mm_cmpeq_ps(a, b) #define psel(a, b, false_mask) \ _mm_or_ps(_mm_andnot_ps(false_mask, a), _mm_and_ps(false_mask, b)) #endif template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) { reducePacketWithType(static_cast<T>(0), p, accum); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacketWithType( T, const Packet& p, Packet* accum) { Packet skip_mask = pequal(p, pset1<Packet>(-Eigen::NumTraits<T>::highest())); (*accum) = padd<Packet>(*accum, psel(p, pset1<Packet>(0), skip_mask)); packetCount_ = padd<Packet>( packetCount_, psel(pset1<Packet>(1), pset1<Packet>(0), skip_mask)); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1<Packet>(0); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return pdiv(vaccum, packetCount_); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { return (saccum + predux(vaccum)) / (scalarCount_ + predux(packetCount_)); } #endif protected: typedef typename packet_traits<T>::type Packet; int scalarCount_; #if defined(__HIPCC__) int packetCount_; #else Packet packetCount_; #endif }; template <typename Device> struct reducer_traits<AvgPoolMeanReducer<float>, Device> { enum { Cost = 1, #if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) && \ !defined(__HIPCC__) PacketAccess = true, #else PacketAccess = false, #endif IsStateful = true, IsExactlyAssociative = false }; }; template <> struct reducer_traits<AvgPoolMeanReducer<float>, GpuDevice> { enum { Cost = 1, PacketAccess = false, IsStateful = true, IsExactlyAssociative = false }; }; } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::AvgPoolMeanReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>>, const TensorImagePatchOp<Dynamic, Dynamic, const Input>>> SpatialAvgPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type, DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1); const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); static const int idxRows = isColMajor ? 1 : 2; static const int idxCols = isColMajor ? 2 : 1; Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRowsEff + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchColsEff + 1, strideCols); } else { post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[3] = in.dimension(3); typedef std::remove_const_t<typename internal::traits<Input>::Scalar> CoeffReturnType; internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan; std::conditional_t< internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>>, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>>> reduction_dims; return input .extract_image_patches(patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, -Eigen::NumTraits<CoeffReturnType>::highest()) .reduce(reduction_dims, mean_with_nan) .reshape(post_reduce_dims); } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorReshapingOp< const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>, const TensorReductionOp< internal::AvgPoolMeanReducer< std::remove_const_t<typename internal::traits<Input>::Scalar>>, const Eigen::IndexList<Eigen::type2index<1>>, const TensorReshapingOp< const Eigen::DSizes<DenseIndex, 3>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input>>>> CuboidAvgPooling(const Input& input, DenseIndex patchPlanes, DenseIndex patchRows, DenseIndex patchCols, DenseIndex stridePlanes, DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type) { EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input); static const int idxPlanes = isColMajor ? 1 : 3; static const int idxRows = 2; static const int idxCols = isColMajor ? 3 : 1; Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims; post_reduce_dims[0] = in.dimension(0); if (padding_type == PADDING_VALID) { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)) - patchPlanes + 1, stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)) - patchRows + 1, strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)) - patchCols + 1, strideCols); } else { post_reduce_dims[idxPlanes] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxPlanes)), stridePlanes); post_reduce_dims[idxRows] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxRows)), strideRows); post_reduce_dims[idxCols] = Eigen::divup( static_cast<DenseIndex>(in.dimension(idxCols)), strideCols); } post_reduce_dims[4] = in.dimension(4); Eigen::DSizes<DenseIndex, 3> pre_reduce_dims; pre_reduce_dims[1] = patchRows * patchCols * patchPlanes; if (isColMajor) { pre_reduce_dims[0] = post_reduce_dims[0]; pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4]; } else { pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3]; pre_reduce_dims[2] = post_reduce_dims[4]; } typedef std::remove_const_t<typename internal::traits<Input>::Scalar> CoeffReturnType; internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan; Eigen::IndexList<Eigen::type2index<1> > reduction_dims; return input .extract_volume_patches(patchPlanes, patchRows, patchCols, stridePlanes, strideRows, strideCols, padding_type, -Eigen::NumTraits<CoeffReturnType>::highest()) .reshape(pre_reduce_dims) .reduce(reduction_dims, mean_with_nan) .reshape(post_reduce_dims); } } #endif
#include "tensorflow/core/kernels/eigen_pooling.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } } TEST(EigenPoolingTest, Simple) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(depth, input_rows, input_cols, num_batches); Tensor<float, 4> result(depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.f); const int stride = 1; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(d, r + i, c + j, b)); } } if (result(d, i, j, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(d, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, b), expected); } } } } } TEST(EigenPoolingTest, SimpleRowMajor) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, depth); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.f); const int stride = 1; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(3), depth); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(b, c + j, r + i, d)); } } if (result(b, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(b, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, j, i, d), expected); } } } } } TEST(EigenPoolingTest, Cuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(d, p + i, r + j, c + k, b)); } } } if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, CuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(b, c + k, r + j, p + i, d)); } } } if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } TEST(EigenPoolingTest, ValidCuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected_sum += input(d, p + i, r + j, c + k, b); expected_count++; } } } const float expected = expected_sum / expected_count; if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, ValidCuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = 2; const int output_cols = 3; const int output_planes = 4; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected_sum += input(b, c + k, r + j, p + i, d); expected_count++; } } } const float expected = expected_sum / expected_count; if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } TEST(EigenPoolingTest, SameCuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_SAME); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); const int pad_p = output_planes - input_planes + patch_planes - 1; const int pad_r = output_rows - input_rows + patch_rows - 1; const int pad_c = output_cols - input_cols + patch_cols - 1; const int dp = pad_p / 2; const int dr = pad_r / 2; const int dc = pad_c / 2; for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { const int in_p = p + i - dp; const int in_r = r + j - dr; const int in_c = c + k - dc; if (in_p >= 0 && in_p < input_planes && in_r >= 0 && in_r < input_rows && in_c >= 0 && in_c < input_cols) { expected_sum += input(d, in_p, in_r, in_c, b); expected_count++; } } } } const float expected = expected_sum / expected_count; if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, SameCuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 4; const int patch_cols = 3; const int patch_planes = 2; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); result = result.constant(-1000.0f); const int stride = 1; result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_SAME); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); const int pad_p = output_planes - input_planes + patch_planes - 1; const int pad_r = output_rows - input_rows + patch_rows - 1; const int pad_c = output_cols - input_cols + patch_cols - 1; const int dp = pad_p / 2; const int dr = pad_r / 2; const int dc = pad_c / 2; for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected_sum = 0.0f; int expected_count = 0; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { const int in_p = p + i - dp; const int in_r = r + j - dr; const int in_c = c + k - dc; if (in_p >= 0 && in_p < input_planes && in_r >= 0 && in_r < input_rows && in_c >= 0 && in_c < input_cols) { expected_sum += input(b, in_c, in_r, in_p, d); expected_count++; } } } } const float expected = expected_sum / expected_count; if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " k=" << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } TEST(EigenPoolingTest, Strided) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(depth, input_rows, input_cols, num_batches); Tensor<float, 4> result(depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)( expected, input(d, r + stride * i, c + stride * j, b)); } } if (result(d, i, j, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(d, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, b), expected); } } } } } TEST(EigenPoolingTest, StridedRowMajor) { const int depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, depth); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(3), depth); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < depth; ++d) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = -10000.f; for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)( expected, input(b, c + stride * j, r + stride * i, d)); } } if (result(b, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << result(b, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, j, i, d), expected); } } } } } TEST(EigenPoolingTest, StridedCuboid) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 3; const int output_planes = 2; const int output_rows = 2; const int output_cols = 2; Tensor<float, 5> input(channels, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> result(channels, output_planes, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), channels); EXPECT_EQ(result.dimension(1), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_cols); EXPECT_EQ(result.dimension(4), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(d, p + stride * i, r + stride * j, c + stride * k, b)); } } } if (result(d, i, j, k, b) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << k << " " << result(d, i, j, k, b) << " vs " << expected << std::endl; } EigenApprox(result(d, i, j, k, b), expected); } } } } } } TEST(EigenPoolingTest, StridedCuboidRowMajor) { const int channels = 10; const int input_planes = 5; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 3; const int output_planes = 2; const int output_rows = 2; const int output_cols = 2; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, channels); Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows, output_planes, channels); input = input.constant(11.0f) + input.random(); result.setRandom(); int stride = 2; result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(4), channels); EXPECT_EQ(result.dimension(3), output_planes); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(0), num_batches); for (int b = 0; b < num_batches; ++b) { for (int d = 0; d < channels; ++d) { for (int i = 0; i < output_planes; ++i) { for (int j = 0; j < output_rows; ++j) { for (int k = 0; k < output_cols; ++k) { float expected = -10000.f; for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { expected = (std::max)(expected, input(b, c + stride * k, r + stride * j, p + stride * i, d)); } } } if (result(b, k, j, i, d) != expected) { std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j << " " << k << " " << result(b, k, j, i, d) << " vs " << expected << std::endl; } EigenApprox(result(b, k, j, i, d), expected); } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_pooling.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_pooling_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
11c70d79-3753-4076-a1b8-1c481f3ba170
cpp
tensorflow/tensorflow
common
tensorflow/compiler/mlir/lite/kernels/internal/common.cc
tensorflow/lite/core/c/common_test.cc
#include "tensorflow/compiler/mlir/lite/kernels/internal/common.h" namespace tflite_migration { #if TFLITE_SINGLE_ROUNDING int32_t MultiplyByQuantizedMultiplier(int32_t x, int32_t quantized_multiplier, int shift) { TFLITE_DCHECK(quantized_multiplier >= 0); TFLITE_DCHECK(shift >= -31 && shift <= 30); const int64_t total_shift = 31 - shift; const int64_t round = static_cast<int64_t>(1) << (total_shift - 1); int64_t result = x * static_cast<int64_t>(quantized_multiplier) + round; result = result >> total_shift; TFLITE_DCHECK(result >= std::numeric_limits<int32_t>::min() && result <= std::numeric_limits<int32_t>::max()); return static_cast<int32_t>(result); } int32_t MultiplyByQuantizedMultiplier(int64_t x, int32_t quantized_multiplier, int shift) { TFLITE_DCHECK(quantized_multiplier >= 0); TFLITE_DCHECK(shift >= -31 && shift < 8); TFLITE_DCHECK(x >= -(static_cast<int64_t>(1) << 47) && x < (static_cast<int64_t>(1) << 47)); const int32_t reduced_multiplier = (quantized_multiplier < 0x7FFF0000) ? ((quantized_multiplier + (1 << 15)) >> 16) : 0x7FFF; const int64_t total_shift = 15 - shift; const int64_t round = static_cast<int64_t>(1) << (total_shift - 1); int64_t result = x * static_cast<int64_t>(reduced_multiplier) + round; result = result >> total_shift; TFLITE_DCHECK(result >= std::numeric_limits<int32_t>::min() && result <= std::numeric_limits<int32_t>::max()); return static_cast<int32_t>(result); } #else int32_t MultiplyByQuantizedMultiplier(int32_t x, int32_t quantized_multiplier, int shift) { using gemmlowp::RoundingDivideByPOT; using gemmlowp::SaturatingRoundingDoublingHighMul; int left_shift = shift > 0 ? shift : 0; int right_shift = shift > 0 ? 0 : -shift; return RoundingDivideByPOT(SaturatingRoundingDoublingHighMul( x * (1 << left_shift), quantized_multiplier), right_shift); } int32_t MultiplyByQuantizedMultiplier(int64_t x, int32_t quantized_multiplier, int shift) { assert(quantized_multiplier >= 0); assert(shift >= -31 && shift < 8); assert(x >= -(static_cast<int64_t>(1) << 47) && x < (static_cast<int64_t>(1) << 47)); int32_t reduced_multiplier = (quantized_multiplier < 0x7FFF0000) ? ((quantized_multiplier + (1 << 15)) >> 16) : 0x7FFF; int total_shift = 15 - shift; x = (x * (int64_t)reduced_multiplier) + ((int64_t)1 << (total_shift - 1)); int32_t result = x >> total_shift; return result; } #endif }
#include "tensorflow/lite/core/c/common.h" #include <cstddef> #include <cstdlib> #include <limits> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/util.h" namespace tflite { using ::testing::ElementsAreArray; TEST(IntArray, TestIntArrayCreate) { TfLiteIntArray* a = TfLiteIntArrayCreate(0); TfLiteIntArray* b = TfLiteIntArrayCreate(3); TfLiteIntArrayFree(a); TfLiteIntArrayFree(b); } TEST(IntArray, TestIntArrayCopy) { TfLiteIntArray* a = TfLiteIntArrayCreate(2); a->data[0] = 22; a->data[1] = 24; TfLiteIntArray* b = TfLiteIntArrayCopy(a); ASSERT_NE(a, b); ASSERT_EQ(a->size, b->size); ASSERT_EQ(a->data[0], b->data[0]); ASSERT_EQ(a->data[1], b->data[1]); TfLiteIntArrayFree(a); TfLiteIntArrayFree(b); } TEST(IntArray, TestIntArrayEqual) { TfLiteIntArray* a = TfLiteIntArrayCreate(1); a->data[0] = 1; TfLiteIntArray* b = TfLiteIntArrayCreate(2); b->data[0] = 5; b->data[1] = 6; TfLiteIntArray* c = TfLiteIntArrayCreate(2); c->data[0] = 5; c->data[1] = 6; TfLiteIntArray* d = TfLiteIntArrayCreate(2); d->data[0] = 6; d->data[1] = 6; EXPECT_FALSE(TfLiteIntArrayEqual(a, b)); EXPECT_TRUE(TfLiteIntArrayEqual(b, c)); EXPECT_TRUE(TfLiteIntArrayEqual(b, b)); EXPECT_FALSE(TfLiteIntArrayEqual(c, d)); EXPECT_FALSE(TfLiteIntArrayEqual(nullptr, a)); EXPECT_FALSE(TfLiteIntArrayEqual(a, nullptr)); EXPECT_TRUE(TfLiteIntArrayEqual(nullptr, nullptr)); TfLiteIntArrayFree(a); TfLiteIntArrayFree(b); TfLiteIntArrayFree(c); TfLiteIntArrayFree(d); } TEST(FloatArray, TestFloatArrayCreate) { TfLiteFloatArray* a = TfLiteFloatArrayCreate(0); TfLiteFloatArray* b = TfLiteFloatArrayCreate(3); TfLiteFloatArrayFree(a); TfLiteFloatArrayFree(b); } TEST(FloatArray, TestFloatArrayCopy) { TfLiteFloatArray* a = TfLiteFloatArrayCreate(2); a->data[0] = 22.0; a->data[1] = 24.0; TfLiteFloatArray* b = TfLiteFloatArrayCopy(a); ASSERT_NE(a, b); ASSERT_EQ(a->size, b->size); ASSERT_EQ(a->data[0], b->data[0]); ASSERT_EQ(a->data[1], b->data[1]); TfLiteFloatArrayFree(a); TfLiteFloatArrayFree(b); } TEST(Types, TestTypeNames) { auto type_name = [](TfLiteType t) { return std::string(TfLiteTypeGetName(t)); }; EXPECT_EQ(type_name(kTfLiteNoType), "NOTYPE"); EXPECT_EQ(type_name(kTfLiteFloat64), "FLOAT64"); EXPECT_EQ(type_name(kTfLiteFloat32), "FLOAT32"); EXPECT_EQ(type_name(kTfLiteFloat16), "FLOAT16"); EXPECT_EQ(type_name(kTfLiteBFloat16), "BFLOAT16"); EXPECT_EQ(type_name(kTfLiteInt16), "INT16"); EXPECT_EQ(type_name(kTfLiteUInt16), "UINT16"); EXPECT_EQ(type_name(kTfLiteInt32), "INT32"); EXPECT_EQ(type_name(kTfLiteUInt32), "UINT32"); EXPECT_EQ(type_name(kTfLiteUInt8), "UINT8"); EXPECT_EQ(type_name(kTfLiteUInt64), "UINT64"); EXPECT_EQ(type_name(kTfLiteInt8), "INT8"); EXPECT_EQ(type_name(kTfLiteInt64), "INT64"); EXPECT_EQ(type_name(kTfLiteBool), "BOOL"); EXPECT_EQ(type_name(kTfLiteComplex64), "COMPLEX64"); EXPECT_EQ(type_name(kTfLiteComplex128), "COMPLEX128"); EXPECT_EQ(type_name(kTfLiteString), "STRING"); EXPECT_EQ(type_name(kTfLiteResource), "RESOURCE"); EXPECT_EQ(type_name(kTfLiteVariant), "VARIANT"); EXPECT_EQ(type_name(kTfLiteInt4), "INT4"); } TEST(Quantization, TestQuantizationFree) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; t.dims = nullptr; t.dims_signature = nullptr; t.quantization.type = kTfLiteAffineQuantization; t.sparsity = nullptr; auto* params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); params->scale = TfLiteFloatArrayCreate(3); params->zero_point = TfLiteIntArrayCreate(3); t.quantization.params = reinterpret_cast<void*>(params); TfLiteTensorFree(&t); } TEST(Sparsity, TestSparsityFree) { TfLiteTensor t = {}; t.allocation_type = kTfLiteArenaRw; t.dims = nullptr; t.dims_signature = nullptr; t.sparsity = static_cast<TfLiteSparsity*>(malloc(sizeof(TfLiteSparsity))); t.sparsity->traversal_order = TfLiteIntArrayCreate(2); t.sparsity->block_map = nullptr; t.sparsity->dim_metadata = static_cast<TfLiteDimensionMetadata*>( malloc(sizeof(TfLiteDimensionMetadata) * 2)); t.sparsity->dim_metadata_size = 2; t.sparsity->dim_metadata[0].format = kTfLiteDimDense; t.sparsity->dim_metadata[0].dense_size = 4; t.sparsity->dim_metadata[1].format = kTfLiteDimSparseCSR; t.sparsity->dim_metadata[1].array_segments = TfLiteIntArrayCreate(2); t.sparsity->dim_metadata[1].array_indices = TfLiteIntArrayCreate(3); TfLiteTensorFree(&t); } TEST(TensorCopy, TensorCopy_VALID) { const int kNumElements = 32; const int kBytes = sizeof(float) * kNumElements; TfLiteTensor src; TfLiteTensor dst; TfLiteDelegate delegate; memset(&delegate, 0, sizeof(delegate)); memset(&src, 0, sizeof(TfLiteTensor)); memset(&dst, 0, sizeof(TfLiteTensor)); src.data.raw = static_cast<char*>(malloc(kBytes)); for (int i = 0; i < kNumElements; ++i) { src.data.f[i] = i; } dst.data.raw = static_cast<char*>(malloc(kBytes)); src.bytes = dst.bytes = kBytes; src.delegate = &delegate; src.data_is_stale = true; src.allocation_type = kTfLiteDynamic; src.type = kTfLiteFloat32; src.dims = TfLiteIntArrayCreate(1); src.dims->data[0] = 1; src.dims_signature = TfLiteIntArrayCopy(src.dims); src.buffer_handle = 5; EXPECT_EQ(kTfLiteOk, TfLiteTensorCopy(&src, &dst)); EXPECT_EQ(dst.bytes, src.bytes); EXPECT_EQ(dst.delegate, src.delegate); EXPECT_EQ(dst.data_is_stale, src.data_is_stale); EXPECT_EQ(dst.type, src.type); EXPECT_EQ(1, TfLiteIntArrayEqual(dst.dims, src.dims)); EXPECT_EQ(dst.buffer_handle, src.buffer_handle); for (int i = 0; i < kNumElements; ++i) { EXPECT_EQ(dst.data.f[i], src.data.f[i]); } TfLiteTensorFree(&src); free(dst.data.raw); TfLiteTensorFree(&dst); } TEST(TensorCopy, TensorCopy_INVALID) { TfLiteTensor src; TfLiteTensor dst; EXPECT_EQ(kTfLiteOk, TfLiteTensorCopy(&src, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteTensorCopy(nullptr, &dst)); src.bytes = 10; dst.bytes = 12; EXPECT_EQ(kTfLiteError, TfLiteTensorCopy(&src, &dst)); } TEST(TestTensorRealloc, TensorReallocMoreBytesSucceeds) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 6; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->quantization.type = kTfLiteNoQuantization; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); ASSERT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, new_bytes); ASSERT_THAT(std::vector<int>(tensor->data.f, tensor->data.f + num_elements), ElementsAreArray({0, 0, 0, 0})); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocLessBytesSucceeds) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 2; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); tensor->quantization.type = kTfLiteNoQuantization; ASSERT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, new_bytes); ASSERT_THAT(std::vector<int>(tensor->data.f, tensor->data.f + 2), ElementsAreArray({0, 0})); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocNonDynamicNoChange) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 6; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteArenaRw; tensor->quantization.type = kTfLiteNoQuantization; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); EXPECT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, bytes); EXPECT_THAT(std::vector<int>(tensor->data.i32, tensor->data.i32 + 4), ElementsAreArray({0, 0, 0, 0})); free(tensor->data.data); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocNumByte0) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 0; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->quantization.type = kTfLiteNoQuantization; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); EXPECT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, 0); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocLargeBytesFails) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const size_t bytes = sizeof(float) * num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); tensor->quantization.type = kTfLiteNoQuantization; const size_t large_bytes = std::numeric_limits<size_t>::max() - 16; EXPECT_EQ(TfLiteTensorRealloc(large_bytes, tensor), kTfLiteError); TfLiteTensorFree(tensor); free(data); free(tensor); } TEST(TestTfLiteTensorGetAllocationStrategy, MemNoneIsAllocatedWithNone) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyNone); } TEST(TestTfLiteTensorGetAllocationStrategy, MmapRoIsAllocatedWithMMap) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyMMap); } TEST(TestTfLiteTensorGetAllocationStrategy, ArenaRwIsAllocatedWithArena) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyArena); } TEST(TestTfLiteTensorGetAllocationStrategy, ArenaRwPersistentIsAllocatedWithArena) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyArena); } TEST(TestTfLiteTensorGetAllocationStrategy, DynamicIsAllocatedWithMalloc) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyMalloc); } TEST(TestTfLiteTensorGetAllocationStrategy, PersistentRoIsAllocatedWithUnknown) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyUnknown); } TEST(TestTfLiteTensorGetAllocationStrategy, CustomIsAllocatedWithUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyUnknown); } TEST(TestTfLiteTensorGetAllocationStrategy, VariantObjectIsAllocatedWithNew) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyNew); } TEST(TestTfLiteTensorGetBufferAddressStability, MemNoneBufferIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetBufferAddressStability, MmapRoBufferIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetBufferAddressStability, ArenaRwBufferIsStableUnstable) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityUnstable); } TEST(TestTfLiteTensorGetBufferAddressStability, ArenaRwPersistentBufferIsStableUnstable) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityUnstable); } TEST(TestTfLiteTensorGetBufferAddressStability, DynamicBufferIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetBufferAddressStability, PersistentRoBufferIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetBufferAddressStability, CustomBufferIsStableUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityUnknown); } TEST(TestTfLiteTensorGetBufferAddressStability, VariantObjectBufferIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, MemNoneDataIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, MmapRoDataIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, ArenaRwDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataStability, ArenaRwPersistentDataIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, DynamicDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataStability, PersistentRoDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataStability, CustomDataIsStableUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityUnknown); } TEST(TestTfLiteTensorGetDataStability, VariantObjectDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataKnownStep, MemNoneDataIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetDataKnownStep, MmapRoDataIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetDataKnownStep, ArenaRwDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetDataKnownStep, ArenaRwPersistentDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetDataKnownStep, DynamicDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetDataKnownStep, PersistentRoDataIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetDataKnownStep, CustomDataIsKnownAtUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepUnknown); } TEST(TestTfLiteTensorGetDataKnownStep, VariantObjectDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetShapeKnownStep, MemNoneShapeIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetShapeKnownStep, MmapRoShapeIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetShapeKnownStep, ArenaRwShapeIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetShapeKnownStep, ArenaRwPersistentShapeIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetShapeKnownStep, DynamicShapeIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetShapeKnownStep, PersistentRoShapeIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetShapeKnownStep, CustomShapeIsKnownAtUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepUnknown); } TEST(TestTfLiteTensorGetShapeKnownStep, VariantObjectShapeIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepEval); } struct Foo { int data; bool copied; }; class VariantFoo : public AbstractVariantData<VariantFoo> { public: explicit VariantFoo(int number) : foo_data_(Foo{number, false}) {} VariantFoo(const VariantFoo& other) { foo_data_ = other.foo_data_; foo_data_.copied = true; } int GetFooInt() { return foo_data_.data; } bool GetFooCopied() { return foo_data_.copied; } private: Foo foo_data_; }; class VariantFoo2 : public AbstractVariantData<VariantFoo2> { public: explicit VariantFoo2(int number, float float_number) : foo_data_(Foo{number, false}), float_data_(float_number) {} VariantFoo2(const VariantFoo2& other) { foo_data_ = other.foo_data_; foo_data_.copied = true; float_data_ = other.float_data_; } int GetFooInt() { return foo_data_.data; } bool GetFooCopied() { return foo_data_.copied; } float GetFloatData() { return float_data_; } private: Foo foo_data_; float float_data_; }; TEST(TestTfLiteReallocWithObject, ConstructSingleParamVariant) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 3)), kTfLiteOk); ASSERT_EQ(reinterpret_cast<VariantFoo*>(t->data.data)->GetFooInt(), 3); ASSERT_EQ(t->type, kTfLiteVariant); ASSERT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, ConstructMultiParamVariant) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo2, int, float>(t.get(), 3, 1.0)), kTfLiteOk); VariantFoo2* data = reinterpret_cast<VariantFoo2*>(t->data.data); ASSERT_EQ(data->GetFooInt(), 3); ASSERT_EQ(data->GetFloatData(), 1.0); ASSERT_EQ(t->type, kTfLiteVariant); ASSERT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, ConstructSingleParamVariantWithAlreadyAllocated) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 3)), kTfLiteOk); void* before_address = t->data.data; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 5)), kTfLiteOk); EXPECT_EQ(t->data.data, before_address); EXPECT_EQ(reinterpret_cast<VariantFoo*>(t->data.data)->GetFooInt(), 5); EXPECT_EQ(t->type, kTfLiteVariant); EXPECT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, ConstructMutliParamVariantWithAlreadyAllocated) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo2, int, float>(t.get(), 3, 1.0)), kTfLiteOk); void* before_address = t->data.data; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo2, int, float>(t.get(), 5, 2.0)), kTfLiteOk); EXPECT_EQ(t->data.data, before_address); VariantFoo2* data = reinterpret_cast<VariantFoo2*>(t->data.data); EXPECT_EQ(data->GetFooInt(), 5); EXPECT_EQ(data->GetFloatData(), 2.0); EXPECT_EQ(t->type, kTfLiteVariant); EXPECT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, NonVariantTypeError) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteInt32; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 3)), kTfLiteError); } TEST(TestVariantData, CopyVariantTensorCallsDerivedCopyCstor) { TensorUniquePtr src_variant_tensor = BuildTfLiteTensor(); TensorUniquePtr dst_variant_tensor = BuildTfLiteTensor(); for (TfLiteTensor* tensor : {src_variant_tensor.get(), dst_variant_tensor.get()}) { tensor->dims = ConvertVectorToTfLiteIntArray({0}); tensor->allocation_type = kTfLiteVariantObject; tensor->type = kTfLiteVariant; } ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(src_variant_tensor.get(), 1)), kTfLiteOk); auto* src_variant_data = reinterpret_cast<VariantFoo*>(src_variant_tensor->data.data); EXPECT_EQ(src_variant_data->GetFooInt(), 1); EXPECT_EQ(src_variant_data->GetFooCopied(), false); ASSERT_EQ( TfLiteTensorCopy(src_variant_tensor.get(), dst_variant_tensor.get()), kTfLiteOk); auto* dst_variant_data = reinterpret_cast<VariantFoo*>(dst_variant_tensor->data.data); EXPECT_EQ(dst_variant_data->GetFooInt(), 1); EXPECT_EQ(dst_variant_data->GetFooCopied(), true); } TEST(TestVariantData, CopyVariantTensorCallsDerivedCopyCstorWithAllocation) { TensorUniquePtr src_variant_tensor = BuildTfLiteTensor(); TensorUniquePtr dst_variant_tensor = BuildTfLiteTensor(); for (TfLiteTensor* tensor : {src_variant_tensor.get(), dst_variant_tensor.get()}) { tensor->dims = ConvertVectorToTfLiteIntArray({0}); tensor->allocation_type = kTfLiteVariantObject; tensor->type = kTfLiteVariant; } ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(src_variant_tensor.get(), 1)), kTfLiteOk); ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(dst_variant_tensor.get(), 2)), kTfLiteOk); void* before_address = dst_variant_tensor->data.data; ASSERT_EQ( TfLiteTensorCopy(src_variant_tensor.get(), dst_variant_tensor.get()), kTfLiteOk); auto* dst_variant_data = reinterpret_cast<VariantFoo*>(dst_variant_tensor->data.data); EXPECT_EQ(dst_variant_data->GetFooInt(), 1); EXPECT_EQ(dst_variant_tensor->data.data, before_address); } TEST(TestVariantData, CopyTensorToNonVariantObjectSetsAllocationType) { TensorUniquePtr src_variant_tensor = BuildTfLiteTensor(); TensorUniquePtr dst_variant_tensor = BuildTfLiteTensor(); for (TfLiteTensor* tensor : {src_variant_tensor.get(), dst_variant_tensor.get()}) { tensor->dims = ConvertVectorToTfLiteIntArray({0}); tensor->type = kTfLiteVariant; } src_variant_tensor->allocation_type = kTfLiteVariantObject; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(src_variant_tensor.get(), 1)), kTfLiteOk); ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(dst_variant_tensor.get(), 2)), kTfLiteOk); void* before_address = dst_variant_tensor->data.data; ASSERT_EQ( TfLiteTensorCopy(src_variant_tensor.get(), dst_variant_tensor.get()), kTfLiteOk); ASSERT_EQ(dst_variant_tensor->allocation_type, kTfLiteVariantObject); auto* dst_variant_data = reinterpret_cast<VariantFoo*>(dst_variant_tensor->data.data); EXPECT_EQ(dst_variant_data->GetFooInt(), 1); EXPECT_EQ(dst_variant_tensor->data.data, before_address); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/kernels/internal/common.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/c/common_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ececb0ff-9d9f-410b-8980-048362fe68f2
cpp
google/libphonenumber
unicodestring
cpp/src/phonenumbers/unicodestring.cc
cpp/test/phonenumbers/unicodestring_test.cc
#include "phonenumbers/unicodestring.h" #include <algorithm> #include <cassert> #include <iterator> using std::advance; using std::equal; namespace i18n { namespace phonenumbers { UnicodeString& UnicodeString::operator=(const UnicodeString& src) { if (&src != this) { invalidateCachedIndex(); text_ = src.text_; } return *this; } bool UnicodeString::operator==(const UnicodeString& rhs) const { return equal(text_.begin(), text_.end(), rhs.text_.begin()); } void UnicodeString::append(const UnicodeString& unicode_string) { invalidateCachedIndex(); for (UnicodeString::const_iterator it = unicode_string.begin(); it != unicode_string.end(); ++it) { append(*it); } } int UnicodeString::indexOf(char32 codepoint) const { int pos = 0; for (UnicodeText::const_iterator it = text_.begin(); it != text_.end(); ++it, ++pos) { if (*it == codepoint) { return pos; } } return -1; } void UnicodeString::replace(int start, int length, const UnicodeString& src) { assert(length >= 0 && length <= this->length()); invalidateCachedIndex(); UnicodeText::const_iterator start_it = text_.begin(); advance(start_it, start); UnicodeText unicode_text; unicode_text.append(text_.begin(), start_it); unicode_text.append(src.text_); advance(start_it, length); unicode_text.append(start_it, text_.end()); text_ = unicode_text; } void UnicodeString::setCharAt(int pos, char32 c) { assert(pos < length()); invalidateCachedIndex(); UnicodeText::const_iterator pos_it = text_.begin(); advance(pos_it, pos); UnicodeText unicode_text; unicode_text.append(text_.begin(), pos_it); unicode_text.push_back(c); ++pos_it; unicode_text.append(pos_it, text_.end()); text_ = unicode_text; } UnicodeString UnicodeString::tempSubString(int start, int length) const { const int unicodestring_length = this->length(); if (length == std::numeric_limits<int>::max()) { length = unicodestring_length - start; } if (start > unicodestring_length || length > unicodestring_length) { return UnicodeString(""); } UnicodeText::const_iterator start_it = text_.begin(); advance(start_it, start); UnicodeText::const_iterator end_it = start_it; advance(end_it, length); UnicodeString substring; substring.text_.PointTo(start_it, end_it); return substring; } char32 UnicodeString::operator[](int index) const { assert(index < length()); if (cached_index_ == -1 || cached_index_ > index) { cached_it_ = text_.begin(); cached_index_ = 0; } for (; cached_index_ < index; ++cached_index_, ++cached_it_) {} return *cached_it_; } } }
#include <iostream> #include <gtest/gtest.h> #include "phonenumbers/unicodestring.h" using std::ostream; namespace i18n { namespace phonenumbers { ostream& operator<<(ostream& out, const UnicodeString& s) { string utf8; s.toUTF8String(utf8); out << utf8; return out; } TEST(UnicodeString, ToUTF8StringWithEmptyString) { UnicodeString s; string utf8; s.toUTF8String(utf8); EXPECT_EQ("", utf8); } TEST(UnicodeString, ToUTF8String) { UnicodeString s("hello"); string utf8; s.toUTF8String(utf8); EXPECT_EQ("hello", utf8); } TEST(UnicodeString, ToUTF8StringWithNonAscii) { UnicodeString s("\xEF\xBC\x95\xEF\xBC\x93" ); string utf8; s.toUTF8String(utf8); EXPECT_EQ("\xEF\xBC\x95\xEF\xBC\x93", utf8); } TEST(UnicodeString, AppendCodepoint) { UnicodeString s; s.append('h'); ASSERT_EQ(UnicodeString("h"), s); s.append('e'); EXPECT_EQ(UnicodeString("he"), s); } TEST(UnicodeString, AppendCodepointWithNonAscii) { UnicodeString s; s.append(0xFF15 ); ASSERT_EQ(UnicodeString("\xEF\xBC\x95" ), s); s.append(0xFF13 ); EXPECT_EQ(UnicodeString("\xEF\xBC\x95\xEF\xBC\x93" ), s); } TEST(UnicodeString, AppendUnicodeString) { UnicodeString s; s.append(UnicodeString("he")); ASSERT_EQ(UnicodeString("he"), s); s.append(UnicodeString("llo")); EXPECT_EQ(UnicodeString("hello"), s); } TEST(UnicodeString, AppendUnicodeStringWithNonAscii) { UnicodeString s; s.append(UnicodeString("\xEF\xBC\x95" )); ASSERT_EQ(UnicodeString("\xEF\xBC\x95"), s); s.append(UnicodeString("\xEF\xBC\x93" )); EXPECT_EQ(UnicodeString("\xEF\xBC\x95\xEF\xBC\x93" ), s); } TEST(UnicodeString, IndexOf) { UnicodeString s("hello"); EXPECT_EQ(0, s.indexOf('h')); EXPECT_EQ(2, s.indexOf('l')); EXPECT_EQ(4, s.indexOf('o')); } TEST(UnicodeString, IndexOfWithNonAscii) { UnicodeString s("\xEF\xBC\x95\xEF\xBC\x93" ); EXPECT_EQ(1, s.indexOf(0xFF13 )); } TEST(UnicodeString, ReplaceWithEmptyInputs) { UnicodeString s; s.replace(0, 0, UnicodeString("")); EXPECT_EQ(UnicodeString(""), s); } TEST(UnicodeString, ReplaceWithEmptyReplacement) { UnicodeString s("hello"); s.replace(0, 5, UnicodeString("")); EXPECT_EQ(UnicodeString(""), s); } TEST(UnicodeString, ReplaceBegining) { UnicodeString s("hello world"); s.replace(0, 5, UnicodeString("HELLO")); EXPECT_EQ(UnicodeString("HELLO world"), s); } TEST(UnicodeString, ReplaceMiddle) { UnicodeString s("hello world"); s.replace(5, 1, UnicodeString("AB")); EXPECT_EQ(UnicodeString("helloABworld"), s); } TEST(UnicodeString, ReplaceEnd) { UnicodeString s("hello world"); s.replace(10, 1, UnicodeString("AB")); EXPECT_EQ(UnicodeString("hello worlAB"), s); } TEST(UnicodeString, ReplaceWithNonAscii) { UnicodeString s("hello world"); s.replace(3, 2, UnicodeString("\xEF\xBC\x91\xEF\xBC\x90" )); EXPECT_EQ(UnicodeString("hel\xEF\xBC\x91\xEF\xBC\x90 world"), s); } TEST(UnicodeString, SetCharBegining) { UnicodeString s("hello"); s.setCharAt(0, 'H'); EXPECT_EQ(UnicodeString("Hello"), s); } TEST(UnicodeString, SetCharMiddle) { UnicodeString s("hello"); s.setCharAt(2, 'L'); EXPECT_EQ(UnicodeString("heLlo"), s); } TEST(UnicodeString, SetCharEnd) { UnicodeString s("hello"); s.setCharAt(4, 'O'); EXPECT_EQ(UnicodeString("hellO"), s); } TEST(UnicodeString, SetCharWithNonAscii) { UnicodeString s("hello"); s.setCharAt(4, 0xFF10 ); EXPECT_EQ(UnicodeString("hell\xEF\xBC\x90" ), s); } TEST(UnicodeString, TempSubStringWithEmptyString) { EXPECT_EQ(UnicodeString(""), UnicodeString().tempSubString(0, 0)); } TEST(UnicodeString, TempSubStringWithInvalidInputs) { UnicodeString s("hello"); EXPECT_EQ(UnicodeString(""), s.tempSubString(6)); EXPECT_EQ(UnicodeString(""), s.tempSubString(2, 6)); } TEST(UnicodeString, TempSubString) { UnicodeString s("hello"); EXPECT_EQ(UnicodeString(""), s.tempSubString(0, 0)); EXPECT_EQ(UnicodeString("h"), s.tempSubString(0, 1)); EXPECT_EQ(UnicodeString("hello"), s.tempSubString(0, 5)); EXPECT_EQ(UnicodeString("llo"), s.tempSubString(2, 3)); } TEST(UnicodeString, TempSubStringWithNoLength) { UnicodeString s("hello"); EXPECT_EQ(UnicodeString("hello"), s.tempSubString(0)); EXPECT_EQ(UnicodeString("llo"), s.tempSubString(2)); } TEST(UnicodeString, TempSubStringWithNonAscii) { UnicodeString s("hel\xEF\xBC\x91\xEF\xBC\x90" ); EXPECT_EQ(UnicodeString("\xEF\xBC\x91" ), s.tempSubString(3, 1)); } TEST(UnicodeString, OperatorEqual) { UnicodeString s("hello"); s = UnicodeString("Hello"); EXPECT_EQ(UnicodeString("Hello"), s); } TEST(UnicodeString, OperatorEqualWithNonAscii) { UnicodeString s("hello"); s = UnicodeString("hel\xEF\xBC\x91\xEF\xBC\x90" ); EXPECT_EQ(UnicodeString("hel\xEF\xBC\x91\xEF\xBC\x90"), s); } TEST(UnicodeString, OperatorBracket) { UnicodeString s("hello"); EXPECT_EQ('h', s[0]); EXPECT_EQ('e', s[1]); EXPECT_EQ('l', s[2]); EXPECT_EQ('l', s[3]); EXPECT_EQ('o', s[4]); } TEST(UnicodeString, OperatorBracketWithNonAscii) { UnicodeString s("hel\xEF\xBC\x91\xEF\xBC\x90" ); EXPECT_EQ('h', s[0]); EXPECT_EQ('e', s[1]); EXPECT_EQ('l', s[2]); EXPECT_EQ(0xFF11 , s[3]); EXPECT_EQ(0xFF10 , s[4]); } TEST(UnicodeString, OperatorBracketWithIteratorCacheInvalidation) { UnicodeString s("hello"); EXPECT_EQ('h', s[0]); EXPECT_EQ('e', s[1]); s.setCharAt(1, 'E'); EXPECT_EQ(UnicodeString("hEllo"), s); EXPECT_EQ('E', s[1]); EXPECT_EQ('h', s[0]); EXPECT_EQ('o', s[4]); } } }
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/src/phonenumbers/unicodestring.cc
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/test/phonenumbers/unicodestring_test.cc
9aa9aaa39ad8098aef56071d2df4f6f8d251c98b
be6c354f-375c-4008-a3fc-46f4eaa2f4f4
cpp
tensorflow/tensorflow
saved_model_export
tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export.cc
tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export_test.cc
#include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export.h" #include <memory> #include <optional> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/io.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/pass_pipeline.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/types.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/cc/run_passes.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/exported_model.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/passes/constants.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/passes/passes.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/python/unfreeze_constants.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saver.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace mlir::quant::stablehlo { namespace { using ::mlir::tf_saved_model::kTfSavedModelIndexPathAttr; using ::mlir::tf_saved_model::kTfSavedModelInitializerInitType; using ::mlir::tf_saved_model::kTfSavedModelInitializerRestoreType; using ::stablehlo::quantization::QuantizationConfig; using ::stablehlo::quantization::io::GetLocalTmpFileName; using ::tensorflow::AssetFileDef; using ::tensorflow::FunctionDefLibrary; using ::tensorflow::FunctionLibraryDefinition; using ::tensorflow::Graph; using ::tensorflow::GraphDef; using ::tensorflow::Node; using ::tensorflow::NodeDef; using ::tensorflow::OpRegistry; using ::tensorflow::SaverDef; using ::tensorflow::quantization::ExportedModel; using ::tensorflow::quantization::RunPasses; using ::tensorflow::quantization::UnfreezeConstantsAndSaveVariables; std::string GetNodeName(const std::vector<std::string>& control_ret_node_names, const absl::string_view contains) { for (const std::string& node_name : control_ret_node_names) { if (absl::StrContains(node_name, contains)) { VLOG(1) << "Node found: " << node_name << ", contains: " << contains; return node_name; } } VLOG(1) << "Could not find node whose name conatins: " << contains; return ""; } std::string FindFilePrefixTensorName(const GraphDef& graph_def) { for (const NodeDef& node_def : graph_def.node()) { if (node_def.op() == FunctionLibraryDefinition::kArgOp) { const auto index_path_attr_itr = node_def.attr().find(kTfSavedModelIndexPathAttr.str()); if (index_path_attr_itr != node_def.attr().end()) { const auto& index_paths = index_path_attr_itr->second.list().s(); if (absl::c_find(index_paths, kTfFilePrefix.str()) != index_paths.end()) { return absl::StrCat(node_def.name(), ":0"); } } } } return ""; } } absl::StatusOr<ExportedModel> CreateExportedModel( const std::vector<std::string>& signature_keys, const std::unordered_set<std::string>& tags, const QuantizationConfig& quantization_config, absl::string_view debug_name_prefix, const absl::flat_hash_map<FunctionName, FunctionAlias>& function_aliases, MLIRContext& ctx ABSL_ATTRIBUTE_LIFETIME_BOUND, ModuleOp module_op) { TF_ASSIGN_OR_RETURN(const std::string checkpoint_dir, GetLocalTmpFileName()); const ExportOptions export_opts = { true, false, checkpoint_dir, absl::StrCat(debug_name_prefix, kExportStepSuffix)}; TF_ASSIGN_OR_RETURN(const SmallVector<AssetFileDef> asset_file_defs, RunExportPasses(export_opts, ctx, module_op)); return ConvertMlirModuleToExportedModel( module_op, checkpoint_dir, function_aliases, {asset_file_defs.begin(), asset_file_defs.end()}); } ExportedModel CreateExportedModelFromGraphDef( GraphDef&& graph_def, const absl::string_view init_node_name, const absl::string_view checkpoint_dir, const std::optional<SaverDef> saver_def, const absl::flat_hash_map<FunctionName, FunctionAlias>& function_aliases, const std::vector<AssetFileDef>& asset_file_defs) { ExportedModel exported_model{}; *exported_model.mutable_graph_def() = graph_def; exported_model.set_init_node_name(std::string(init_node_name)); exported_model.set_checkpoint_dir(std::string(checkpoint_dir)); exported_model.mutable_function_aliases()->insert(function_aliases.begin(), function_aliases.end()); for (const AssetFileDef& asset_file_def : asset_file_defs) { *exported_model.mutable_asset_file_defs()->Add() = asset_file_def; } if (saver_def != std::nullopt) { *exported_model.mutable_saver_def() = *std::move(saver_def); } return exported_model; } void AddExportPasses(mlir::PassManager& pm, const bool duplicate_shape_determining_constants) { AddCallModuleSerializationPasses(pm); if (duplicate_shape_determining_constants) { pm.addNestedPass<mlir::func::FuncOp>( mlir::quant::CreateDuplicateShapeDeterminingConstantsPass()); } pm.addPass(mlir::quant::CreateInsertMainFunctionPass()); pm.addPass(mlir::quant::CreateLiftHashTableOpsAsArgsPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::CreateFunctionalToExecutorDialectConversionPass()); pm.addPass(mlir::CreateBreakUpIslandsPass()); pm.addPass(mlir::quant::CreateMergeInitializerFunctionOpsToMainPass()); pm.addPass(mlir::quant::CreateMergeSaveFunctionOpsToMainPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::quant::CreateMergeDuplicateResourceOpsPass()); pm.addPass(mlir::TF::CreateStripNoinlineAttributePass()); } absl::StatusOr<std::optional<SaverDef>> CreateSaverDef( const std::vector<std::string>& control_ret_node_names, const GraphDef& graph_def) { const std::string filename_tensor_name = FindFilePrefixTensorName(graph_def); const std::string restore_op_name = GetNodeName(control_ret_node_names, kTfSavedModelInitializerRestoreType); const std::string save_node_name = GetNodeName(control_ret_node_names, kTfQuantSaveOpName); const std::vector<absl::string_view> fields = { filename_tensor_name, restore_op_name, save_node_name}; const auto is_empty_predicate = [](const absl::string_view s) { return s.empty(); }; if (absl::c_all_of(fields, is_empty_predicate)) { return std::nullopt; } else if (absl::c_none_of(fields, is_empty_predicate)) { SaverDef saver_def{}; saver_def.set_version(SaverDef::V2); saver_def.set_filename_tensor_name(filename_tensor_name); saver_def.set_restore_op_name(restore_op_name); saver_def.set_save_tensor_name(absl::StrCat(save_node_name, ":0")); return saver_def; } else { return absl::InternalError( absl::StrCat("Failed to create SaverDef. Fields should be either all " "empty strings or all non-empty strings. Got fields: ", absl::StrJoin(fields, ","))); } } absl::StatusOr<ExportedModel> ConvertMlirModuleToExportedModel( const mlir::ModuleOp module_op, const absl::string_view checkpoint_dir, const absl::flat_hash_map<FunctionName, FunctionAlias>& function_aliases, const std::vector<AssetFileDef>& asset_file_defs) { const tensorflow::GraphExportConfig config{}; FunctionLibraryDefinition flib_def{OpRegistry::Global(), FunctionDefLibrary()}; std::unique_ptr<Graph> graph; absl::flat_hash_set<Node*> control_ret_nodes{}; TF_RETURN_IF_ERROR(tensorflow::tf2xla::v2::ConvertTfExecutorToGraph( module_op, config, &graph, &flib_def, &control_ret_nodes)); GraphDef graph_def{}; graph->ToGraphDef(&graph_def); std::vector<std::string> control_ret_node_names{}; for (Node* node : control_ret_nodes) { control_ret_node_names.push_back(node->name()); } const std::string init_node_name = GetNodeName(control_ret_node_names, kTfSavedModelInitializerInitType); TF_ASSIGN_OR_RETURN(const std::optional<SaverDef> saver_def, CreateSaverDef(control_ret_node_names, graph_def)); return CreateExportedModelFromGraphDef(std::move(graph_def), init_node_name, checkpoint_dir, std::move(saver_def), function_aliases, asset_file_defs); } absl::StatusOr<SmallVector<AssetFileDef>> RunExportPasses( const ExportOptions& export_opts, MLIRContext& ctx, ModuleOp module_op) { if (export_opts.unfreeze_constants) { TF_RETURN_IF_ERROR(UnfreezeConstantsAndSaveVariables( export_opts.checkpoint_dir, ctx, module_op)); LOG(INFO) << "Unfrozen constants and saved variables to checkpoint file: " << export_opts.checkpoint_dir; } TF_RETURN_IF_ERROR(RunPasses( export_opts.debug_name, [dup_constants = export_opts.duplicate_shape_determining_constants]( PassManager& pm) { AddExportPasses(pm, dup_constants); }, ctx, module_op)); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = quant::ConvertAssetArgs(module_op); if (failed(asset_file_defs)) { return absl::InternalError("Failed to convert asset args."); } return *asset_file_defs; } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export.h" #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/ADT/STLExtras.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/compiler/mlir/quantization/common/test_base.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/exported_model.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saver.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace mlir::quant::stablehlo { namespace { using ::tensorflow::AssetFileDef; using ::tensorflow::GraphDef; using ::tensorflow::NodeDef; using ::tensorflow::SaverDef; using ::tensorflow::quantization::ExportedModel; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::SizeIs; using ::testing::StrEq; using ::tsl::protobuf::TextFormat; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; TEST(CreateExportedModelTest, CreateExportedModelBasicFieldsSet) { GraphDef graph_def{}; ASSERT_TRUE( TextFormat::ParseFromString(R"pb(node { name: "foo" })pb", &graph_def)); const ExportedModel exported_model = CreateExportedModelFromGraphDef( std::move(graph_def), "init_node_name", "checkpoint_dir", std::nullopt, {}, {}); ASSERT_THAT(exported_model.graph_def().node(), SizeIs(1)); EXPECT_THAT(exported_model.graph_def().node()[0].name(), StrEq("foo")); EXPECT_THAT(exported_model.init_node_name(), StrEq("init_node_name")); EXPECT_THAT(exported_model.checkpoint_dir(), StrEq("checkpoint_dir")); EXPECT_FALSE(exported_model.has_saver_def()); EXPECT_THAT(exported_model.function_aliases(), IsEmpty()); EXPECT_THAT(exported_model.asset_file_defs(), IsEmpty()); } TEST(CreateExportedModelTest, CreateExportedModelWithAddedFunctionAliases) { const ExportedModel exported_model = CreateExportedModelFromGraphDef( GraphDef(), "", "", std::nullopt, {{"func1", "alias1"}, {"func2", "alias2"}}, {}); ASSERT_THAT(exported_model.function_aliases(), SizeIs(2)); EXPECT_TRUE(exported_model.function_aliases().contains("func1")); EXPECT_THAT(exported_model.function_aliases().at("func1"), StrEq("alias1")); EXPECT_TRUE(exported_model.function_aliases().contains("func2")); EXPECT_THAT(exported_model.function_aliases().at("func2"), StrEq("alias2")); } TEST(CreateExportedModelTest, CreateExportedModelWithAddedAssetFileDefs) { AssetFileDef asset1; ASSERT_TRUE( TextFormat::ParseFromString(R"pb(filename: "fname1")pb", &asset1)); AssetFileDef asset2; ASSERT_TRUE( TextFormat::ParseFromString(R"pb(filename: "fname2")pb", &asset2)); const ExportedModel exported_model = CreateExportedModelFromGraphDef( GraphDef(), "", "", std::nullopt, {}, {asset1, asset2}); ASSERT_THAT(exported_model.asset_file_defs(), SizeIs(2)); EXPECT_THAT(exported_model.asset_file_defs()[0].filename(), StrEq("fname1")); EXPECT_THAT(exported_model.asset_file_defs()[1].filename(), StrEq("fname2")); } TEST(CreateExportedModelTest, CreateExportedModelWithAddedSaverDef) { SaverDef saver_def; ASSERT_TRUE(TextFormat::ParseFromString( R"pb(filename_tensor_name: "my_file")pb", &saver_def)); const ExportedModel exported_model = CreateExportedModelFromGraphDef( GraphDef(), "", "", saver_def, {}, {}); EXPECT_THAT(exported_model.saver_def().filename_tensor_name(), "my_file"); } TEST(CreateSaverDefTest, CreateValidSaverDef) { GraphDef graph_def; ASSERT_TRUE(TextFormat::ParseFromString( R"pb(node { name: "foo", op: "_Arg", attr { key: "tf_saved_model.index_path", value { list { s: "__tf_file_prefix" } } } })pb", &graph_def)); const std::vector<std::string> control_ret_node_names = { "restore_op_0", "tf_quant__save_op_0"}; TF_ASSERT_OK_AND_ASSIGN(const std::optional<SaverDef> saver_def, CreateSaverDef(control_ret_node_names, graph_def)); ASSERT_NE(saver_def, std::nullopt); EXPECT_THAT(saver_def->version(), SaverDef::V2); EXPECT_THAT(saver_def->restore_op_name(), "restore_op_0"); EXPECT_THAT(saver_def->filename_tensor_name(), "foo:0"); EXPECT_THAT(saver_def->save_tensor_name(), "tf_quant__save_op_0:0"); } TEST(CreateSaverDefTest, ReturnsNulloptIfNoSaverDefRelatedNodesExist) { TF_ASSERT_OK_AND_ASSIGN( const std::optional<SaverDef> saver_def, CreateSaverDef({}, GraphDef())); EXPECT_EQ(saver_def, std::nullopt); } TEST(CreateSaverDefTest, ReturnsErrorStatusIfSaverDefNodesPartiallyExist) { GraphDef graph_def; ASSERT_TRUE(TextFormat::ParseFromString( R"pb(node { name: "foo", op: "_Arg" })pb", &graph_def)); const std::vector<std::string> control_ret_node_names = { "restore_op_0", "tf_quant__save_op_0"}; const absl::StatusOr<std::optional<SaverDef>> saver_def = CreateSaverDef(control_ret_node_names, graph_def); EXPECT_THAT( saver_def, StatusIs( absl::StatusCode::kInternal, HasSubstr( "should be either all empty strings or all non-empty strings"))); } using ConvertMlirModuleToExportedModelTest = ::mlir::quant::QuantizationTestBase; TEST_F(ConvertMlirModuleToExportedModelTest, SimpleGraphDefSet) { mlir::OwningOpRef<mlir::ModuleOp> module_op = ParseModuleOpString(R"mlir( module attributes {tf_saved_model.semantics} { func.func @main(%arg: tensor<1x2xf32> {tf_saved_model.index_path = ["input_tensor:0"]}) -> (tensor<1x2xf32> {tf_saved_model.index_path = ["output_tensor:0"]}) attributes {tf.entry_function = {inputs = "input_tensor:0", outputs = "output_tensor:0"}, tf_saved_model.exported_names = ["main"]} { %0 = tf_executor.graph { tf_executor.fetch %arg : tensor<1x2xf32> } return %0 : tensor<1x2xf32> } } )mlir"); ASSERT_TRUE(module_op); const absl::StatusOr<ExportedModel> exported_model = ConvertMlirModuleToExportedModel(*module_op, "", {}, {}); ASSERT_THAT(exported_model, IsOk()); ASSERT_THAT(exported_model->graph_def().node(), SizeIs(2)); const auto arg_node_itr = llvm::find_if(exported_model->graph_def().node(), [](const NodeDef& node) { return node.op() == "_Arg"; }); ASSERT_NE(arg_node_itr, exported_model->graph_def().node().end()); EXPECT_THAT(arg_node_itr->name(), StrEq("input_tensor")); ASSERT_TRUE(arg_node_itr->attr().contains("tf_saved_model.index_path")); ASSERT_THAT(arg_node_itr->attr().at("tf_saved_model.index_path").list().s(), SizeIs(1)); EXPECT_THAT( arg_node_itr->attr().at("tf_saved_model.index_path").list().s()[0], StrEq("input_tensor:0")); const auto retval_node_itr = llvm::find_if(exported_model->graph_def().node(), [](const NodeDef& node) { return node.op() == "_Retval"; }); ASSERT_NE(retval_node_itr, exported_model->graph_def().node().end()); EXPECT_THAT(retval_node_itr->name(), StrEq("output_tensor")); ASSERT_TRUE(retval_node_itr->attr().contains("tf_saved_model.index_path")); ASSERT_THAT( retval_node_itr->attr().at("tf_saved_model.index_path").list().s(), SizeIs(1)); EXPECT_THAT( retval_node_itr->attr().at("tf_saved_model.index_path").list().s()[0], StrEq("output_tensor:0")); } TEST_F(ConvertMlirModuleToExportedModelTest, CheckpointDirSet) { mlir::OwningOpRef<mlir::ModuleOp> module_op = ParseModuleOpString(R"mlir( module attributes {tf_saved_model.semantics} { func.func @main() -> () attributes {tf_saved_model.exported_names = ["main"]} { tf_executor.graph { tf_executor.fetch } return } } )mlir"); ASSERT_TRUE(module_op); const absl::StatusOr<ExportedModel> exported_model = ConvertMlirModuleToExportedModel(*module_op, "my_checkpoint_dir", {}, {}); ASSERT_THAT(exported_model, IsOk()); EXPECT_THAT(exported_model->checkpoint_dir(), StrEq("my_checkpoint_dir")); } TEST_F(ConvertMlirModuleToExportedModelTest, FunctionAliasesSet) { mlir::OwningOpRef<mlir::ModuleOp> module_op = ParseModuleOpString(R"mlir( module attributes {tf_saved_model.semantics} { func.func private @function_1() -> () attributes {tf._original_func_name = "__func_1"} { tf_executor.graph { %control_0 = tf_executor.island wraps "tf.NoOp"() : () -> () } return } func.func private @function_2() -> () attributes {tf._original_func_name = "__func_2"} { tf_executor.graph { %control_0 = tf_executor.island wraps "tf.NoOp"() : () -> () } return } func.func @main() -> () attributes {tf_saved_model.exported_names = ["main"]} { tf_executor.graph { %control_0 = tf_executor.island wraps "tf.PartitionedCall"() <{config = "", config_proto = "", executor_type = "", f = @function_1}> : () -> () %control_1 = tf_executor.island wraps "tf.PartitionedCall"() <{config = "", config_proto = "", executor_type = "", f = @function_2}> : () -> () tf_executor.fetch %control_0, %control_1 : !tf_executor.control, !tf_executor.control } return } } )mlir"); ASSERT_TRUE(module_op); const absl::StatusOr<ExportedModel> exported_model = ConvertMlirModuleToExportedModel( *module_op, "", {{"alias_1", "function_1"}, {"alias_2", "function_2"}}, {}); ASSERT_THAT(exported_model, IsOk()); ASSERT_THAT(exported_model->function_aliases(), SizeIs(2)); EXPECT_THAT(exported_model->function_aliases().at("alias_1"), StrEq("function_1")); EXPECT_THAT(exported_model->function_aliases().at("alias_2"), StrEq("function_2")); } TEST_F(ConvertMlirModuleToExportedModelTest, AssetFileDefSet) { mlir::OwningOpRef<mlir::ModuleOp> module_op = ParseModuleOpString(R"mlir( module attributes {tf_saved_model.semantics} { func.func @main() -> () attributes {tf_saved_model.exported_names = ["main"]} { tf_executor.graph { tf_executor.fetch } return } } )mlir"); ASSERT_TRUE(module_op); AssetFileDef asset_file_def{}; ASSERT_TRUE( TextFormat::ParseFromString(R"pb(filename: "vocab_file.txt", tensor_info { name: "arg_0:0" })pb", &asset_file_def)); const std::vector<AssetFileDef> asset_file_defs = {asset_file_def}; const absl::StatusOr<ExportedModel> exported_model = ConvertMlirModuleToExportedModel(*module_op, "", {}, asset_file_defs); ASSERT_THAT(exported_model, IsOk()); ASSERT_THAT(exported_model->asset_file_defs(), SizeIs(1)); EXPECT_THAT(exported_model->asset_file_defs()[0].filename(), StrEq("vocab_file.txt")); EXPECT_THAT(exported_model->asset_file_defs()[0].tensor_info().name(), StrEq("arg_0:0")); } TEST_F(ConvertMlirModuleToExportedModelTest, InitNodeNameSetToLocOfControlOutput) { mlir::OwningOpRef<mlir::ModuleOp> module_op = ParseModuleOpString(R"mlir( module attributes {tf_saved_model.semantics} { "tf_saved_model.session_initializer"() <{initializers = []}> : () -> () "tf_saved_model.asset"() <{filename = "assets/vocab_file.txt", sym_name = "__tf_saved_model_asset0_vocab_file.txt"}> : () -> () func.func @main(%arg1: tensor<!tf_type.string> {tf_saved_model.index_path = ["arg_0:0"]}) -> (tensor<1x2xf32> {tf_saved_model.index_path = ["output:0"]}) attributes {tf.entry_function = {inputs = "arg_0:0", outputs = "output:0"}, tf_saved_model.exported_names = ["main"]} { %0 = tf_executor.graph { %o_0, %c_0 = tf_executor.island wraps "tf.Const"() <{value = dense<1.0> : tensor<1x2xf32>}> : () -> tensor<1x2xf32> %o, %c = tf_executor.island wraps "tf.HashTableV2"() <{container = "", key_dtype = !tf_type.string, shared_name = "vocab_file.txt", use_node_name_sharing = false, value_dtype = i64}> {device = ""} : () -> tensor<!tf_type.resource> %c_9 = tf_executor.island wraps "tf.InitializeTableFromTextFileV2"(%o, %arg1) <{delimiter = "\09", key_index = -2 : i64, value_index = -1 : i64, vocab_size = -1 : i64}> {_has_manual_control_dependencies = true, device = ""} : (tensor<!tf_type.resource>, tensor<!tf_type.string>) -> () %c_10 = tf_executor.island(%c_9) wraps "tf.NoOp"() : () -> () loc("init_op_init_all_tables") tf_executor.fetch %o_0, %c_10 : tensor<1x2xf32>, !tf_executor.control } return %0 : tensor<1x2xf32> } } )mlir"); ASSERT_TRUE(module_op); const absl::StatusOr<ExportedModel> exported_model = ConvertMlirModuleToExportedModel(*module_op, "", {}, {}); ASSERT_THAT(exported_model, IsOk()); EXPECT_THAT(exported_model->init_node_name(), StrEq("init_op_init_all_tables")); const auto init_node_itr = llvm::find_if( exported_model->graph_def().node(), [](const NodeDef& node) { return node.name() == "init_op_init_all_tables"; }); ASSERT_NE(init_node_itr, exported_model->graph_def().node().end()); EXPECT_THAT(init_node_itr->op(), StrEq("NoOp")); ASSERT_THAT(init_node_itr->input(), SizeIs(1)); EXPECT_THAT(init_node_itr->input()[0], StrEq("^tf.InitializeTableFromTextFileV2")); } TEST_F(ConvertMlirModuleToExportedModelTest, InitNodeNotSetIfLocNameMismatch) { mlir::OwningOpRef<mlir::ModuleOp> module_op = ParseModuleOpString(R"mlir( module attributes {tf_saved_model.semantics} { "tf_saved_model.session_initializer"() <{initializers = []}> : () -> () "tf_saved_model.asset"() <{filename = "assets/vocab_file.txt", sym_name = "__tf_saved_model_asset0_vocab_file.txt"}> : () -> () func.func @main(%arg1: tensor<!tf_type.string> {tf_saved_model.index_path = ["arg_0:0"]}) -> (tensor<1x2xf32> {tf_saved_model.index_path = ["output:0"]}) attributes {tf.entry_function = {inputs = "arg_0:0", outputs = "output:0"}, tf_saved_model.exported_names = ["main"]} { %0 = tf_executor.graph { %output_0, %control_0 = tf_executor.island wraps "tf.Const"() <{value = dense<1.0> : tensor<1x2xf32>}> : () -> tensor<1x2xf32> %output_1, %control_1 = tf_executor.island wraps "tf.HashTableV2"() <{container = "", key_dtype = !tf_type.string, shared_name = "vocab_file.txt", use_node_name_sharing = false, value_dtype = i64}> {device = ""} : () -> tensor<!tf_type.resource> %control_2 = tf_executor.island wraps "tf.InitializeTableFromTextFileV2"(%output_1, %arg1) <{delimiter = "\09", key_index = -2 : i64, value_index = -1 : i64, vocab_size = -1 : i64}> {_has_manual_control_dependencies = true, device = ""} : (tensor<!tf_type.resource>, tensor<!tf_type.string>) -> () %control_3 = tf_executor.island(%control_2) wraps "tf.NoOp"() : () -> () loc("init_ok") tf_executor.fetch %output_0, %control_3 : tensor<1x2xf32>, !tf_executor.control } return %0 : tensor<1x2xf32> } } )mlir"); ASSERT_TRUE(module_op); const absl::StatusOr<ExportedModel> exported_model = ConvertMlirModuleToExportedModel(*module_op, "", {}, {}); ASSERT_THAT(exported_model, IsOk()); EXPECT_THAT(exported_model->init_node_name(), IsEmpty()); } TEST_F(ConvertMlirModuleToExportedModelTest, ConversionFailureWhenNoMainFunction) { mlir::OwningOpRef<mlir::ModuleOp> module_op = ParseModuleOpString(R"mlir( module attributes {tf_saved_model.semantics} { func.func @not_main() -> () attributes {tf_saved_model.exported_names = ["not_main"]} { tf_executor.graph { tf_executor.fetch } return } } )mlir"); ASSERT_TRUE(module_op); const absl::StatusOr<ExportedModel> exported_model = ConvertMlirModuleToExportedModel(*module_op, "my_checkpoint_dir", {}, {}); EXPECT_THAT(exported_model, StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("entry function `main` must be present"))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
abd91a2c-ad24-436a-9933-db976e886b9a
cpp
google/arolla
dummy_operator
arolla/expr/operator_loader/dummy_operator.cc
arolla/expr/operator_loader/dummy_operator_test.cc
#include "arolla/expr/operator_loader/dummy_operator.h" #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_loader { using ::arolla::expr::ExprAttributes; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; DummyOperator::DummyOperator(absl::string_view name, ExprOperatorSignature signature, absl::string_view doc, QTypePtr result_qtype) : ExprOperatorWithFixedSignature( name, signature, doc, FingerprintHasher("::arolla::operator_loader::DummyOperator") .Combine(name, signature, doc, result_qtype) .Finish()), result_qtype_(std::move(result_qtype)) {} absl::string_view DummyOperator::py_qvalue_specialization_key() const { return "::arolla::operator_loader::DummyOperator"; } absl::StatusOr<ExprAttributes> DummyOperator::InferAttributes( absl::Span<const ExprAttributes> inputs) const { RETURN_IF_ERROR(ValidateOpInputsCount(inputs)); return ExprAttributes(result_qtype_); } }
#include "arolla/expr/operator_loader/dummy_operator.h" #include <cstdint> #include <memory> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/array/qtype/types.h" #include "arolla/expr/eval/invoke.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/unit.h" namespace arolla::operator_loader { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::expr::CallOp; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::Leaf; using ::arolla::expr::Literal; using ::testing::AllOf; using ::testing::HasSubstr; TEST(DummyOperatorTest, GetName) { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetArrayQType<int32_t>()); ASSERT_THAT(op.display_name(), "my_dummy_op"); } TEST(DummyOperatorTest, GetDoc) { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetArrayQType<int32_t>()); ASSERT_THAT(op.doc(), "dummy op docstring"); ASSERT_THAT(op.GetDoc(), IsOkAndHolds("dummy op docstring")); } TEST(DummyOperatorTest, GetOutputQType) { { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetArrayQType<int32_t>()); EXPECT_EQ(op.GetOutputQType(), GetArrayQType<int32_t>()); } { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetQType<OptionalValue<float>>()); EXPECT_EQ(op.GetOutputQType(), GetQType<OptionalValue<float>>()); } } TEST(DummyOperatorTest, QTypeInference) { { auto op = std::make_shared<DummyOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetArrayQType<int32_t>()); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1.5f), Literal(kUnit)})); EXPECT_EQ(expr->qtype(), GetArrayQType<int32_t>()); } { auto op = std::make_shared<DummyOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetArrayQType<int32_t>()); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Leaf("x"), Leaf("y")})); EXPECT_EQ(expr->qtype(), GetArrayQType<int32_t>()); } } TEST(DummyOperatorTest, InferAttributesIncorrectArity) { DummyOperator op("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetArrayQType<int32_t>()); EXPECT_THAT(op.InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, AllOf(HasSubstr("incorrect number of dependencies"), HasSubstr("expected 2 but got 0")))); } TEST(DummyOperatorTest, Eval) { auto op = std::make_shared<DummyOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetArrayQType<int32_t>()); ASSERT_OK_AND_ASSIGN( auto expr, CallOp(op, {Literal(1.5f), Literal(OptionalValue<Unit>())})); EXPECT_THAT( Invoke(expr, {}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("my_dummy_op is not a builtin or backend ExprOperator"))); } TEST(DummyOperatorTest, Fingerprint) { DummyOperator op1("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetQType<float>()); { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetQType<float>()); EXPECT_EQ(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("another_name", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetQType<float>()); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}}, "dummy op docstring", GetQType<float>()); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "another docstring", GetQType<float>()); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { DummyOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", GetQType<int32_t>()); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/dummy_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/dummy_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
363476b4-86dd-4517-8a90-829165178641
cpp
tensorflow/tensorflow
array_util
third_party/xla/xla/python/ifrt_proxy/common/array_util.cc
third_party/xla/xla/python/ifrt_proxy/common/array_util_test.cc
#include "xla/python/ifrt_proxy/common/array_util.h" #include <string> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { namespace { std::string StridesAsStr(const ArrayMemRegion::ByteStrides& strides) { if (!strides.has_value()) return "strides{nullopt}"; return absl::StrCat("strides{", absl::StrJoin(*strides, ","), "}"); } } absl::StatusOr<std::vector<int64_t>> DefaultByteStrides(const DType dtype, const Shape& shape) { if (!dtype.byte_size().has_value()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported data type to query byte-strides for: ", dtype.DebugString())); } std::vector<int64_t> result(shape.dims().size()); int64_t stride = *dtype.byte_size(); for (int i = static_cast<int>(shape.dims().size()) - 1; i >= 0; --i) { result[i] = stride; stride *= shape.dims()[i]; } return result; } absl::StatusOr<ArrayMemRegion> ArrayMemRegion::FromZerothElementPointer( const void* zeroth_element, const DType dtype, const Shape& shape, ByteStrides byte_strides) { if (!dtype.byte_size().has_value()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported data type to construct ArrayMemRegion: ", dtype.DebugString())); } void* const mem_region_start = const_cast<void*>(zeroth_element); if (!byte_strides.has_value() || (byte_strides->empty() && shape.dims().empty())) { return ArrayMemRegion(mem_region_start, dtype.byte_size().value() * shape.num_elements()); } if (shape.num_elements() == 0) { return ArrayMemRegion(mem_region_start, 0); } if (shape.dims().size() != byte_strides->size()) { return absl::InvalidArgumentError( absl::StrCat("Shape has different dimensions from byte_strides: ", shape.DebugString(), " vs ", StridesAsStr(byte_strides))); } uint64_t last_element_byte_offset = 0; for (int i = 0; i < byte_strides->size(); ++i) { int stride = (*byte_strides)[i]; if (shape.dims()[i] < 0) { return absl::InvalidArgumentError( absl::StrCat("A shape dimension is negative: ", shape.DebugString())); } else if (shape.dims()[i] == 1) { continue; } else if (stride <= 0) { return absl::UnimplementedError( absl::StrCat("Negative or zero strides are not fully supported: ", StridesAsStr(byte_strides))); } else if (stride % dtype.byte_size().value() != 0) { return absl::UnimplementedError(absl::StrCat( "byte_stride[", i, "] is not a multiple of the data-type's size: ", StridesAsStr(byte_strides), ", dtype=", dtype.DebugString())); } else { DCHECK_GT(shape.dims()[i], 0); last_element_byte_offset += (stride * (shape.dims()[i] - 1)); } } return ArrayMemRegion(mem_region_start, last_element_byte_offset + dtype.byte_size().value()); } absl::StatusOr<ArrayMemRegion> ArrayMemRegion::FromMinimalMemRegion( absl::string_view mem_region, const DType dtype, const Shape& shape, ByteStrides byte_strides) { TF_ASSIGN_OR_RETURN( auto result, FromZerothElementPointer(mem_region.data(), dtype, shape, byte_strides)); if (result.mem_region().size() != mem_region.size()) { return absl::InvalidArgumentError( absl::StrCat("Incorrect size ", result.mem_region().size(), " vs ", mem_region.size(), "; is provided memory region minimal? ", dtype.DebugString(), " ", shape.DebugString(), " ", StridesAsStr(byte_strides))); } CHECK_EQ(result.mem_region().data(), mem_region.data()); return result; } absl::string_view ArrayMemRegion::mem_region() const { return absl::string_view(static_cast<char*>(mem_region_start_), nbytes_); } void* ArrayMemRegion::zeroth_element() const { return mem_region_start_; } } } }
#include "xla/python/ifrt_proxy/common/array_util.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::ElementsAre; using ::testing::Not; using ::testing::TestWithParam; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; constexpr DType::Kind kF64 = DType::Kind::kF64; constexpr DType::Kind kS32 = DType::Kind::kS32; constexpr DType::Kind kString = DType::Kind::kString; using Strides = std::vector<int64_t>; TEST(DefaultByteStrides, ErrorsIfBadDtype) { EXPECT_THAT(DefaultByteStrides(DType(kString), Shape({1})), Not(IsOk())); } TEST(DefaultByteStrides, HappyCase) { EXPECT_THAT(DefaultByteStrides(DType(kF64), Shape({4, 3, 5})), IsOkAndHolds(ElementsAre(120, 40, 8))); } struct TC { const std::string test_name; const DType::Kind dtype_kind; const std::vector<int64_t> shape; const std::optional<std::vector<int64_t>> byte_strides; const std::optional<size_t> expected_size; }; std::string PrintToString(const TC& tc) { return tc.test_name; } class ArrayMemRegionSuccess : public TestWithParam<TC> {}; INSTANTIATE_TEST_SUITE_P( Tests, ArrayMemRegionSuccess, testing::Values( TC{"DefaultF64", kF64, {4, 3, 5}, std::nullopt}, TC{"MajorToMinorStridesF64", kF64, {4, 3, 5}, Strides({120, 40, 8})}, TC{"NotMajorToMinorF64", kF64, {3, 4, 5}, Strides({40, 120, 8})}, TC{"TransposedF64", kF64, {5, 3, 4}, Strides({8, 40, 120})}, TC{"DefaultS32", kS32, {4, 3, 5}, std::nullopt}, TC{"MajorToMinorStridesS32", kS32, {4, 3, 5}, Strides({60, 20, 4})}, TC{"NotMajorToMinorS32", kS32, {3, 4, 5}, Strides({20, 60, 4})}, TC{"TransposedS32", kS32, {5, 3, 4}, Strides({4, 20, 60})}, TC{"ScalarF64DefaultStrides", kF64, {}, std::nullopt}, TC{"ScalarF64EmptyStrides", kF64, {}, Strides({})}, TC{"NoColsDefaultStrides", kF64, {5, 0}, std::nullopt}, TC{"NoColsStridesNonZero", kF64, {5, 0}, Strides({40, 4})}, TC{"NoColsStridesZero", kF64, {5, 0}, Strides({0, 0})}, TC{"NoRowsDefaultStrides", kF64, {0, 5}, std::nullopt}, TC{"NoRowsStridesNonZero", kF64, {0, 5}, Strides({40, 4})}, TC{"NoRowsStridesZero", kF64, {0, 5}, Strides({0, 0})}, TC{"SingleElementArbitraryStrides", kF64, {1, 1}, Strides({100, 100})}, TC{"OneRowArbitraryColStride", kF64, {1, 5}, Strides({100, 8})}, TC{"OneColArbitraryRowStride", kF64, {5, 1}, Strides({8, 100})}, TC{"OneRowZeroColStride", kF64, {1, 5}, Strides({0, 8})}, TC{"OneColZeroRowStride", kF64, {5, 1}, Strides({8, 0})}, TC{"NonCompactSingleDimension", kS32, {5}, Strides({16}), 68}, TC{"NonCompactDim0", kS32, {4, 3, 5}, Strides({120, 20, 4}), 420}, TC{"PaddedElements", kS32, {4, 3, 5}, Strides({120, 40, 8}), 476}), testing::PrintToStringParamName()); TEST_P(ArrayMemRegionSuccess, TestCase) { const TC tc = GetParam(); const DType dtype(tc.dtype_kind); const Shape shape(tc.shape); const size_t expected_size = tc.expected_size.value_or( dtype.byte_size().value() * shape.num_elements()); std::string data(expected_size, 'a'); TF_ASSERT_OK_AND_ASSIGN(auto mem_region1, ArrayMemRegion::FromZerothElementPointer( data.data(), dtype, shape, tc.byte_strides)); EXPECT_EQ(mem_region1.zeroth_element(), data.data()); EXPECT_EQ(mem_region1.mem_region().data(), data.data()); EXPECT_EQ(mem_region1.mem_region().size(), data.size()); TF_ASSERT_OK_AND_ASSIGN( auto mem_region2, ArrayMemRegion::FromMinimalMemRegion(data, dtype, shape, tc.byte_strides)); EXPECT_EQ(mem_region2.zeroth_element(), data.data()); EXPECT_EQ(mem_region2.mem_region().data(), data.data()); EXPECT_EQ(mem_region2.mem_region().size(), data.size()); } class ArrayMemRegionFailure : public TestWithParam<TC> {}; INSTANTIATE_TEST_SUITE_P( Tests, ArrayMemRegionFailure, testing::Values( TC{"OneString", kString, {}, std::nullopt}, TC{"ManyStrings", kString, {5}, std::nullopt}, TC{"NegativeByteStrides", kS32, {4, 3, 5}, Strides({-60, -20, -4})}, TC{"ZeroByteStride", kS32, {5, 5}, Strides({0, 0})}, TC{"SmallerByteStrideThanDataType", kS32, {5, 5}, Strides({1, 1})}, TC{"ByteStrideIndivisibleByDataType", kS32, {5, 5}, Strides({7, 7})}, TC{"NegativeShapeDimension", kS32, {-5, -5}, Strides({20, 4})}), testing::PrintToStringParamName()); TEST_P(ArrayMemRegionFailure, TestCase) { const TC tc = GetParam(); const DType dtype(tc.dtype_kind); const Shape shape(tc.shape); char const* kSomeAddr = reinterpret_cast<char*>(1UL << 48); auto mem_region1 = ArrayMemRegion::FromZerothElementPointer( kSomeAddr, dtype, shape, tc.byte_strides); EXPECT_THAT(mem_region1.status(), Not(IsOk())); const size_t kSomeSize = 1024; auto mem_region2 = ArrayMemRegion::FromMinimalMemRegion( absl::string_view(kSomeAddr, kSomeSize), dtype, shape, tc.byte_strides); EXPECT_THAT(mem_region2.status(), Not(IsOk())); } TEST(ArrayMemRegion, FromBadMemRegionSizeFails) { const DType kDType(kS32); const Shape kShape({5, 5}); const size_t kDataBytes = kDType.byte_size().value() * kShape.num_elements(); const size_t kExtraSuffixBytes = 10; std::string data_with_extra_suffix(kDataBytes + kExtraSuffixBytes, 'a'); TF_ASSERT_OK_AND_ASSIGN( auto mem_region1, ArrayMemRegion::FromZerothElementPointer( data_with_extra_suffix.data(), kDType, kShape, std::nullopt)); EXPECT_EQ(mem_region1.mem_region().data(), data_with_extra_suffix.data()); EXPECT_EQ(mem_region1.zeroth_element(), data_with_extra_suffix.data()); EXPECT_LT(mem_region1.mem_region().size(), data_with_extra_suffix.size()); EXPECT_EQ(mem_region1.mem_region().size(), kDataBytes); auto mem_region2 = ArrayMemRegion::FromMinimalMemRegion( data_with_extra_suffix, kDType, kShape, std::nullopt); EXPECT_THAT(mem_region2.status(), Not(IsOk())); std::string data_without_some_bytes(kDataBytes - kExtraSuffixBytes, 'a'); auto mem_region3 = ArrayMemRegion::FromMinimalMemRegion( data_without_some_bytes, kDType, kShape, std::nullopt); EXPECT_THAT(mem_region3.status(), Not(IsOk())); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/common/array_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/common/array_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2b79fb86-bfa2-4e02-9747-fa99dd1a5572
cpp
tensorflow/tensorflow
max_unpooling_2d
tensorflow/lite/kernels/perception/max_unpooling_2d.cc
tensorflow/lite/kernels/perception/max_unpooling_2d_test.cc
#include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace max_unpooling_2d { constexpr int kDataInputTensor = 0; constexpr int kIndicesTensor = 1; constexpr int kOutputTensor = 0; inline void MaxUnpooling(const RuntimeShape& input_shape, const float* input_data, const int32_t* indices_data, const RuntimeShape& output_shape, float* output_data) { std::memset(output_data, 0, output_shape.FlatSize() * sizeof(float)); const int batches = MatchingDim(input_shape, 0, output_shape, 0); const int depth = MatchingDim(input_shape, 3, output_shape, 3); const int batch_stride = output_shape.Dims(1) * output_shape.Dims(2) * output_shape.Dims(3); for (int batch = 0; batch < batches; ++batch) { for (int in_y = 0; in_y < input_shape.Dims(1); ++in_y) { for (int in_x = 0; in_x < input_shape.Dims(2); ++in_x) { for (int channel = 0; channel < depth; ++channel) { const auto input_offset = Offset(input_shape, batch, in_y, in_x, channel); int idx = indices_data[input_offset]; output_data[batch * batch_stride + idx] = input_data[input_offset]; } } } } } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<const TfLitePoolParams*>(node->custom_initial_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE(context, output != nullptr); const TfLiteTensor* input = GetInput(context, node, kDataInputTensor); TF_LITE_ENSURE(context, input != nullptr); const TfLiteTensor* indices = GetInput(context, node, kIndicesTensor); TF_LITE_ENSURE(context, indices != nullptr); TF_LITE_ENSURE_EQ(context, NumDimensions(indices), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, output->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, indices->type, kTfLiteInt32); TF_LITE_ENSURE(context, params->padding != kTfLitePaddingUnknown); const RuntimeShape input_shape = GetTensorShape(input); const RuntimeShape indices_shape = GetTensorShape(indices); TF_LITE_ENSURE_MSG( context, input_shape.DimensionsCount() == indices_shape.DimensionsCount(), "Input and indices must have the same shape."); for (int i = 0; i < input_shape.DimensionsCount(); ++i) { TF_LITE_ENSURE_MSG(context, input_shape.Dims(i) == indices_shape.Dims(i), "Input and indices must have the same shape."); } int batches = input->dims->data[0]; int height = input->dims->data[1]; int width = input->dims->data[2]; int channels_out = input->dims->data[3]; int out_width, out_height; if (params->padding == kTfLitePaddingSame) { out_width = width * params->stride_width; out_height = height * params->stride_height; } else { out_width = (width - 1) * params->stride_width + params->filter_width; out_height = (height - 1) * params->stride_height + params->filter_height; } TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = batches; output_size->data[1] = out_height; output_size->data[2] = out_width; output_size->data[3] = channels_out; return context->ResizeTensor(context, output, output_size); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE(context, output != nullptr); const TfLiteTensor* input = GetInput(context, node, kDataInputTensor); TF_LITE_ENSURE(context, input != nullptr); const TfLiteTensor* indices = GetInput(context, node, kIndicesTensor); TF_LITE_ENSURE(context, indices != nullptr); MaxUnpooling(GetTensorShape(input), GetTensorData<float>(input), GetTensorData<int32_t>(indices), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } } TfLiteRegistration* RegisterMaxUnpooling2D() { static TfLiteRegistration reg = {nullptr, nullptr, max_unpooling_2d::Prepare, max_unpooling_2d::Eval}; return &reg; } TfLiteRegistration* Register_MAX_UNPOOLING2D() { return RegisterMaxUnpooling2D(); } } } }
#include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/perception/perception_ops.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace custom { namespace { using testing::ElementsAreArray; class MaxUnpoolingOpModel : public SingleOpModel { public: MaxUnpoolingOpModel(const TensorData& input, const TensorData& indices, int stride_height, int stride_width, int filter_height, int filter_width, TfLitePadding padding, const TensorData& output) { input_ = AddInput(input); indices_ = AddInput(indices); output_ = AddOutput(output); TfLitePoolParams params{padding, stride_width, stride_height, filter_width, filter_height, kTfLiteActNone}; uint8_t* params_ptr = reinterpret_cast<uint8_t*>(&params); std::vector<uint8_t> custom_option; custom_option.assign(params_ptr, params_ptr + sizeof(TfLitePoolParams)); SetCustomOp("MaxUnpooling2D", custom_option, RegisterMaxUnpooling2D); BuildInterpreter({GetShape(input_), GetShape(indices_)}); } void SetInput(const std::vector<float>& data) { PopulateTensor(input_, data); } void SetIndices(const std::vector<int32_t>& data) { PopulateTensor(indices_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input_; int indices_; int output_; }; TEST(MaxUnpoolingOpTest, DimensionMisMatchTest) { EXPECT_DEATH(MaxUnpoolingOpModel model( {TensorType_FLOAT32, {1, 1, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, 2, 2, 2, 2, kTfLitePaddingSame, {TensorType_FLOAT32, {}}), "Input and indices must have the same shape."); } TEST(MaxUnpoolingOpTest, SimpleTest) { MaxUnpoolingOpModel model( {TensorType_FLOAT32, {1, 1, 2, 1}}, {TensorType_INT32, {1, 1, 2, 1}}, 2, 2, 2, 2, kTfLitePaddingSame, {TensorType_FLOAT32, {}}); model.SetInput({13, 4}); model.SetIndices({1, 6}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4, 1})); EXPECT_THAT(model.GetOutput(), ElementsAreArray({0, 13, 0, 0, 0, 0, 4, 0})); } TEST(MaxUnpoolingOpTest, Strides2x1Test) { constexpr int kInputB = 1; constexpr int kInputH = 2; constexpr int kInputW = 2; constexpr int kInputC = 2; std::vector<float> input_data{1, 2, 3, 4, 5, 6, 7, 8}; std::vector<int32_t> indices_data{0, 3, 4, 7, 8, 11, 12, 15}; MaxUnpoolingOpModel model( {TensorType_FLOAT32, {kInputB, kInputH, kInputW, kInputC}}, {TensorType_INT32, {kInputB, kInputH, kInputW, kInputC}}, 2, 1, 2, 2, kTfLitePaddingSame, {TensorType_FLOAT32, {}}); model.SetInput(input_data); model.SetIndices(indices_data); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 2, 2})); EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 2, 3, 0, 0, 4, 5, 0, 0, 6, 7, 0, 0, 8})); } TEST(MaxUnpoolingOpTest, Strides2x2Test) { constexpr int kInputB = 1; constexpr int kInputH = 2; constexpr int kInputW = 4; constexpr int kInputC = 1; std::vector<float> input_data{1, 2, 3, 4, 5, 6, 7, 8}; std::vector<int32_t> indices_data{0, 5, 10, 13, 19, 20, 27, 31}; MaxUnpoolingOpModel model( {TensorType_FLOAT32, {kInputB, kInputH, kInputW, kInputC}}, {TensorType_INT32, {kInputB, kInputH, kInputW, kInputC}}, 2, 2, 2, 2, kTfLitePaddingSame, {TensorType_FLOAT32, {}}); model.SetInput(input_data); model.SetIndices(indices_data); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 8, 1})); EXPECT_THAT( model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 8})); } TEST(MaxUnpoolingOpTest, PaddingValidTest) { constexpr int kInputB = 1; constexpr int kInputH = 2; constexpr int kInputW = 2; constexpr int kInputC = 1; std::vector<float> input_data{7, 10, 20, 19}; std::vector<int32_t> indices_data{6, 9, 16, 19}; MaxUnpoolingOpModel model( {TensorType_FLOAT32, {kInputB, kInputH, kInputW, kInputC}}, {TensorType_INT32, {kInputB, kInputH, kInputW, kInputC}}, 2, 2, 2, 3, kTfLitePaddingValid, {TensorType_FLOAT32, {}}); model.SetInput(input_data); model.SetIndices(indices_data); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 5, 1})); EXPECT_THAT(model.GetOutput(), ElementsAreArray({0, 0, 0, 0, 0, 0, 7, 0, 0, 10, 0, 0, 0, 0, 0, 0, 20, 0, 0, 19})); } TEST(MaxUnpoolingOpTest, InputWithBatchTest) { constexpr int kInputB = 2; constexpr int kInputH = 2; constexpr int kInputW = 4; constexpr int kInputC = 2; std::vector<float> input_data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}; std::vector<int32_t> indices_data{2, 23, 8, 9, 12, 15, 40, 43, 44, 47, 72, 75, 80, 79, 62, 65, 0, 1, 30, 7, 14, 35, 42, 21, 68, 69, 50, 51, 56, 5, 86, 63}; MaxUnpoolingOpModel model( {TensorType_FLOAT32, {kInputB, kInputH, kInputW, kInputC}}, {TensorType_INT32, {kInputB, kInputH, kInputW, kInputC}}, 2, 3, 2, 2, kTfLitePaddingSame, {TensorType_FLOAT32, {}}); model.SetInput(input_data); model.SetIndices(indices_data); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 4, 12, 2})); EXPECT_THAT( model.GetOutput(), ElementsAreArray( {0, 0, 1, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 8, 9, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 16, 0, 0, 0, 0, 0, 0, 11, 0, 0, 12, 0, 0, 0, 14, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 18, 0, 0, 0, 30, 0, 20, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 27, 28, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 25, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0})); } TEST(MaxUnpoolingOpTest, InputWithBatchAndPaddingValidTest) { constexpr int kInputB = 2; constexpr int kInputH = 2; constexpr int kInputW = 4; constexpr int kInputC = 2; std::vector<float> input_data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}; std::vector<int32_t> indices_data{2, 23, 8, 9, 12, 15, 40, 43, 44, 47, 72, 75, 80, 79, 62, 65, 0, 1, 30, 7, 14, 35, 42, 21, 68, 69, 50, 51, 56, 5, 86, 63}; MaxUnpoolingOpModel model( {TensorType_FLOAT32, {kInputB, kInputH, kInputW, kInputC}}, {TensorType_INT32, {kInputB, kInputH, kInputW, kInputC}}, 2, 3, 2, 2, kTfLitePaddingValid, {TensorType_FLOAT32, {}}); model.SetInput(input_data); model.SetIndices(indices_data); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 4, 11, 2})); EXPECT_THAT( model.GetOutput(), ElementsAreArray( {0, 0, 1, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 8, 9, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 16, 0, 0, 0, 0, 0, 0, 11, 0, 0, 12, 0, 0, 0, 14, 13, 0, 0, 0, 0, 0, 0, 0, 17, 18, 0, 0, 0, 30, 0, 20, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 27, 28, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 25, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0})); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/perception/max_unpooling_2d.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/perception/max_unpooling_2d_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b4f0a6ed-ff45-41a0-bf78-a11ec8f1d3c1
cpp
tensorflow/tensorflow
logging_hooks
tensorflow/compiler/mlir/tf2xla/internal/logging_hooks.cc
tensorflow/compiler/mlir/tf2xla/internal/logging_hooks_test.cc
#include "tensorflow/compiler/mlir/tf2xla/internal/logging_hooks.h" #include <memory> #include <string> #include "llvm/ADT/StringRef.h" #include "mlir/Pass/PassManager.h" #include "tensorflow/compiler/mlir/tensorflow/utils/data_dumper_logger_config.h" #include "tensorflow/core/util/debug_data_dumper.h" namespace tensorflow { namespace tf2xla { namespace internal { using mlir::PassManager; void EnablePassIRPrinting(PassManager& pm, const std::string& dump_group_name, llvm::StringRef module_name) { pm.getContext()->disableMultithreading(); pm.enableIRPrinting(std::make_unique<::tensorflow::DataDumperLoggerConfig>( [module_name, dump_group_name](const std::string& pass_tag_name, mlir::Operation* op) { return DEBUG_DATA_DUMPER()->GetDumpFilename( module_name.str(), dump_group_name, pass_tag_name); }, "", true)); pm.enableTiming(); } }; }; };
#include "tensorflow/compiler/mlir/tf2xla/internal/logging_hooks.h" #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Parser/Parser.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/Passes.h" #include "tensorflow/compiler/mlir/register_common_dialects.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/file_statistics.h" #include "tsl/platform/status.h" namespace tensorflow { namespace tf2xla { namespace internal { namespace { using mlir::DialectRegistry; using mlir::LogicalResult; using mlir::MLIRContext; using mlir::ModuleOp; using mlir::OwningOpRef; using mlir::PassManager; using mlir::func::FuncOp; std::string TestDataPath() { return tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tf2xla/internal/testdata/"); } class LoggingHooksTest : public ::testing::Test { public: LoggingHooksTest() { mlir::RegisterCommonToolingDialects(registry_); context_.appendDialectRegistry(registry_); context_.loadAllAvailableDialects(); env_ = Env::Default(); test_group_name_ = "TestGroup"; test_dir_ = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", test_dir_.c_str(), 1); } absl::Status CreateMlirModule(std::string mlir_module_filename) { std::string mlir_module_path = TestDataPath() + mlir_module_filename; mlir_module_ = mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context_); if (!mlir_module_) { return absl::Status( absl::StatusCode::kNotFound, absl::StrCat("Could not find MLIR module at ", mlir_module_path)); } return absl::OkStatus(); } DialectRegistry registry_; MLIRContext context_; OwningOpRef<mlir::ModuleOp> mlir_module_; Env* env_; std::string test_dir_; std::string test_group_name_; }; TEST_F(LoggingHooksTest, DumpsPassData) { std::vector<std::string> files; TF_ASSERT_OK(env_->GetChildren(test_dir_, &files)); EXPECT_THAT(files, ::testing::IsEmpty()); TF_ASSERT_OK(CreateMlirModule("dead_const.mlir")); PassManager pass_manager(&context_); pass_manager.addNestedPass<FuncOp>(mlir::createCanonicalizerPass()); EnablePassIRPrinting(pass_manager, test_group_name_); LogicalResult pass_status = pass_manager.run(mlir_module_.get()); EXPECT_TRUE(pass_status.succeeded()); TF_ASSERT_OK(env_->GetChildren(test_dir_, &files)); EXPECT_THAT(files, ::testing::SizeIs(2)); } }; }; }; };
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/logging_hooks.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/logging_hooks_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8f93cfd3-d9d0-4582-9743-597d6d1201cb
cpp
abseil/abseil-cpp
string_constant
absl/strings/internal/string_constant.h
absl/strings/internal/string_constant_test.cc
#ifndef ABSL_STRINGS_INTERNAL_STRING_CONSTANT_H_ #define ABSL_STRINGS_INTERNAL_STRING_CONSTANT_H_ #include "absl/meta/type_traits.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace strings_internal { template <typename T> struct StringConstant { private: static constexpr bool TryConstexprEval(absl::string_view view) { return view.empty() || 2 * view[0] != 1; } public: static constexpr absl::string_view value = T{}(); constexpr absl::string_view operator()() const { return value; } static_assert(TryConstexprEval(value), "The input string_view must point to constant data."); }; #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL template <typename T> constexpr absl::string_view StringConstant<T>::value; #endif template <typename T> constexpr StringConstant<T> MakeStringConstant(T) { return {}; } } ABSL_NAMESPACE_END } #endif
#include "absl/strings/internal/string_constant.h" #include "absl/meta/type_traits.h" #include "gmock/gmock.h" #include "gtest/gtest.h" namespace { using absl::strings_internal::MakeStringConstant; struct Callable { constexpr absl::string_view operator()() const { return absl::string_view("Callable", 8); } }; TEST(StringConstant, Traits) { constexpr auto str = MakeStringConstant(Callable{}); using T = decltype(str); EXPECT_TRUE(std::is_empty<T>::value); EXPECT_TRUE(std::is_trivial<T>::value); EXPECT_TRUE(absl::is_trivially_default_constructible<T>::value); EXPECT_TRUE(absl::is_trivially_copy_constructible<T>::value); EXPECT_TRUE(absl::is_trivially_move_constructible<T>::value); EXPECT_TRUE(absl::is_trivially_destructible<T>::value); } TEST(StringConstant, MakeFromCallable) { constexpr auto str = MakeStringConstant(Callable{}); using T = decltype(str); EXPECT_EQ(Callable{}(), T::value); EXPECT_EQ(Callable{}(), str()); } TEST(StringConstant, MakeFromStringConstant) { constexpr auto str = MakeStringConstant(Callable{}); constexpr auto str2 = MakeStringConstant(str); using T = decltype(str2); EXPECT_EQ(Callable{}(), T::value); EXPECT_EQ(Callable{}(), str2()); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/string_constant.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/string_constant_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
692945d3-8470-407f-ae14-61af4fa1bf80
cpp
tensorflow/tensorflow
scatter_op
tensorflow/core/kernels/scatter_op.cc
tensorflow/core/kernels/scatter_op_test.cc
#include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/kernels/scatter_functor.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/determinism.h" #include "tensorflow/core/util/util.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; static bool ValidShapes(const Tensor& params, const Tensor& updates, const Tensor& indices) { if (updates.dims() == 0) return true; if (updates.dims() != indices.dims() + params.dims() - 1) return false; for (int d = 0; d < indices.dims(); d++) { if (updates.dim_size(d) != indices.dim_size(d)) { return false; } } for (int d = 1; d < params.dims(); d++) { if (params.dim_size(d) != updates.dim_size(d - 1 + indices.dims())) { return false; } } return true; } static void DoValidationChecking(OpKernelContext* c, const Tensor& params, const Tensor& indices, const Tensor& updates) { OP_REQUIRES(c, params.IsInitialized(), errors::FailedPrecondition("Null ref for params")); OP_REQUIRES(c, TensorShapeUtils::IsVectorOrHigher(params.shape()), errors::InvalidArgument("params must be at least 1-D, got shape ", params.shape().DebugString())); OP_REQUIRES( c, ValidShapes(params, updates, indices), errors::InvalidArgument("Must have updates.shape = indices.shape + " "params.shape[1:] or updates.shape = [], got ", "updates.shape ", updates.shape().DebugString(), ", indices.shape ", indices.shape().DebugString(), ", params.shape ", params.shape().DebugString())); } template <typename Device, typename T, typename Index, scatter_op::UpdateOp op> class ScatterUpdateOp : public OpKernel { public: explicit ScatterUpdateOp(OpKernelConstruction* c) : OpKernel(c) { OP_REQUIRES_OK(c, c->GetAttr("use_locking", &use_exclusive_lock_)); if (std::is_same<Device, GPUDevice>::value) { OP_REQUIRES( c, !OpDeterminismRequired(), errors::Unimplemented( "Determinism is not yet supported in GPU implementation of " "Scatter ops with ref inputs. Consider using resource variables " "instead if you want to run Scatter when op determinism is " "enabled.")); } } void Compute(OpKernelContext* c) override { if (use_exclusive_lock_) { mutex_lock l(*c->input_ref_mutex(0)); DoCompute(c); } else { DoCompute(c); } } private: bool use_exclusive_lock_; void DoCompute(OpKernelContext* c) { Tensor params = c->mutable_input(0, use_exclusive_lock_); const Tensor& indices = c->input(1); const Tensor& updates = c->input(2); DoValidationChecking(c, params, indices, updates); if (!c->status().ok()) return; const int64_t N_big = indices.NumElements(); OP_REQUIRES( c, N_big <= std::numeric_limits<Index>::max(), errors::InvalidArgument("indices has too many elements for ", DataTypeString(DataTypeToEnum<Index>::v()), " indexing: ", N_big, " > ", std::numeric_limits<Index>::max())); const Index N = static_cast<Index>(indices.NumElements()); OP_REQUIRES( c, params.dim_size(0) <= std::numeric_limits<Index>::max(), errors::InvalidArgument("params.shape[0] too large for ", DataTypeString(DataTypeToEnum<Index>::v()), " indexing: ", params.dim_size(0), " > ", std::numeric_limits<Index>::max())); c->forward_ref_input_to_ref_output(0, 0); if (N > 0) { auto indices_flat = indices.flat<Index>(); auto params_flat = params.flat_outer_dims<T>(); if (TensorShapeUtils::IsScalar(updates.shape())) { const auto update = updates.scalar<T>(); functor::ScatterScalarFunctor<Device, T, Index, op> functor; const Index bad_i = functor(c, c->template eigen_device<Device>(), params_flat, update, indices_flat); OP_REQUIRES(c, bad_i < 0, errors::InvalidArgument( "indices", SliceDebugString(indices.shape(), bad_i), " = ", indices_flat(bad_i), " is not in [0, ", params.dim_size(0), ")")); } else { auto updates_flat = updates.shaped<T, 2>({N, updates.NumElements() / N}); functor::ScatterFunctor<Device, T, Index, op> functor; const Index bad_i = functor(c, c->template eigen_device<Device>(), params_flat, updates_flat, indices_flat); OP_REQUIRES(c, bad_i < 0, errors::InvalidArgument( "indices", SliceDebugString(indices.shape(), bad_i), " = ", indices_flat(bad_i), " is not in [0, ", params.dim_size(0), ")")); } } } }; #define REGISTER_SCATTER_KERNEL_INDEX(type, index_type, dev, name, op) \ REGISTER_KERNEL_BUILDER(Name(name) \ .Device(DEVICE_##dev) \ .TypeConstraint<type>("T") \ .TypeConstraint<index_type>("Tindices"), \ ScatterUpdateOp<dev##Device, type, index_type, op>) #define REGISTER_SCATTER_KERNEL(type, dev, name, op) \ REGISTER_SCATTER_KERNEL_INDEX(type, int32, dev, name, op); \ REGISTER_SCATTER_KERNEL_INDEX(type, int64_t, dev, name, op); #define REGISTER_SCATTER_ARITHMETIC(type, dev) \ REGISTER_SCATTER_KERNEL(type, dev, "ScatterAdd", scatter_op::UpdateOp::ADD); \ REGISTER_SCATTER_KERNEL(type, dev, "ScatterDiv", scatter_op::UpdateOp::DIV); \ REGISTER_SCATTER_KERNEL(type, dev, "ScatterMul", scatter_op::UpdateOp::MUL); \ REGISTER_SCATTER_KERNEL(type, dev, "ScatterSub", scatter_op::UpdateOp::SUB); #define REGISTER_SCATTER_MINMAX(type, dev) \ REGISTER_SCATTER_KERNEL(type, dev, "ScatterMin", scatter_op::UpdateOp::MIN); \ REGISTER_SCATTER_KERNEL(type, dev, "ScatterMax", scatter_op::UpdateOp::MAX); #define REGISTER_SCATTER_UPDATE(type, dev) \ REGISTER_SCATTER_KERNEL(type, dev, "ScatterUpdate", \ scatter_op::UpdateOp::ASSIGN); #define REGISTER_SCATTER_ARITHMETIC_CPU(type) \ REGISTER_SCATTER_ARITHMETIC(type, CPU); #define REGISTER_SCATTER_MINMAX_CPU(type) REGISTER_SCATTER_MINMAX(type, CPU); #define REGISTER_SCATTER_UPDATE_CPU(type) REGISTER_SCATTER_UPDATE(type, CPU); TF_CALL_REAL_NUMBER_TYPES(REGISTER_SCATTER_MINMAX_CPU); TF_CALL_NUMBER_TYPES(REGISTER_SCATTER_ARITHMETIC_CPU); TF_CALL_ALL_TYPES(REGISTER_SCATTER_UPDATE_CPU); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_SCATTER_ARITHMETIC_GPU(type) \ REGISTER_SCATTER_ARITHMETIC(type, GPU); #define REGISTER_SCATTER_MINMAX_GPU(type) REGISTER_SCATTER_MINMAX(type, GPU); #define REGISTER_SCATTER_UPDATE_GPU(type) REGISTER_SCATTER_UPDATE(type, GPU); TF_CALL_GPU_NUMBER_TYPES(REGISTER_SCATTER_ARITHMETIC_GPU); TF_CALL_GPU_NUMBER_TYPES(REGISTER_SCATTER_MINMAX_GPU); TF_CALL_GPU_NUMBER_TYPES(REGISTER_SCATTER_UPDATE_GPU); #endif #undef REGISTER_SCATTER_ARITHMETIC #undef REGISTER_SCATTER_ARITHMETIC_CPU #undef REGISTER_SCATTER_ARITHMETIC_GPU #undef REGISTER_SCATTER_MINMAX #undef REGISTER_SCATTER_MINMAX_CPU #undef REGISTER_SCATTER_MINMAX_GPU #undef REGISTER_SCATTER_UPDATE #undef REGISTER_SCATTER_UPDATE_CPU #undef REGISTER_SCATTER_UPDATE_GPU #undef REGISTER_SCATTER_KERNEL #undef REGISTER_SCATTER_KERNEL_INDEX }
#include <functional> #include <memory> #include <vector> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { class ScatterUpdateOpTest : public OpsTestBase { protected: void MakeOp(DataType variable_ref_type, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "ScatterUpdate") .Input(FakeInput(variable_ref_type)) .Input(FakeInput(index_type)) .Input(FakeInput(RemoveRefType(variable_ref_type))) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; class ScatterSubOpTest : public OpsTestBase { protected: void MakeOp(DataType variable_ref_type, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "ScatterSub") .Input(FakeInput(variable_ref_type)) .Input(FakeInput(index_type)) .Input(FakeInput(RemoveRefType(variable_ref_type))) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(ScatterUpdateOpTest, Simple_StringType) { MakeOp(DT_STRING_REF, DT_INT32); AddInputFromArray<tstring>(TensorShape({1}), {"Brain"}); AddInputFromArray<int32>(TensorShape({1}), {0}); AddInputFromArray<tstring>(TensorShape({1}), {"TensorFlow"}); TF_ASSERT_OK(RunOpKernel()); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_STRING, TensorShape({1})); test::FillValues<tstring>(&expected, {"TensorFlow"}); test::ExpectTensorEqual<tstring>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, Simple_BoolType) { MakeOp(DT_BOOL_REF, DT_INT32); AddInputFromArray<bool>(TensorShape({1}), {false}); AddInputFromArray<int32>(TensorShape({1}), {0}); AddInputFromArray<bool>(TensorShape({1}), {true}); TF_ASSERT_OK(RunOpKernel()); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_BOOL, TensorShape({1})); test::FillValues<bool>(&expected, {true}); test::ExpectTensorEqual<bool>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, Simple_TwoD32) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({5, 3}), {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 2}); AddInputFromArray<float>(TensorShape({3, 3}), {100, 101, 102, 777, 778, 779, 10000, 10001, 10002}); TF_ASSERT_OK(RunOpKernel()); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_FLOAT, TensorShape({5, 3})); test::FillValues<float>(&expected, {100, 101, 102, 0, 0, 0, 10000, 10001, 10002, 0, 0, 0, 777, 778, 779}); test::ExpectTensorEqual<float>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, Simple_Two64) { MakeOp(DT_FLOAT_REF, DT_INT64); AddInputFromArray<float>(TensorShape({5, 3}), {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 2}); AddInputFromArray<float>(TensorShape({3, 3}), {100, 101, 102, 777, 778, 779, 10000, 10001, 10002}); TF_ASSERT_OK(RunOpKernel()); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_FLOAT, TensorShape({5, 3})); test::FillValues<float>(&expected, {100, 101, 102, 0, 0, 0, 10000, 10001, 10002, 0, 0, 0, 777, 778, 779}); test::ExpectTensorEqual<float>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, Simple_ZeroD) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({}), {3}); AddInputFromArray<float>(TensorShape({}), {101}); TF_ASSERT_OK(RunOpKernel()); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_FLOAT, TensorShape({5})); test::FillValues<float>(&expected, {0, 0, 0, 101, 0}); test::ExpectTensorEqual<float>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, Simple_OneD) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 2}); AddInputFromArray<float>(TensorShape({3}), {100, 101, 102}); TF_ASSERT_OK(RunOpKernel()); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_FLOAT, TensorShape({5})); test::FillValues<float>(&expected, {100, 0, 102, 0, 101}); test::ExpectTensorEqual<float>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, HigherRank) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({8}), {0, 0, 0, 0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({2, 3}), {0, 4, 2, 1, 3, 6}); AddInputFromArray<float>(TensorShape({2, 3}), {10, 20, 30, 40, 50, 60}); TF_ASSERT_OK(RunOpKernel()); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_FLOAT, TensorShape({8})); test::FillValues<float>(&expected, {10, 40, 30, 50, 20, 0, 60, 0}); test::ExpectTensorEqual<float>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, Error_IndexOutOfRange) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({5, 3}), {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 99}); AddInputFromArray<float>(TensorShape({3, 3}), {100, 101, 102, 777, 778, 779, 10000, 10001, 10002}); Status s = RunOpKernel(); EXPECT_TRUE( absl::StrContains(s.ToString(), "indices[2] = 99 is not in [0, 5)")) << s; } TEST_F(ScatterSubOpTest, Error_IndexOutOfRange) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({14}), {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({3}), {0, 1, 99}); AddInputFromArray<float>(TensorShape({3}), {100, 101, 102}); Status s = RunOpKernel(); EXPECT_TRUE( absl::StrContains(s.ToString(), "indices[2] = 99 is not in [0, 14)")) << s; } TEST_F(ScatterSubOpTest, StressIndexTest) { MakeOp(DT_INT32_REF, DT_INT32); const int kRows = 1; std::vector<int32> values(kRows, 0); const int kNumUpdates = 1000000; std::vector<int32> indices(kNumUpdates, 0); std::vector<int32> updates(kNumUpdates, 1); AddInputFromArray<int32>(TensorShape({kRows}), values); AddInputFromArray<int32>(TensorShape({kNumUpdates}), indices); AddInputFromArray<int32>(TensorShape({kNumUpdates}), updates); Status s = RunOpKernel(); Tensor params_tensor = *mutable_input(0).tensor; Tensor expected(allocator(), DT_INT32, TensorShape({1})); test::FillValues<int32>(&expected, {-1000000}); test::ExpectTensorEqual<int32>(expected, params_tensor); } TEST_F(ScatterUpdateOpTest, Error_WrongDimsIndices) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({2, 3}), {0, 0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({1, 3}), {0, 4, 99}); AddInputFromArray<float>(TensorShape({3, 3}), {100, 101, 102, 777, 778, 779, 10000, 10001, 10002}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains(s.ToString(), "Must have updates.shape = indices.shape + " "params.shape[1:] or updates.shape = [], got ")) << s; } TEST_F(ScatterUpdateOpTest, Error_MismatchedParamsAndUpdateDimensions) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({5, 3}), {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 2}); AddInputFromArray<float>( TensorShape({3, 4}), {100, 101, 102, 103, 777, 778, 779, 780, 10000, 10001, 10002, 10004}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains(s.ToString(), "Must have updates.shape = indices.shape + " "params.shape[1:] or updates.shape = [], got ")) << s; } TEST_F(ScatterUpdateOpTest, Error_MismatchedIndicesAndUpdateDimensions) { MakeOp(DT_FLOAT_REF, DT_INT32); AddInputFromArray<float>(TensorShape({5, 3}), {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 2}); AddInputFromArray<float>(TensorShape({2, 3}), {100, 101, 102, 10000, 10001, 10002}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains(s.ToString(), "Must have updates.shape = indices.shape + " "params.shape[1:] or updates.shape = [], got ")) << s; } class ScatterUpdateBM : public ScatterUpdateOpTest { public: void TestBody() override {} void MakeBenchmarkOp(const char* op, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", op) .Input(FakeInput(DT_FLOAT_REF)) .Input(FakeInput(index_type)) .Input(FakeInput(DT_FLOAT)) .Finalize(node_def())); TF_CHECK_OK(InitOp()); } }; template <typename Index> void BM_ScatterHelper(::testing::benchmark::State& state, int embedding_size, const char* op, bool big_num_updates = false) { const int kRows = 10000000 / embedding_size; std::vector<float> values; values.reserve(kRows); for (int i = 0; i < kRows * embedding_size; i++) { values.push_back(i); } const int kNumUpdates = big_num_updates ? 1000000 : 1000; random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); std::vector<Index> indices; std::vector<float> updates; for (int i = 0; i < kNumUpdates; i++) { indices.push_back(rnd.Uniform(kRows)); for (int j = 0; j < embedding_size; j++) { updates.push_back(i * 10 + j); } } ScatterUpdateBM bm; bm.MakeBenchmarkOp(op, DataTypeToEnum<Index>::v()); bm.AddInputFromArray<float>(TensorShape({kRows, embedding_size}), values); bm.AddInputFromArray<Index>(TensorShape({kNumUpdates}), indices); bm.AddInputFromArray<float>(TensorShape({kNumUpdates, embedding_size}), updates); for (auto i : state) { Status s = bm.RunOpKernel(); } state.SetItemsProcessed((static_cast<int64_t>(kNumUpdates) * embedding_size) * state.iterations()); } void BM_ScatterUpdateInt32(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int32>(state, embedding_size, "ScatterUpdate"); } void BM_ScatterUpdateInt64(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int64_t>(state, embedding_size, "ScatterUpdate"); } void BM_ScatterAddInt32(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int32>(state, embedding_size, "ScatterAdd"); } void BM_ScatterAddInt32Large(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int32>(state, embedding_size, "ScatterAdd", true); } void BM_ScatterAddInt64(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int64_t>(state, embedding_size, "ScatterAdd"); } void BM_ScatterMulInt32(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int32>(state, embedding_size, "ScatterMul"); } void BM_ScatterMulInt64(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int64_t>(state, embedding_size, "ScatterMul"); } void BM_ScatterDivInt32(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int32>(state, embedding_size, "ScatterDiv"); } void BM_ScatterDivInt64(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int64_t>(state, embedding_size, "ScatterDiv"); } void BM_ScatterMinInt32(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int32>(state, embedding_size, "ScatterMin"); } void BM_ScatterMinInt64(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int64_t>(state, embedding_size, "ScatterMin"); } void BM_ScatterMaxInt32(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int32>(state, embedding_size, "ScatterMax"); } void BM_ScatterMaxInt64(::testing::benchmark::State& state) { const int embedding_size = state.range(0); BM_ScatterHelper<int64_t>(state, embedding_size, "ScatterMax"); } BENCHMARK(BM_ScatterUpdateInt32) ->Arg(1) ->Arg(10) ->Arg(32) ->Arg(50) ->Arg(64) ->Arg(80) ->Arg(96) ->Arg(112) ->Arg(192) ->Arg(256) ->Arg(1024) ->Arg(10000) ->Arg(100000) ->Arg(1000000); BENCHMARK(BM_ScatterUpdateInt64) ->Arg(1) ->Arg(10) ->Arg(64) ->Arg(256) ->Arg(1024) ->Arg(100000); BENCHMARK(BM_ScatterAddInt32)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterAddInt32Large) ->Arg(1) ->Arg(10) ->Arg(64) ->Arg(256) ->Arg(1024); BENCHMARK(BM_ScatterAddInt64)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterMulInt32)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterMulInt64)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterDivInt32)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterDivInt64)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterMinInt32)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterMinInt64)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterMaxInt32)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); BENCHMARK(BM_ScatterMaxInt64)->Arg(1)->Arg(10)->Arg(64)->Arg(256)->Arg(1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/scatter_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/scatter_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7484ff92-acf1-42ef-86b8-36fb3c19fc85
cpp
tensorflow/tensorflow
hlo_instruction
third_party/xla/xla/hlo/ir/hlo_instruction.cc
third_party/xla/xla/service/hlo_instruction_test.cc
#include "xla/hlo/ir/hlo_instruction.h" #include <algorithm> #include <climits> #include <cstddef> #include <cstdint> #include <functional> #include <iostream> #include <iterator> #include <memory> #include <optional> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/optimization.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/backend_config.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_domain_metadata.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_op_metadata.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_original_value.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/hlo_sharding_metadata.h" #include "xla/hlo/ir/ptrvec.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/map_util.h" #include "xla/primitive_util.h" #include "xla/printer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_lexer.h" #include "xla/service/mapped_ptr_container_sorter.h" #include "xla/service/name_uniquer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/sort_json.h" #include "xla/status_macros.h" #include "xla/tsl/lib/gtl/iterator_range.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { using absl::CEscape; using absl::StrAppend; using absl::StrCat; using absl::StrJoin; const HloInstruction::Rare* const HloInstruction::kEmptyRare = new HloInstruction::Rare; namespace { template <typename T> absl::Status EraseElementFromVector(PtrVec<T>* container, T value) { auto it = std::find(container->begin(), container->end(), value); TF_RET_CHECK(it != container->end()); container->erase(it); return absl::OkStatus(); } } HloInstruction::Users::~Users() = default; void HloInstruction::Users::Clear() { users_.clear(); user_map_.reset(nullptr); DCHECK(CheckInvariants()); } bool HloInstruction::Users::Contains(const HloInstruction* instruction) const { if (user_map_ == nullptr) { return std::find(users_.begin(), users_.end(), instruction) != users_.end(); } else { return user_map_->contains(instruction); } } void HloInstruction::Users::AddUser(HloInstruction* user) { if (!Contains(user)) { if (user_map_ == nullptr && users_.size() >= kMapThreshold) { user_map_ = std::make_unique<absl::flat_hash_map<const HloInstruction*, int64_t>>( users_.size()); RebuildMap(); DCHECK(CheckInvariants()); } if (user_map_ != nullptr) { user_map_->emplace(user, users_.size()); } users_.push_back(user); DCHECK(CheckInvariants()); } } int64_t HloInstruction::Users::UserId(HloInstruction* user) { if (user_map_ == nullptr) { auto it = std::find(users_.begin(), users_.end(), user); CHECK(it != users_.end()); return it - users_.begin(); } else { auto result = user_map_->find(user); CHECK(result != user_map_->end()); return result->second; } } void HloInstruction::Users::MaybeRemoveUser(HloInstruction* user) { if (Contains(user)) { RemoveUser(user); DCHECK(CheckInvariants()); } } void HloInstruction::Users::RemoveUser(HloInstruction* user) { const int64_t index = UserId(user); CHECK_EQ(users_[index], user); HloInstruction* last = users_.back(); if (user_map_ != nullptr) { (*user_map_)[last] = index; user_map_->erase(user); } users_[index] = last; users_.pop_back(); DCHECK(CheckInvariants()); } void HloInstruction::Users::SortInstructionUsers( const MappedPtrContainerSorter<HloInstruction>::MapPtrFn& map_fn, const Users& sorted_instruction_users) { using Sorter = MappedPtrContainerSorter<HloInstruction>; auto status = Sorter::Sort(map_fn, Sorter::IndexAfterMappedElementsFn(), sorted_instruction_users.users_, users_); if (!status.ok()) { LOG(ERROR) << "Failed to sort instruction users: " << status; } if (user_map_ != nullptr) { user_map_->clear(); RebuildMap(); } DCHECK(CheckInvariants()); } void HloInstruction::Users::RebuildMap() { for (uint64_t i = 0; i < users_.size(); ++i) { (*user_map_)[users_[i]] = i; } } bool HloInstruction::Users::CheckInvariants() { if (user_map_ != nullptr) { CHECK_EQ(users_.size(), user_map_->size()); } return true; } void HloInstruction::AppendComputation(HloComputation* computation) { mutable_rare()->called_computations.push_back(computation); } HloInstruction* HloInstruction::AddInstruction( std::unique_ptr<HloInstruction> derived_instruction) { HloInstruction* derived = parent()->AddInstruction(std::move(derived_instruction)); const bool has_prior_sharding = derived->has_sharding(); SetupDerivedInstruction(derived); if (!has_prior_sharding && (derived->opcode() == HloOpcode::kReshape || derived->opcode() == HloOpcode::kTranspose)) { derived->clear_sharding(); } return derived; } absl::StatusOr<std::unique_ptr<HloInstruction>> HloInstruction::CreateFromProto( const HloInstructionProto& proto, const absl::flat_hash_map<int64_t, HloInstruction*>& instruction_map, const absl::flat_hash_map<int64_t, HloComputation*>& computation_map, bool prohibit_empty_literal) { TF_RET_CHECK(!proto.opcode().empty()); HloOpcode opcode; auto opcode_or = StringToHloOpcode(proto.opcode()); std::optional<ComparisonDirection> comparison_direction; if (opcode_or.ok()) { opcode = std::move(opcode_or).value(); } else { if (proto.opcode() == "equal-to") { comparison_direction = ComparisonDirection::kEq; } else if (proto.opcode() == "not-equal-to") { comparison_direction = ComparisonDirection::kNe; } else if (proto.opcode() == "greater-than-or-equal-to") { comparison_direction = ComparisonDirection::kGe; } else if (proto.opcode() == "greater-than") { comparison_direction = ComparisonDirection::kGt; } else if (proto.opcode() == "less-than-or-equal-to") { comparison_direction = ComparisonDirection::kLe; } else if (proto.opcode() == "less-than") { comparison_direction = ComparisonDirection::kLt; } if (comparison_direction) { opcode = HloOpcode::kCompare; } else { return InvalidArgument("Unknown opcode: %s", proto.opcode()); } } TF_RET_CHECK(proto.has_shape()); std::unique_ptr<HloInstruction> instruction; const auto operands = [&instruction_map, &proto](int index) { return instruction_map.at(proto.operand_ids(index)); }; const auto all_operands = [&instruction_map, &proto]() { std::vector<HloInstruction*> result(proto.operand_ids_size()); std::transform(proto.operand_ids().begin(), proto.operand_ids().end(), result.begin(), [&instruction_map](int64_t operand_id) { return instruction_map.at(operand_id); }); return result; }; const auto output_to_operand_aliasing = [&proto]() { std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_to_operand_aliasing; for (const auto& aliasing : proto.output_operand_aliasing()) { output_to_operand_aliasing.emplace_back( ShapeIndex(aliasing.output_shape_index().begin(), aliasing.output_shape_index().end()), std::make_pair(aliasing.operand_index(), ShapeIndex(aliasing.operand_shape_index().begin(), aliasing.operand_shape_index().end()))); } return output_to_operand_aliasing; }; const auto computations = [&computation_map, &proto](int index) { return computation_map.at(proto.called_computation_ids(index)); }; const auto all_computations = [&computation_map, &proto]() { std::vector<HloComputation*> result(proto.called_computation_ids_size()); std::transform(proto.called_computation_ids().begin(), proto.called_computation_ids().end(), result.begin(), [&computation_map](int64_t computation_id) { return computation_map.at(computation_id); }); return result; }; TF_RET_CHECK( absl::c_all_of(proto.operand_ids(), [&](int64_t id) { return instruction_map.contains(id); })) << proto.name() << " instruction contains invalid operand id(s)"; TF_RET_CHECK( absl::c_all_of(proto.called_computation_ids(), [&](int64_t id) { return computation_map.contains(id); })) << proto.name() << " instruction references invalid computation id(s)"; Shape shape(proto.shape()); TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(shape)); std::optional<int> arity = HloOpcodeArity(opcode); if (arity) { TF_RET_CHECK(proto.operand_ids_size() == *arity) << proto.opcode() << " instruction should have " << *arity << " operands but sees " << proto.operand_ids_size(); } switch (opcode) { case HloOpcode::kBatchNormTraining: instruction = CreateBatchNormTraining(shape, operands(0), operands(1), operands(2), proto.epsilon(), proto.feature_index()); break; case HloOpcode::kBatchNormInference: instruction = CreateBatchNormInference( shape, operands(0), operands(1), operands(2), operands(3), operands(4), proto.epsilon(), proto.feature_index()); break; case HloOpcode::kBatchNormGrad: instruction = CreateBatchNormGrad(shape, operands(0), operands(1), operands(2), operands(3), operands(4), proto.epsilon(), proto.feature_index()); break; case HloOpcode::kFft: { std::vector<int64_t> fft_length(proto.fft_length().begin(), proto.fft_length().end()); instruction = CreateFft(shape, operands(0), proto.fft_type(), absl::Span<const int64_t>(fft_length)); break; } case HloOpcode::kAsyncStart: { TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Async start instruction should have 1 called computation but " "sees " << proto.called_computation_ids_size(); instruction = CreateAsyncStart(shape, all_operands(), computations(0), proto.async_execution_thread().empty() ? kMainExecutionThread : proto.async_execution_thread()); break; } case HloOpcode::kAsyncUpdate: { TF_RET_CHECK(proto.operand_ids_size() == 1) << "Async update requires one singular operand"; HloInstruction* prev_op = operands(0); TF_RET_CHECK(prev_op->IsAsynchronous()) << "Async update requires its operand to be an asynchronous op"; if (!proto.async_execution_thread().empty()) { TF_RET_CHECK(proto.async_execution_thread() == prev_op->async_execution_thread()) << "Async update should have " << prev_op->async_execution_thread() << " async_execution_thread, but sees " << proto.async_execution_thread(); } if (!proto.called_computation_ids().empty()) { TF_RET_CHECK(computations(0) == prev_op->async_wrapped_computation()) << "Async update should have " << prev_op->async_wrapped_computation()->name() << " async_wrapped_computation, but sees " << computations(0)->name(); } instruction = CreateAsyncUpdate(shape, prev_op); break; } case HloOpcode::kAsyncDone: { TF_RET_CHECK(proto.operand_ids_size() == 1) << "Async done requires one singular operand"; HloInstruction* prev_op = operands(0); TF_RET_CHECK(prev_op->IsAsynchronous()) << "Async done requires its operand to be an asynchronous op"; if (!proto.async_execution_thread().empty()) { TF_RET_CHECK(proto.async_execution_thread() == prev_op->async_execution_thread()) << "Async done should have " << prev_op->async_execution_thread() << " async_execution_thread, but sees " << proto.async_execution_thread(); } if (!proto.called_computation_ids().empty()) { TF_RET_CHECK(computations(0) == prev_op->async_wrapped_computation()) << "Async done should have " << prev_op->async_wrapped_computation()->name() << " async_wrapped_computation, but sees " << computations(0)->name(); } instruction = CreateAsyncDone(shape, prev_op); break; } case HloOpcode::kCopyStart: { std::optional<int> cross_program_prefetch_index; if (proto.optional_cross_program_prefetch_index_case() == HloInstructionProto::kCrossProgramPrefetchIndex) { cross_program_prefetch_index = std::make_optional(proto.cross_program_prefetch_index()); } else if (proto.is_cross_program_prefetch()) { cross_program_prefetch_index = 0; } instruction = CreateCopyStart(shape, operands(0), cross_program_prefetch_index); break; } case HloOpcode::kCompare: { if (!comparison_direction) { TF_ASSIGN_OR_RETURN( comparison_direction, StringToComparisonDirection(proto.comparison_direction())); } auto comparison_type_str = proto.comparison_type(); if (!comparison_type_str.empty()) { TF_ASSIGN_OR_RETURN(auto comparison_type, StringToComparisonType(comparison_type_str)); instruction = CreateCompare(shape, operands(0), operands(1), *comparison_direction, comparison_type); } else { instruction = CreateCompare(shape, operands(0), operands(1), *comparison_direction); } break; } case HloOpcode::kTriangularSolve: { instruction = CreateTriangularSolve(shape, operands(0), operands(1), proto.triangular_solve_options()); break; } case HloOpcode::kCholesky: { instruction = CreateCholesky(shape, operands(0), proto.cholesky_options()); break; } case HloOpcode::kSend: instruction = CreateSend(operands(0), operands(1), proto.channel_id(), proto.is_host_transfer()); break; case HloOpcode::kSendDone: TF_RET_CHECK(DynCast<HloSendInstruction>(operands(0)) != nullptr) << "SendDone must take the context operand from Send"; instruction = CreateSendDone(operands(0), proto.is_host_transfer()); break; case HloOpcode::kRecv: instruction = CreateRecv(shape.tuple_shapes(0), operands(0), proto.channel_id(), proto.is_host_transfer()); break; case HloOpcode::kRecvDone: TF_RET_CHECK(DynCast<HloRecvInstruction>(operands(0)) != nullptr) << "RecvDone must take the context operand from Recv"; instruction = CreateRecvDone(operands(0), proto.is_host_transfer()); break; case HloOpcode::kReverse: instruction = CreateReverse(shape, operands(0), std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end())); break; case HloOpcode::kConcatenate: TF_RET_CHECK(proto.dimensions_size() == 1) << "Concatenate instruction should have 1 dimension but sees " << proto.dimensions_size(); instruction = CreateConcatenate(shape, all_operands(), proto.dimensions(0)); break; case HloOpcode::kConditional: { TF_RET_CHECK(proto.called_computation_ids_size() > 0) << "conditional should have at least 1 called computation"; if (operands(0)->shape().element_type() == PRED) { TF_RET_CHECK(proto.called_computation_ids_size() == 2) << "conditional should have exactly 2 called computations but got " << proto.called_computation_ids_size(); } TF_RET_CHECK(proto.operand_ids_size() == proto.called_computation_ids_size() + 1) << "conditional should have one branch_index operand plus one " "operand per called computation but got " << proto.operand_ids_size() << " operands for " << proto.called_computation_ids_size() << " branch computations"; auto cond_operands = all_operands(); instruction = CreateConditional(shape, cond_operands[0], all_computations(), absl::MakeSpan(cond_operands).subspan(1)); break; } case HloOpcode::kReduce: TF_RET_CHECK(proto.operand_ids_size() % 2 == 0) << "Reduce instruction should have an even number of operands but " "sees " << proto.operand_ids_size(); TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Reduce instruction should have 1 called computation but sees " << proto.called_computation_ids_size(); { const auto reduce_operands = all_operands(); auto inputs = absl::MakeSpan(reduce_operands) .subspan(0, reduce_operands.size() / 2); auto init_values = absl::MakeSpan(reduce_operands) .subspan(reduce_operands.size() / 2, reduce_operands.size()); instruction = CreateReduce(shape, inputs, init_values, std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end()), computations(0)); } break; case HloOpcode::kSort: { TF_RET_CHECK(proto.operand_ids_size() >= 1) << "Sort instruction should have at least 1 operand but has " << proto.operand_ids_size(); TF_RET_CHECK(proto.dimensions().size() == 1) << "Sort instruction should have 1 dimension"; TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Sort instruction should one called computation but sees " << proto.called_computation_ids_size(); auto sort_operands = all_operands(); instruction = CreateSort(shape, proto.dimensions(0), all_operands(), computations(0), proto.is_stable()); break; } case HloOpcode::kTopK: { TF_RET_CHECK(proto.operand_ids_size() == 1) << "TopK instruction should have exactly 1 operand but has " << proto.operand_ids_size(); instruction = CreateTopK(shape, all_operands()[0], proto.k(), proto.largest()); break; } case HloOpcode::kTranspose: instruction = CreateTranspose(shape, operands(0), std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end())); break; case HloOpcode::kBroadcast: instruction = CreateBroadcast(shape, operands(0), std::vector<int64_t>(proto.dimensions().begin(), proto.dimensions().end())); break; case HloOpcode::kMap: TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Map instruction should have 1 called computation but sees " << proto.called_computation_ids_size(); instruction = CreateMap(shape, all_operands(), computations(0)); break; case HloOpcode::kSlice: { std::vector<int64_t> slice_starts, slice_limits, slice_strides; for (const HloInstructionProto::SliceDimensions& slice_dimensions : proto.slice_dimensions()) { slice_starts.push_back(slice_dimensions.start()); slice_limits.push_back(slice_dimensions.limit()); slice_strides.push_back(slice_dimensions.stride()); } instruction = CreateSlice(shape, operands(0), slice_starts, slice_limits, slice_strides); break; } case HloOpcode::kConstant: { if (proto.has_literal()) { TF_ASSIGN_OR_RETURN( auto literal, Literal::CreateFromProto(proto.literal(), prohibit_empty_literal)); instruction = CreateConstant(std::move(literal)); TF_RET_CHECK(Shape::Equal().MinorToMajorOnlyInLayout()( instruction->shape(), shape)) << instruction->shape().ToString(true) << " vs " << shape.ToString(true); *instruction->mutable_shape() = shape; } else { instruction = std::make_unique<HloConstantInstruction>(shape); } break; } case HloOpcode::kFusion: { TF_RET_CHECK(!proto.fusion_kind().empty()); TF_ASSIGN_OR_RETURN(FusionKind fusion_kind, StringToFusionKind(proto.fusion_kind())); TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Expect 1 called computation for fusion instruction but sees " << proto.called_computation_ids_size(); const int64_t fusion_id = proto.called_computation_ids(0); auto* fused_computation = tsl::gtl::FindPtrOrNull(computation_map, fusion_id); TF_RET_CHECK(fused_computation != nullptr) << "No fusion computation with id " << fusion_id; instruction = CreateFusion(shape, fusion_kind, all_operands(), fused_computation); auto fusion_instr = DynCast<HloFusionInstruction>(instruction.get()); fusion_instr->set_output_to_operand_aliasing( output_to_operand_aliasing()); break; } case HloOpcode::kRng: instruction = CreateRng(shape, proto.distribution(), all_operands()); break; case HloOpcode::kRngBitGenerator: instruction = CreateRngBitGenerator(shape, operands(0), proto.rng_algorithm()); break; case HloOpcode::kRngGetAndUpdateState: instruction = CreateRngGetAndUpdateState(shape, proto.delta()); break; case HloOpcode::kParameter: instruction = CreateParameter(proto.parameter_number(), shape, proto.name()); if (!proto.parameter_replication().replicated_at_leaf_buffers().empty()) { instruction->set_parameter_replicated_at_leaf_buffers( proto.parameter_replication().replicated_at_leaf_buffers()); } break; case HloOpcode::kGetTupleElement: instruction = CreateGetTupleElement(shape, operands(0), proto.tuple_index()); break; case HloOpcode::kReducePrecision: instruction = CreateReducePrecision( shape, operands(0), proto.exponent_bits(), proto.mantissa_bits()); break; case HloOpcode::kInfeed: { TF_RET_CHECK(shape.IsTuple() && (ShapeUtil::TupleElementCount(shape) == 2)) << "Infeed should have a tuple shape with 2 operands, but has: " << shape; const Shape& data_shape = ShapeUtil::GetTupleElementShape(shape, 0); instruction = CreateInfeed(data_shape, operands(0), proto.infeed_config()); } break; case HloOpcode::kOutfeed: { Shape outfeed_shape(proto.outfeed_shape()); TF_RETURN_IF_ERROR( ShapeUtil::ValidateShapeWithOptionalLayout(outfeed_shape)); instruction = CreateOutfeed(outfeed_shape, operands(0), operands(1), proto.outfeed_config()); break; } case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: { std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } TF_RET_CHECK(proto.dimensions_size() == 1) << "AllGather cannot have more than 1 all-gather dimensions"; int64_t all_gather_dimension = proto.dimensions(0); if (opcode == HloOpcode::kAllGather) { instruction = CreateAllGather( shape, all_operands(), all_gather_dimension, CollectiveDeviceList::FromProto(proto), proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } else { instruction = CreateAllGatherStart( shape, all_operands(), all_gather_dimension, CollectiveDeviceList::FromProto(proto), proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } break; } case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kReduceScatter: { TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "AllReduce should have 1 called computation but sees " << proto.called_computation_ids_size(); TF_RET_CHECK(proto.channel_id() <= 0 || proto.all_reduce_id() <= 0) << "AllReduce cannot have both channel_id() and all_reduce_id()"; std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } if (proto.all_reduce_id() > 0) { channel_id = proto.all_reduce_id(); } CollectiveDeviceList device_list = CollectiveDeviceList::FromProto(proto); if (opcode == HloOpcode::kAllReduce) { instruction = CreateAllReduce(shape, all_operands(), computations(0), device_list, proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } else if (opcode == HloOpcode::kReduceScatter) { TF_RET_CHECK(proto.dimensions_size() == 1) << "ReduceScatter cannot have more than 1 scatter dimensions"; int64_t scatter_dimension = proto.dimensions(0); instruction = CreateReduceScatter( shape, all_operands(), computations(0), device_list, proto.constrain_layout(), channel_id, proto.use_global_device_ids(), scatter_dimension); } else { instruction = CreateAllReduceStart(shape, all_operands(), computations(0), device_list, proto.constrain_layout(), channel_id, proto.use_global_device_ids()); } break; } case HloOpcode::kAllToAll: { std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } std::optional<int64_t> split_dimension; if (proto.dimensions_size() > 0) { TF_RET_CHECK(proto.dimensions_size() == 1) << "AllToAll cannot have more than 1 dimension (split dimension)"; TF_RET_CHECK(all_operands().size() == 1) << "AllToAll must have a single operand when the split dimension " "is specified"; split_dimension = proto.dimensions(0); } instruction = CreateAllToAll( shape, all_operands(), CollectiveDeviceList::FromProto(proto), proto.constrain_layout(), channel_id, split_dimension); break; } case HloOpcode::kCollectiveBroadcast: { std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } instruction = CreateCollectiveBroadcast( shape, all_operands(), CollectiveDeviceList::FromProto(proto), false, channel_id); break; } case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: { TF_RET_CHECK(proto.operand_ids().size() == 1 || proto.operand_ids().size() == 4); std::vector<std::pair<int64_t, int64_t>> source_target_pairs( proto.source_target_pairs_size()); std::optional<int64_t> channel_id; if (proto.channel_id() > 0) { channel_id = proto.channel_id(); } for (int i = 0; i < source_target_pairs.size(); ++i) { source_target_pairs[i].first = proto.source_target_pairs(i).source(); source_target_pairs[i].second = proto.source_target_pairs(i).target(); } if (proto.dynamic_slice_sizes_size() == 0) { if (opcode == HloOpcode::kCollectivePermute) { instruction = CreateCollectivePermute( shape, operands(0), source_target_pairs, channel_id); } else if (opcode == HloOpcode::kCollectivePermuteStart) { instruction = CreateCollectivePermuteStart( shape, operands(0), source_target_pairs, channel_id); } else { LOG(FATAL) << "Expect CollectivePermute or CollectivePermuteStart, " << "but got " << opcode; } } else { std::vector<std::vector<int64_t>> slice_sizes; HloInstruction* input = operands(0); HloInstruction* input_start_indices = operands(2); if (input->shape().IsTuple() && input->shape().tuple_shapes_size() > 1) { slice_sizes.resize(input->shape().tuple_shapes_size()); } else { slice_sizes.resize(1); } int proto_index = 0; if (input->shape().IsTuple()) { if (input_start_indices->shape() .tuple_shapes(0) .tuple_shapes(0) .IsArray()) { slice_sizes.resize(input->shape().tuple_shapes_size()); for (int i = 0; i < input->shape().tuple_shapes_size(); ++i) { slice_sizes[i].resize( input->shape().tuple_shapes(i).dimensions_size()); for (int j = 0; j < input->shape().tuple_shapes(i).dimensions_size(); ++j) { CHECK_GE(proto.dynamic_slice_sizes_size(), proto_index); slice_sizes[i][j] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } } } else { slice_sizes.resize( input->shape().tuple_shapes_size() * ShapeUtil::TupleElementCount( input_start_indices->shape().tuple_shapes(0))); int slice_sizes_count = 0; for (int i = 0; i < input->shape().tuple_shapes_size(); ++i) { for (int j = 0; j < ShapeUtil::TupleElementCount( input_start_indices->shape().tuple_shapes(i)); ++j) { slice_sizes[slice_sizes_count].resize( input->shape().tuple_shapes(i).rank()); for (int k = 0; k < input->shape().tuple_shapes(i).rank(); ++k) { CHECK_GE(proto.dynamic_slice_sizes_size(), proto_index); slice_sizes[slice_sizes_count][k] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } slice_sizes_count += 1; } } } } else { slice_sizes.resize( ShapeUtil::TupleElementCount(input_start_indices->shape())); if (input_start_indices->shape().tuple_shapes(0).IsTuple()) { for (int i = 0; i < ShapeUtil::TupleElementCount(input_start_indices->shape()); ++i) { slice_sizes[i].resize(input->shape().dimensions_size()); for (int j = 0; j < input->shape().dimensions_size(); ++j) { slice_sizes[i][j] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } } } else { slice_sizes.resize(1); slice_sizes[0].resize(input->shape().dimensions_size()); for (int j = 0; j < input->shape().dimensions_size(); ++j) { slice_sizes[0][j] = proto.dynamic_slice_sizes(proto_index); proto_index += 1; } } } if (opcode == HloOpcode::kCollectivePermute) { instruction = CreateCollectivePermute( shape, operands(0), operands(1), operands(2), operands(3), source_target_pairs, slice_sizes, channel_id); } else if (opcode == HloOpcode::kCollectivePermuteStart) { instruction = CreateCollectivePermuteStart( shape, operands(0), operands(1), operands(2), operands(3), source_target_pairs, slice_sizes, channel_id); } else { LOG(FATAL) << "Expect CollectivePermute or CollectivePermuteStart, " << "but got " << opcode; } } break; } case HloOpcode::kReplicaId: { instruction = CreateReplicaId(shape); break; } case HloOpcode::kPartitionId: { instruction = CreatePartitionId(shape); break; } case HloOpcode::kConvolution: { TF_RET_CHECK(proto.has_window()); TF_RET_CHECK(proto.has_convolution_dimension_numbers()); TF_RET_CHECK(absl::c_all_of(proto.precision_config().operand_precision(), PrecisionConfig::Precision_IsValid)); PrecisionConfig precision_config = proto.precision_config(); precision_config.mutable_operand_precision()->Resize( proto.operand_ids_size(), PrecisionConfig::DEFAULT); instruction = CreateConvolve( shape, operands(0), operands(1), std::max<int64_t>(proto.feature_group_count(), 1), std::max<int64_t>(proto.batch_group_count(), 1), proto.window(), proto.convolution_dimension_numbers(), precision_config); break; } case HloOpcode::kReduceWindow: TF_RET_CHECK(proto.operand_ids_size() % 2 == 0) << "Reduce window should have an even number of operands but " "sees " << proto.operand_ids_size(); TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "ReduceWindow should have 1 called computation but sees " << proto.called_computation_ids_size(); { const auto reduce_operands = all_operands(); auto inputs = absl::MakeSpan(reduce_operands) .subspan(0, reduce_operands.size() / 2); auto init_values = absl::MakeSpan(reduce_operands) .subspan(reduce_operands.size() / 2, reduce_operands.size()); instruction = CreateReduceWindow(shape, inputs, init_values, proto.window(), computations(0)); } break; case HloOpcode::kSelectAndScatter: TF_RET_CHECK(proto.called_computation_ids_size() == 2) << "SelectAndScatter should have 2 called computations but sees " << proto.called_computation_ids_size(); instruction = CreateSelectAndScatter(shape, operands(0), computations(0), proto.window(), operands(1), operands(2), computations(1)); break; case HloOpcode::kCustomCall: { if (proto.constrain_layout()) { std::vector<Shape> operand_shapes; const auto& operand_shapes_with_layout = proto.operand_shapes_with_layout(); operand_shapes.reserve(operand_shapes_with_layout.size()); for (const ShapeProto& shape_proto : operand_shapes_with_layout) { operand_shapes.emplace_back(shape_proto); } instruction = CreateCustomCall(shape, all_operands(), proto.custom_call_target(), operand_shapes, proto.backend_config()); } else { if (proto.called_computation_ids_size() == 1) { instruction = CreateCustomCall(shape, all_operands(), computations(0), proto.custom_call_target(), proto.backend_config()); } else if (proto.called_computation_ids_size() > 1) { instruction = CreateCustomCall( shape, all_operands(), all_computations(), proto.custom_call_target(), proto.backend_config()); } else { instruction = CreateCustomCall(shape, all_operands(), proto.custom_call_target(), proto.backend_config()); } } auto custom_call_instr = Cast<HloCustomCallInstruction>(instruction.get()); if (proto.has_window()) { custom_call_instr->set_window(proto.window()); } if (proto.has_literal()) { TF_ASSIGN_OR_RETURN( auto literal, Literal::CreateFromProto(proto.literal(), prohibit_empty_literal)); custom_call_instr->set_literal(std::move(literal)); } if (proto.has_convolution_dimension_numbers()) { custom_call_instr->set_convolution_dimension_numbers( proto.convolution_dimension_numbers()); } custom_call_instr->set_feature_group_count(std::max( static_cast<int64_t>(proto.feature_group_count()), int64_t{1})); custom_call_instr->set_batch_group_count(std::max( static_cast<int64_t>(proto.batch_group_count()), int64_t{1})); custom_call_instr->set_custom_call_has_side_effect( proto.custom_call_has_side_effect()); custom_call_instr->set_padding_type(proto.padding_type()); TF_RET_CHECK(absl::c_all_of(proto.precision_config().operand_precision(), PrecisionConfig::Precision_IsValid)); PrecisionConfig precision_config = proto.precision_config(); precision_config.mutable_operand_precision()->Resize( proto.operand_ids_size(), PrecisionConfig::DEFAULT); *custom_call_instr->mutable_precision_config() = precision_config; custom_call_instr->set_output_to_operand_aliasing( output_to_operand_aliasing()); custom_call_instr->set_custom_call_schedule(proto.custom_call_schedule()); custom_call_instr->set_api_version(proto.custom_call_api_version()); break; } case HloOpcode::kPad: TF_RET_CHECK(proto.has_padding_config()); instruction = CreatePad(shape, operands(0), operands(1), proto.padding_config()); break; case HloOpcode::kDynamicSlice: { std::vector<int64_t> slice_sizes(proto.dynamic_slice_sizes_size()); absl::c_copy(proto.dynamic_slice_sizes(), slice_sizes.begin()); TF_RET_CHECK(proto.operand_ids_size() >= 1) << "DynamicSlice instruction should have at least 1 operands but " "sees " << proto.operand_ids_size(); if (proto.operand_ids_size() != 2 || operands(1)->shape().rank() != 1) { auto expected_operands = 1 + operands(0)->shape().rank(); TF_RET_CHECK(proto.operand_ids_size() == expected_operands) << "DynamicSlice instruction should have " << expected_operands << " operands, but has " << proto.operand_ids_size(); } const auto& operand_vector = all_operands(); instruction = CreateDynamicSlice( shape, operands(0), absl::MakeSpan(operand_vector).subspan(1), slice_sizes); break; } case HloOpcode::kDynamicUpdateSlice: { TF_RET_CHECK(proto.operand_ids_size() >= 2) << "DynamicUpdateSlice instruction should have at least 2 operands " "but sees " << proto.operand_ids_size(); if (proto.operand_ids_size() != 3 || operands(2)->shape().rank() != 1) { auto expected_operands = 2 + operands(0)->shape().rank(); TF_RET_CHECK(proto.operand_ids_size() == expected_operands) << "DynamicUpdateSlice instruction should have " << expected_operands << " operands, but has " << proto.operand_ids_size(); } const auto& operand_vector = all_operands(); instruction = CreateDynamicUpdateSlice(shape, operands(0), operands(1), absl::MakeSpan(operand_vector).subspan(2)); break; } case HloOpcode::kGather: { TF_RET_CHECK(proto.has_gather_dimension_numbers()) << "Gather instruction should have GatherDimensionNumbers set."; auto gather_dimension_numbers = std::make_unique<GatherDimensionNumbers>( proto.gather_dimension_numbers()); std::vector<int64_t> gather_slice_sizes; const auto& slice_sizes = proto.gather_slice_sizes(); gather_slice_sizes.reserve(slice_sizes.size()); for (int64_t bound : slice_sizes) { gather_slice_sizes.push_back(bound); } instruction = CreateGather(shape, operands(0), operands(1), *gather_dimension_numbers, gather_slice_sizes, proto.indices_are_sorted()); break; } case HloOpcode::kScatter: { TF_RET_CHECK(proto.has_scatter_dimension_numbers()) << "Scatter instruction should have ScatterDimensionNumbers set."; TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Scatter instruction should have 1 called computation but sees " << proto.called_computation_ids_size(); auto scatter_dimension_numbers = std::make_unique<ScatterDimensionNumbers>( proto.scatter_dimension_numbers()); auto operands = all_operands(); auto operand_span = absl::MakeConstSpan(operands); auto input_count = operands.size() / 2; instruction = CreateScatter(shape, operand_span.first(input_count), operands[input_count], operand_span.last(input_count), computations(0), *scatter_dimension_numbers, proto.indices_are_sorted(), proto.unique_indices()); break; } case HloOpcode::kIota: TF_RET_CHECK(proto.dimensions_size() == 1) << "Iota instruction should have 1 dimension but sees " << proto.dimensions_size(); instruction = CreateIota(shape, proto.dimensions(0)); break; case HloOpcode::kDot: { int expected_operands = HloDotInstruction::kOperands + proto.dot_sparsity_size(); TF_RET_CHECK(proto.dot_sparsity_size() <= HloDotInstruction::kOperands) << "Too many sparse dot descriptors: " << proto.dot_sparsity_size(); TF_RET_CHECK(proto.operand_ids_size() == expected_operands) << proto.opcode() << " instruction should have " << expected_operands << " operands but sees " << proto.operand_ids_size(); TF_RET_CHECK(proto.has_dot_dimension_numbers()) << "Dot instruction should have dot_dimension_numbers."; TF_RET_CHECK(absl::c_all_of(proto.precision_config().operand_precision(), PrecisionConfig::Precision_IsValid)); PrecisionConfig precision_config = proto.precision_config(); precision_config.mutable_operand_precision()->Resize( HloDotInstruction::kOperands, PrecisionConfig::DEFAULT); std::vector<SparsityDescriptor> sparsity(proto.dot_sparsity().begin(), proto.dot_sparsity().end()); auto operand_vector = all_operands(); instruction = std::make_unique<HloDotInstruction>( shape, operands(0), operands(1), proto.dot_dimension_numbers(), precision_config, std::move(sparsity), absl::MakeSpan(operand_vector).subspan(HloDotInstruction::kOperands)); break; } case HloOpcode::kDomain: { std::shared_ptr<const HloSharding> entry_hlo_sharding; std::shared_ptr<const HloSharding> exit_hlo_sharding; if (proto.has_domain_entry_sharding()) { TF_ASSIGN_OR_RETURN( HloSharding sharding, HloSharding::FromProto(proto.domain_entry_sharding())); entry_hlo_sharding = std::make_shared<const HloSharding>(sharding); } if (proto.has_domain_exit_sharding()) { TF_ASSIGN_OR_RETURN( HloSharding sharding, HloSharding::FromProto(proto.domain_exit_sharding())); exit_hlo_sharding = std::make_shared<const HloSharding>(sharding); } instruction = std::make_unique<HloDomainInstruction>( shape, operands(0), std::make_unique<ShardingMetadata>(entry_hlo_sharding), std::make_unique<ShardingMetadata>(exit_hlo_sharding)); break; } case HloOpcode::kGetDimensionSize: TF_RET_CHECK(proto.dimensions_size() == 1); instruction = CreateGetDimensionSize(shape, operands(0), proto.dimensions(0)); break; case HloOpcode::kSetDimensionSize: TF_RET_CHECK(proto.dimensions_size() == 1); instruction = CreateSetDimensionSize(shape, operands(0), operands(1), proto.dimensions(0)); break; case HloOpcode::kReshape: { int64_t inferred_dimension = -1; if (!proto.dimensions().empty()) { inferred_dimension = proto.dimensions()[0]; } TF_RET_CHECK(shape.IsArray() && operands(0)->shape().IsArray() && (operands(0)->shape().is_unbounded_dynamic() || ShapeUtil::StaticExtentProduct(shape) == ShapeUtil::StaticExtentProduct(operands(0)->shape()))) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(operands(0)->shape()); instruction = CreateReshape(shape, operands(0), inferred_dimension); break; } case HloOpcode::kDynamicReshape: { TF_RET_CHECK(shape.IsArray() && operands(0)->shape().IsArray() && ShapeUtil::StaticExtentProduct(shape) == ShapeUtil::StaticExtentProduct(operands(0)->shape())) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(operands(0)->shape()); const auto& operand_vector = all_operands(); instruction = CreateDynamicReshape( shape, operands(0), absl::MakeSpan(operand_vector).subspan(1)); break; } case HloOpcode::kCall: { TF_RET_CHECK(proto.called_computation_ids_size() == 1) << "Call should have 1 called computation but has " << proto.called_computation_ids_size(); TF_RET_CHECK(!proto.has_precision_config()) << instruction->opcode() << proto.name(); TF_RET_CHECK(!proto.has_dot_dimension_numbers()) << instruction->opcode(); if (proto.is_composite()) { TF_RET_CHECK(proto.has_frontend_attributes()) << "A composite call op must have frontend attributes"; auto map = proto.frontend_attributes().map(); auto name = map.find("composite.name"); TF_RET_CHECK(name != map.end() && !name->second.empty()) << "A composite call op must have frontend attributes with key " "composite.name whose value is non-empty"; auto attributes = map.find("composite.attributes"); TF_RET_CHECK(attributes == map.end() || !attributes->second.empty()) << "A composite call op must have frontend attributes with key " "composite.attributes whose value is default: {} or non-empty"; auto version_str = map.find("composite.version"); int64_t version = 0; TF_RET_CHECK( version_str == map.end() || (absl::SimpleAtoi(version_str->second, &version) && version >= 0)) << "A composite call op must have frontend attributes with a " "composite.version whose value is a non-negative integer but " "got: " << version_str->second; instruction = CreateCompositeCall( shape, all_operands(), computation_map.at(proto.called_computation_ids()[0]), name->second, attributes == map.end() ? "{}" : attributes->second, version); instruction->set_output_to_operand_aliasing( output_to_operand_aliasing()); } else { instruction = std::make_unique<HloCallInstruction>( shape, all_operands(), computation_map.at(proto.called_computation_ids()[0])); instruction->set_output_to_operand_aliasing( output_to_operand_aliasing()); } break; } default: { instruction = absl::WrapUnique(new HloInstruction(opcode, shape)); if (instruction->opcode() == HloOpcode::kWhile) { TF_RET_CHECK(proto.called_computation_ids_size() == 2) << "While should have 2 called computation but has " << proto.called_computation_ids_size(); computation_map.at(proto.called_computation_ids(0)) ->SetWhileCallInstruction(instruction.get()); } for (const int64_t operand_id : proto.operand_ids()) { instruction->AppendOperand(instruction_map.at(operand_id)); } for (const int64_t computation_id : proto.called_computation_ids()) { instruction->AppendComputation(computation_map.at(computation_id)); } if (instruction->opcode() == HloOpcode::kWhile) { instruction->while_body()->SetWhileCallInstruction(instruction.get()); } TF_RET_CHECK(!proto.has_precision_config()) << instruction->opcode() << proto.DebugString(); TF_RET_CHECK(!proto.has_dot_dimension_numbers()) << instruction->opcode(); break; } } for (const int64_t predecessor_id : proto.control_predecessor_ids()) { TF_RET_CHECK(ContainsKey(instruction_map, predecessor_id)) << "No instruction with id " << predecessor_id; TF_RETURN_IF_ERROR(instruction_map.at(predecessor_id) ->AddControlDependencyTo(instruction.get())); } TF_RET_CHECK(!proto.name().empty()); instruction->SetAndSanitizeName(proto.name()); *instruction->metadata_ = proto.metadata(); instruction->backend_config_ = BackendConfigWrapper(proto.backend_config()); TF_RET_CHECK(proto.id() >= 0) << "Instruction with negative id: " << proto.id(); TF_RET_CHECK(proto.id() <= INT_MAX) << "Instruction with id > INT_MAX: " << proto.id(); instruction->unique_id_ = proto.id(); if (proto.has_sharding()) { TF_ASSIGN_OR_RETURN(HloSharding sharding, HloSharding::FromProto(proto.sharding())); sharding = sharding.NormalizeTupleSharding(instruction->shape()); instruction->set_sharding(sharding); } if (proto.has_frontend_attributes()) { instruction->set_frontend_attributes(proto.frontend_attributes()); } if (proto.has_statistics_viz()) { instruction->set_statistics_viz(proto.statistics_viz()); } if (proto.has_original_value()) { const xla::OriginalValueProto& original_value_proto = proto.original_value(); auto original_value = std::make_shared<OriginalValue>(shape); for (const auto& leaf : original_value_proto.leaves()) { *original_value->mutable_element(ShapeIndex(leaf.leaf_shape_index())) = { leaf.instruction_name(), ShapeIndex(leaf.shape_index())}; } instruction->set_original_value(original_value); } return std::move(instruction); } std::unique_ptr<HloInstruction> HloInstruction::CreateParameter( int64_t parameter_number, const Shape& shape, absl::string_view name) { return std::make_unique<HloParameterInstruction>(parameter_number, shape, name); } std::unique_ptr<HloInstruction> HloInstruction::CreateConstant( Literal literal) { return std::make_unique<HloConstantInstruction>(std::move(literal)); } std::unique_ptr<HloInstruction> HloInstruction::CreateIota( const Shape& shape, int64_t iota_dimension) { return std::make_unique<HloIotaInstruction>(shape, iota_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateTopK( const Shape& shape, HloInstruction* input, int64_t k, bool largest) { return std::make_unique<HloTopKInstruction>(shape, input, k, largest); } std::unique_ptr<HloInstruction> HloInstruction::CreateGetTupleElement(const Shape& shape, HloInstruction* operand, int64_t index) { return std::make_unique<HloGetTupleElementInstruction>(shape, operand, index); } std::unique_ptr<HloInstruction> HloInstruction::CreateGetTupleElement(HloInstruction* operand, int64_t index) { return std::make_unique<HloGetTupleElementInstruction>( operand->shape().tuple_shapes(index), operand, index); } std::unique_ptr<HloInstruction> HloInstruction::CreateRng( const Shape& shape, RandomDistribution distribution, absl::Span<HloInstruction* const> parameters) { return std::make_unique<HloRngInstruction>(shape, distribution, parameters); } std::unique_ptr<HloInstruction> HloInstruction::CreateRngGetAndUpdateState(const Shape& shape, int64_t delta) { return std::make_unique<HloRngGetAndUpdateStateInstruction>(shape, delta); } std::unique_ptr<HloInstruction> HloInstruction::CreateRngBitGenerator(const Shape& shape, HloInstruction* state, RandomAlgorithm algorithm) { return std::make_unique<HloRngBitGeneratorInstruction>(shape, state, algorithm); } std::unique_ptr<HloInstruction> HloInstruction::CreateNary( const Shape& shape, HloOpcode opcode, absl::Span<HloInstruction* const> operands) { if (opcode == HloOpcode::kCopy) { CHECK(!shape.IsOpaque()); } auto instruction = absl::WrapUnique(new HloInstruction(opcode, shape)); for (auto operand : operands) { instruction->AppendOperand(operand); } return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateUnary( const Shape& shape, HloOpcode opcode, HloInstruction* operand) { switch (opcode) { case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kBitcast: case HloOpcode::kCeil: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopy: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kOptimizationBarrier: case HloOpcode::kClz: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kRsqrt: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTanh: case HloOpcode::kTan: break; default: LOG(FATAL) << "Invalid unary instruction opcode " << opcode; } return CreateNary(shape, opcode, {operand}); } std::unique_ptr<HloInstruction> HloInstruction::CreateBinary( const Shape& shape, HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs) { switch (opcode) { case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kDivide: case HloOpcode::kComplex: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kSubtract: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kStochasticConvert: break; default: LOG(FATAL) << "Invalid binary instruction opcode " << opcode; } return CreateNary(shape, opcode, {lhs, rhs}); } std::unique_ptr<HloInstruction> HloInstruction::CreateTernary( const Shape& shape, HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs, HloInstruction* ehs) { switch (opcode) { case HloOpcode::kClamp: case HloOpcode::kSelect: break; default: LOG(FATAL) << "Invalid ternary instruction opcode " << opcode; } return CreateNary(shape, opcode, {lhs, rhs, ehs}); } std::unique_ptr<HloInstruction> HloInstruction::CreateVariadic( const Shape& shape, HloOpcode opcode, absl::Span<HloInstruction* const> operands) { CHECK_EQ(HloOpcode::kTuple, opcode); return CreateNary(shape, opcode, operands); } std::unique_ptr<HloInstruction> HloInstruction::CreateMap( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* map_computation) { return std::make_unique<HloMapInstruction>(shape, operands, map_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateConvolve( const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, int64_t feature_group_count, int64_t batch_group_count, const Window& window, const ConvolutionDimensionNumbers& dimension_numbers, const PrecisionConfig& precision_config) { return std::make_unique<HloConvolutionInstruction>( shape, lhs, rhs, feature_group_count, batch_group_count, window, dimension_numbers, precision_config); } std::unique_ptr<HloInstruction> HloInstruction::CreateFft( const Shape& shape, HloInstruction* operand, FftType fft_type, absl::Span<const int64_t> fft_length) { return std::make_unique<HloFftInstruction>(shape, operand, fft_type, fft_length); } std::unique_ptr<HloInstruction> HloInstruction::CreateAsyncStart( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* async_computation, absl::string_view async_execution_thread) { return std::make_unique<HloAsyncStartInstruction>( HloOpcode::kAsyncStart, shape, operands, async_computation, async_execution_thread); } std::unique_ptr<HloInstruction> HloInstruction::CreateAsyncUpdate( const Shape& shape, HloInstruction* operand) { return std::make_unique<HloAsyncInstruction>(HloOpcode::kAsyncUpdate, shape, operand); } std::unique_ptr<HloInstruction> HloInstruction::CreateAsyncDone( const Shape& shape, HloInstruction* operand) { return std::make_unique<HloAsyncInstruction>(HloOpcode::kAsyncDone, shape, operand); } std::unique_ptr<HloInstruction> HloInstruction::CreateCopyStart( const Shape& shape, HloInstruction* operand, std::optional<int> cross_program_prefetch) { return std::make_unique<HloCopyStartInstruction>(shape, operand, cross_program_prefetch); } std::unique_ptr<HloInstruction> HloInstruction::CreateCompare( const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, ComparisonDirection direction, std::optional<Comparison::Type> type) { return std::make_unique<HloCompareInstruction>(shape, lhs, rhs, direction, type); } std::unique_ptr<HloInstruction> HloInstruction::CreateTriangularSolve(const Shape& shape, HloInstruction* a, HloInstruction* b, const TriangularSolveOptions& options) { return std::make_unique<HloTriangularSolveInstruction>(shape, a, b, options); } std::unique_ptr<HloInstruction> HloInstruction::CreateCholesky( const Shape& shape, HloInstruction* a, const CholeskyOptions& options) { return std::make_unique<HloCholeskyInstruction>(shape, a, options); } std::unique_ptr<HloInstruction> HloInstruction::CreateDot( const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig& precision_config, std::vector<SparsityDescriptor> sparsity, absl::Span<HloInstruction* const> sparse_meta) { return std::make_unique<HloDotInstruction>(shape, lhs, rhs, dimension_numbers, precision_config, std::move(sparsity), sparse_meta); } std::unique_ptr<HloInstruction> HloInstruction::CreateReducePrecision(const Shape& shape, HloInstruction* operand, const int exponent_bits, const int mantissa_bits) { return std::make_unique<HloReducePrecisionInstruction>( shape, operand, exponent_bits, mantissa_bits); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGather( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllGatherInstruction>( HloOpcode::kAllGather, shape, operands, all_gather_dimension, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGather( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllGather(shape, operands, all_gather_dimension, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGatherStart(const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllGatherInstruction>( HloOpcode::kAllGatherStart, shape, operands, all_gather_dimension, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllGatherStart( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t all_gather_dimension, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllGatherStart(shape, operands, all_gather_dimension, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduce( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllReduceInstruction>( HloOpcode::kAllReduce, shape, operands, reduce_computation, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduce( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllReduce(shape, operands, reduce_computation, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceScatter( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids, int64_t scatter_dimension) { return std::make_unique<HloReduceScatterInstruction>( shape, operands, reduce_computation, device_list, constrain_layout, channel_id, use_global_device_ids, scatter_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceScatter( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids, int64_t scatter_dimension) { return CreateReduceScatter( shape, operands, reduce_computation, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids, scatter_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduceStart(const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return std::make_unique<HloAllReduceInstruction>( HloOpcode::kAllReduceStart, shape, operands, reduce_computation, device_list, constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllReduceStart( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* reduce_computation, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, bool use_global_device_ids) { return CreateAllReduceStart( shape, operands, reduce_computation, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, use_global_device_ids); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllToAll( const Shape& shape, absl::Span<HloInstruction* const> operands, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id, const std::optional<int64_t>& split_dimension) { return std::make_unique<HloAllToAllInstruction>(shape, operands, device_list, constrain_layout, channel_id, split_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateAllToAll( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id, const std::optional<int64_t>& split_dimension) { return CreateAllToAll(shape, operands, CollectiveDeviceList(replica_groups), constrain_layout, channel_id, split_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectiveBroadcast( const Shape& shape, absl::Span<HloInstruction* const> operands, const CollectiveDeviceList& device_list, bool constrain_layout, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectiveBroadcastInstruction>( HloOpcode::kCollectiveBroadcast, shape, operands, device_list, constrain_layout, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectiveBroadcast( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<const ReplicaGroup> replica_groups, bool constrain_layout, const std::optional<int64_t>& channel_id) { return CreateCollectiveBroadcast(shape, operands, CollectiveDeviceList(replica_groups), constrain_layout, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermute( const Shape& shape, HloInstruction* operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermute, shape, operand, source_target_pairs, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermute( const Shape& shape, HloInstruction* input, HloInstruction* output, HloInstruction* input_start_indices, HloInstruction* output_start_indices, absl::Span<const std::pair<int64_t, int64_t>> source_target_pairs, absl::Span<const std::vector<int64_t>> slice_sizes, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermute, shape, input, output, input_start_indices, output_start_indices, source_target_pairs, slice_sizes, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermuteStart( const Shape& shape, HloInstruction* operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermuteStart, shape, operand, source_target_pairs, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateCollectivePermuteStart( const Shape& shape, HloInstruction* input, HloInstruction* output, HloInstruction* input_start_indices, HloInstruction* output_start_indices, absl::Span<const std::pair<int64_t, int64_t>> source_target_pairs, absl::Span<const std::vector<int64_t>> slice_sizes, const std::optional<int64_t>& channel_id) { return std::make_unique<HloCollectivePermuteInstruction>( HloOpcode::kCollectivePermuteStart, shape, input, output, input_start_indices, output_start_indices, source_target_pairs, slice_sizes, channel_id); } std::unique_ptr<HloInstruction> HloInstruction::CreateReplicaId( const Shape& shape) { CHECK(Shape::Equal().IgnoreLayout()(shape, ShapeUtil::MakeShape(U32, {}))) << "HloInstruction replica-id must have a shape of u32[], but " << shape.ToString() << " is specified"; return absl::WrapUnique(new HloInstruction(HloOpcode::kReplicaId, shape)); } std::unique_ptr<HloInstruction> HloInstruction::CreatePartitionId( const Shape& shape) { CHECK(Shape::Equal().IgnoreLayout()(shape, ShapeUtil::MakeShape(U32, {}))) << "HloInstruction partition-id must have a shape of u32[], but " << shape.ToString() << " is specified"; return absl::WrapUnique(new HloInstruction(HloOpcode::kPartitionId, shape)); } std::unique_ptr<HloInstruction> HloInstruction::CreateInfeed( const Shape& infeed_shape, HloInstruction* token_operand, const std::string& config) { return std::make_unique<HloInfeedInstruction>(infeed_shape, token_operand, config); } std::unique_ptr<HloInstruction> HloInstruction::CreateOutfeed( const Shape& outfeed_shape, HloInstruction* operand, HloInstruction* token_operand, absl::string_view outfeed_config) { return std::make_unique<HloOutfeedInstruction>(outfeed_shape, operand, token_operand, outfeed_config); } std::unique_ptr<HloInstruction> HloInstruction::CreateSend( HloInstruction* operand, HloInstruction* token, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloSendInstruction>(operand, token, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateSendDone( HloInstruction* operand, bool is_host_transfer) { auto send_operand = DynCast<HloSendInstruction>(operand); CHECK(send_operand != nullptr) << "SendDone must take the context operand from Send"; return std::make_unique<HloSendDoneInstruction>(send_operand, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateSendDone( HloInstruction* operand, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloSendDoneInstruction>(operand, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateRecv( const Shape& shape, HloInstruction* token, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloRecvInstruction>(shape, token, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateRecvDone( HloInstruction* operand, bool is_host_transfer) { auto recv_operand = DynCast<HloRecvInstruction>(operand); CHECK(recv_operand != nullptr) << "RecvDone must take the context operand from Recv"; return std::make_unique<HloRecvDoneInstruction>(recv_operand, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateRecvDone( HloInstruction* operand, int64_t channel_id, bool is_host_transfer) { return std::make_unique<HloRecvDoneInstruction>(operand, channel_id, is_host_transfer); } std::unique_ptr<HloInstruction> HloInstruction::CreateReverse( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> dimensions) { return std::make_unique<HloReverseInstruction>(shape, operand, dimensions); } std::unique_ptr<HloInstruction> HloInstruction::CreateAfterAll( absl::Span<HloInstruction* const> operands) { CHECK(!operands.empty()); auto instruction = absl::WrapUnique( new HloInstruction(HloOpcode::kAfterAll, ShapeUtil::MakeTokenShape())); for (auto operand : operands) { instruction->AppendOperand(operand); } return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateToken() { return absl::WrapUnique( new HloInstruction(HloOpcode::kAfterAll, ShapeUtil::MakeTokenShape())); } std::unique_ptr<HloInstruction> HloInstruction::CreateAddDependency(HloInstruction* data_operand, HloInstruction* token_operand) { auto instruction = absl::WrapUnique( new HloInstruction(HloOpcode::kAddDependency, data_operand->shape())); instruction->AppendOperand(data_operand); instruction->AppendOperand(token_operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateWhile( const Shape& shape, HloComputation* condition, HloComputation* body, HloInstruction* init) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kWhile, shape)); instruction->AppendOperand(init); instruction->AppendComputation(body); instruction->AppendComputation(condition); body->SetWhileCallInstruction(instruction.get()); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateConditional( const Shape& shape, HloInstruction* pred, HloInstruction* true_computation_arg, HloComputation* true_computation, HloInstruction* false_computation_arg, HloComputation* false_computation) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kConditional, shape)); instruction->AppendOperand(pred); instruction->AppendOperand(true_computation_arg); instruction->AppendOperand(false_computation_arg); instruction->AppendComputation(true_computation); instruction->AppendComputation(false_computation); true_computation->SetConditionalCallInstruction(instruction.get()); false_computation->SetConditionalCallInstruction(instruction.get()); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateConditional( const Shape& shape, HloInstruction* branch_index, absl::Span<HloComputation* const> branch_computations, absl::Span<HloInstruction* const> branch_computation_args) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kConditional, shape)); instruction->AppendOperand(branch_index); CHECK_EQ(branch_computations.size(), branch_computation_args.size()); for (int i = 0; i < branch_computations.size(); ++i) { instruction->AppendComputation(branch_computations[i]); instruction->AppendOperand(branch_computation_args[i]); branch_computations[i]->SetConditionalCallInstruction(instruction.get()); } return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateSlice( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides) { return std::make_unique<HloSliceInstruction>(shape, operand, start_indices, limit_indices, strides); } std::unique_ptr<HloInstruction> HloInstruction::CreateDynamicSlice( const Shape& shape, HloInstruction* operand, absl::Span<HloInstruction* const> start_indices, absl::Span<const int64_t> slice_sizes) { return std::make_unique<HloDynamicSliceInstruction>( shape, operand, start_indices, slice_sizes); } std::unique_ptr<HloInstruction> HloInstruction::CreateDynamicUpdateSlice( const Shape& shape, HloInstruction* operand, HloInstruction* update, absl::Span<HloInstruction* const> start_indices) { return std::make_unique<HloDynamicUpdateSliceInstruction>( shape, operand, update, start_indices); } std::unique_ptr<HloInstruction> HloInstruction::CreateConcatenate( const Shape& shape, absl::Span<HloInstruction* const> operands, int64_t dimension) { return std::make_unique<HloConcatenateInstruction>(shape, operands, dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateConvert( const Shape& shape, HloInstruction* operand) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kConvert, shape)); instruction->AppendOperand(operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateBitcastConvert(const Shape& shape, HloInstruction* operand) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kBitcastConvert, shape)); instruction->AppendOperand(operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateStochasticConvert(const Shape& shape, HloInstruction* operand, HloInstruction* random) { auto instruction = absl::WrapUnique( new HloInstruction(HloOpcode::kStochasticConvert, shape)); instruction->AppendOperand(operand); instruction->AppendOperand(random); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateBitcast( const Shape& shape, HloInstruction* operand) { auto instruction = absl::WrapUnique(new HloInstruction(HloOpcode::kBitcast, shape)); instruction->AppendOperand(operand); return instruction; } std::unique_ptr<HloInstruction> HloInstruction::CreateReduce( const Shape& shape, HloInstruction* operand, HloInstruction* init_value, absl::Span<const int64_t> dimensions_to_reduce, HloComputation* reduce_computation) { return absl::WrapUnique(new HloReduceInstruction( shape, {operand, init_value}, dimensions_to_reduce, reduce_computation)); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduce( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<HloInstruction* const> init_values, absl::Span<const int64_t> dimensions_to_reduce, HloComputation* reduce_computation) { std::vector<HloInstruction*> all_args; all_args.reserve(operands.size() * 2); all_args.insert(all_args.end(), operands.begin(), operands.end()); all_args.insert(all_args.end(), init_values.begin(), init_values.end()); return std::make_unique<HloReduceInstruction>( shape, all_args, dimensions_to_reduce, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduce( const Shape& shape, HloInstruction* tuple_of_instructions, absl::Span<HloInstruction* const> init_values, absl::Span<const int64_t> dimensions_to_reduce, HloComputation* reduce_computation) { if (!tuple_of_instructions->shape().IsTuple()) { CHECK_EQ(init_values.size(), 1) << "The first input has to be a tuple, or the number of init values " "has to be one."; return CreateReduce(shape, tuple_of_instructions, init_values[0], dimensions_to_reduce, reduce_computation); } absl::InlinedVector<HloInstruction*, 4> inputs; for (int idx = 0; idx < tuple_of_instructions->shape().tuple_shapes_size(); idx++) { std::unique_ptr<HloInstruction> gte = HloInstruction::CreateGetTupleElement(tuple_of_instructions, idx); inputs.push_back( tuple_of_instructions->parent()->AddInstruction(std::move(gte))); } return CreateReduce(shape, inputs, init_values, dimensions_to_reduce, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceWindow( const Shape& shape, HloInstruction* operand, HloInstruction* init_value, const Window& window, HloComputation* reduce_computation) { return std::make_unique<HloReduceWindowInstruction>( shape, operand, init_value, window, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateReduceWindow( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<HloInstruction* const> init_values, const Window& window, HloComputation* reduce_computation) { return std::make_unique<HloReduceWindowInstruction>( shape, operands, init_values, window, reduce_computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateBatchNormTraining(const Shape& shape, HloInstruction* operand, HloInstruction* scale, HloInstruction* offset, float epsilon, int64_t feature_index) { return std::make_unique<HloBatchNormTrainingInstruction>( shape, operand, scale, offset, epsilon, feature_index); } std::unique_ptr<HloInstruction> HloInstruction::CreateBatchNormInference( const Shape& shape, HloInstruction* operand, HloInstruction* scale, HloInstruction* offset, HloInstruction* mean, HloInstruction* variance, float epsilon, int64_t feature_index) { return std::make_unique<HloBatchNormInferenceInstruction>( shape, operand, scale, offset, mean, variance, epsilon, feature_index); } std::unique_ptr<HloInstruction> HloInstruction::CreateBatchNormGrad(const Shape& shape, HloInstruction* operand, HloInstruction* scale, HloInstruction* mean, HloInstruction* variance, HloInstruction* grad_output, float epsilon, int64_t feature_index) { return std::make_unique<HloBatchNormGradInstruction>( shape, operand, scale, mean, variance, grad_output, epsilon, feature_index); } std::unique_ptr<HloInstruction> HloInstruction::CreateSelectAndScatter( const Shape& shape, HloInstruction* operand, HloComputation* select, const Window& window, HloInstruction* source, HloInstruction* init_value, HloComputation* scatter) { return std::make_unique<HloSelectAndScatterInstruction>( shape, operand, select, window, source, init_value, scatter); } std::unique_ptr<HloInstruction> HloInstruction::CreateBroadcast( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> broadcast_dimensions) { return std::make_unique<HloBroadcastInstruction>(shape, operand, broadcast_dimensions); } std::unique_ptr<HloInstruction> HloInstruction::CreateGetDimensionSize(const Shape& shape, HloInstruction* operand, int64_t dimension) { return std::make_unique<HloGetDimensionSizeInstruction>(shape, operand, dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateSetDimensionSize(const Shape& shape, HloInstruction* operand, HloInstruction* val, int64_t dimension) { return std::make_unique<HloSetDimensionSizeInstruction>(shape, operand, val, dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateBroadcastSequence( const Shape& output_shape, HloInstruction* operand, absl::FunctionRef<HloInstruction*(std::unique_ptr<HloInstruction>)> adder) { CHECK(ShapeUtil::IsScalar(operand->shape()) || operand->shape().rank() == output_shape.rank()); Shape broadcast_shape = ShapeUtil::ChangeElementType( output_shape, operand->shape().element_type()); if (ShapeUtil::IsScalar(operand->shape())) { auto broadcast = HloInstruction::CreateBroadcast(broadcast_shape, operand, {}); broadcast->set_metadata(operand->metadata()); if (operand->has_sharding()) { broadcast->copy_sharding(operand); } broadcast->set_frontend_attributes(operand->frontend_attributes()); broadcast->set_statistics_viz(operand->statistics_viz()); return broadcast; } std::vector<int64_t> broadcast_dimensions; std::vector<int64_t> reshaped_dimensions; for (int i = 0; i < operand->shape().rank(); i++) { if (operand->shape().dimensions(i) == output_shape.dimensions(i)) { broadcast_dimensions.push_back(i); reshaped_dimensions.push_back(operand->shape().dimensions(i)); } else { CHECK_EQ(operand->shape().dimensions(i), 1) << "An explicit broadcast sequence requires the broadcasted " "dimensions to be trivial; operand: " << operand->ToString() << "; output_shape: " << output_shape; } } HloInstruction* reshaped_operand = adder(HloInstruction::CreateReshape( ShapeUtil::MakeShape(operand->shape().element_type(), reshaped_dimensions), operand)); reshaped_operand->set_metadata(operand->metadata()); if (operand->has_sharding()) { reshaped_operand->copy_sharding(operand); } reshaped_operand->set_frontend_attributes(operand->frontend_attributes()); reshaped_operand->set_statistics_viz(operand->statistics_viz()); auto broadcast = HloInstruction::CreateBroadcast( broadcast_shape, reshaped_operand, broadcast_dimensions); broadcast->set_metadata(operand->metadata()); if (operand->has_sharding()) { broadcast->copy_sharding(operand); } broadcast->set_frontend_attributes(operand->frontend_attributes()); broadcast->set_statistics_viz(operand->statistics_viz()); return broadcast; } std::unique_ptr<HloInstruction> HloInstruction::CreatePad( const Shape& shape, HloInstruction* operand, HloInstruction* padding_value, const PaddingConfig& padding_config) { return std::make_unique<HloPadInstruction>(shape, operand, padding_value, padding_config); } std::unique_ptr<HloInstruction> HloInstruction::CreateReshape( const Shape& shape, HloInstruction* operand, int64_t inferred_dimension) { CHECK(operand->shape().is_unbounded_dynamic() || ShapeUtil::StaticExtentProduct(shape) == ShapeUtil::StaticExtentProduct(operand->shape())) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(operand->shape()); return std::make_unique<HloReshapeInstruction>(shape, operand, inferred_dimension); } std::unique_ptr<HloInstruction> HloInstruction::CreateDynamicReshape( const Shape& shape, HloInstruction* data_operand, absl::Span<HloInstruction* const> dim_sizes) { CHECK_EQ(ShapeUtil::StaticExtentProduct(shape), ShapeUtil::StaticExtentProduct(data_operand[0].shape())) << "shape: " << ShapeUtil::HumanString(shape) << " operand: " << ShapeUtil::HumanString(data_operand[0].shape()); CHECK_EQ(shape.rank(), dim_sizes.size()); return std::make_unique<HloDynamicReshapeInstruction>(shape, data_operand, dim_sizes); } std::unique_ptr<HloInstruction> HloInstruction::CreateTranspose( const Shape& shape, HloInstruction* operand, absl::Span<const int64_t> dimensions) { return std::make_unique<HloTransposeInstruction>(shape, operand, dimensions); } std::unique_ptr<HloInstruction> HloInstruction::CreateSort( const Shape& shape, int64_t dimension, absl::Span<HloInstruction* const> operands, HloComputation* compare, bool is_stable) { return std::make_unique<HloSortInstruction>(shape, dimension, operands, compare, is_stable); } std::unique_ptr<HloInstruction> HloInstruction::CreateFusion( const Shape& shape, FusionKind fusion_kind, HloInstruction* fused_root, absl::string_view prefix) { return std::make_unique<HloFusionInstruction>(shape, fusion_kind, fused_root, prefix); } std::unique_ptr<HloInstruction> HloInstruction::CreateFusion( const Shape& shape, FusionKind fusion_kind, absl::Span<HloInstruction* const> operands, HloComputation* fusion_computation, absl::string_view prefix) { return std::make_unique<HloFusionInstruction>(shape, fusion_kind, operands, fusion_computation, prefix); } void HloInstruction::set_single_sharding(const HloSharding& sharding) { CHECK(!sharding.IsTuple()) << sharding; if (shape().IsTuple()) { set_sharding(HloSharding::Tuple(sharding.GetAsShapeTree(shape()))); } else { set_sharding(sharding); } } void HloInstruction::SetupDerivedInstruction( HloInstruction* derived_instruction) const { if (sharding_ != nullptr && ShapeUtil::CompatibleKind(shape_, derived_instruction->shape())) { derived_instruction->set_sharding(*sharding_); } else if (!ShapeUtil::CompatibleKind(shape_, derived_instruction->shape())) { derived_instruction->clear_sharding(); } derived_instruction->set_metadata(*metadata_); if (has_rare()) { derived_instruction->set_frontend_attributes(frontend_attributes()); derived_instruction->set_statistics_viz(statistics_viz()); } else if (derived_instruction->has_rare()) { derived_instruction->mutable_rare()->frontend_attributes.Clear(); derived_instruction->mutable_rare()->statistics_viz.Clear(); } if (opcode() == derived_instruction->opcode() && has_backend_config()) { derived_instruction->CopyBackendConfigFrom(this); } } bool HloInstruction::HasSideEffectNoRecurse() const { switch (opcode_) { case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kRng: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kAllReduceStart: case HloOpcode::kAllReduceDone: case HloOpcode::kAllGatherStart: case HloOpcode::kAllGatherDone: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kCollectivePermuteDone: return true; case HloOpcode::kAllToAll: case HloOpcode::kAllGather: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: if (Cast<HloCollectiveInstruction>(this)->constrain_layout()) { return true; } [[fallthrough]]; case HloOpcode::kCollectivePermute: return Cast<HloChannelInstruction>(this)->channel_id().has_value() && !GetModule()->config().use_spmd_partitioning(); case HloOpcode::kCustomCall: return Cast<HloCustomCallInstruction>(this) ->custom_call_has_side_effect(); default: return false; } } bool HloInstruction::HasSideEffect() const { if (HasSideEffectNoRecurse()) { return true; } for (const auto& computation : called_computations()) { if (computation->HasSideEffect()) { return true; } } return false; } std::unique_ptr<HloInstruction> HloInstruction::CreateCall( const Shape& shape, HloInstruction* called_computation_root) { return std::make_unique<HloCallInstruction>(shape, called_computation_root); } std::unique_ptr<HloInstruction> HloInstruction::CreateCall( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* computation) { return std::make_unique<HloCallInstruction>(shape, operands, computation); } std::unique_ptr<HloInstruction> HloInstruction::CreateCompositeCall(const Shape& shape, HloInstruction* decomposition_root, const std::string& name, const std::string& attributes, int64_t version) { return std::make_unique<HloCallInstruction>(shape, decomposition_root, name, attributes, version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCompositeCall(const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* decomposition, const std::string& name, const std::string& attributes, int64_t version) { return std::make_unique<HloCallInstruction>(shape, operands, decomposition, name, attributes, version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::string_view custom_call_target, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, custom_call_target, std::move(opaque), api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* to_apply, absl::string_view custom_call_target, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, to_apply, custom_call_target, std::move(opaque), api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::Span<HloComputation* const> called_computations, absl::string_view custom_call_target, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, called_computations, custom_call_target, std::move(opaque), api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateCustomCall( const Shape& shape, absl::Span<HloInstruction* const> operands, absl::string_view custom_call_target, absl::Span<const Shape> operand_shapes_with_layout, std::string opaque, CustomCallApiVersion api_version) { return std::make_unique<HloCustomCallInstruction>( shape, operands, custom_call_target, std::move(opaque), operand_shapes_with_layout, api_version); } std::unique_ptr<HloInstruction> HloInstruction::CreateTuple( absl::Span<HloInstruction* const> elements) { std::vector<const Shape*> element_shapes; element_shapes.reserve(elements.size()); for (auto element : elements) { element_shapes.push_back(&element->shape()); } Shape tuple_shape = ShapeUtil::MakeTupleShapeWithPtrs(element_shapes); return CreateVariadic(tuple_shape, HloOpcode::kTuple, elements); } std::unique_ptr<HloInstruction> HloInstruction::CreateGather( const Shape& shape, HloInstruction* operand, HloInstruction* start_indices, const GatherDimensionNumbers& gather_dim_numbers, absl::Span<const int64_t> slice_sizes, bool indices_are_sorted) { return std::make_unique<HloGatherInstruction>(shape, operand, start_indices, gather_dim_numbers, slice_sizes, indices_are_sorted); } std::unique_ptr<HloInstruction> HloInstruction::CreateScatter( const Shape& shape, HloInstruction* operand, HloInstruction* scatter_indices, HloInstruction* updates, HloComputation* update_computation, const ScatterDimensionNumbers& scatter_dim_numbers, bool indices_are_sorted, bool unique_indices) { return absl::WrapUnique(new HloScatterInstruction( shape, {operand, scatter_indices, updates}, update_computation, scatter_dim_numbers, indices_are_sorted, unique_indices)); } std::unique_ptr<HloInstruction> HloInstruction::CreateScatter( const Shape& shape, absl::Span<HloInstruction* const> operands, HloInstruction* scatter_indices, absl::Span<HloInstruction* const> updates, HloComputation* update_computation, const ScatterDimensionNumbers& scatter_dim_numbers, bool indices_are_sorted, bool unique_indices) { absl::InlinedVector<HloInstruction*, 3> args; args.reserve(operands.size() + updates.size() + 1); absl::c_copy(operands, std::back_inserter(args)); args.push_back(scatter_indices); absl::c_copy(updates, std::back_inserter(args)); return std::make_unique<HloScatterInstruction>( shape, args, update_computation, scatter_dim_numbers, indices_are_sorted, unique_indices); } std::unique_ptr<HloInstruction> HloInstruction::CreateDomain( const Shape& shape, HloInstruction* operand, std::unique_ptr<DomainMetadata> operand_side_metadata, std::unique_ptr<DomainMetadata> user_side_metadata) { return std::make_unique<HloDomainInstruction>( shape, operand, std::move(operand_side_metadata), std::move(user_side_metadata)); } bool HloInstruction::IsThreadIncluded( absl::string_view execution_thread, const absl::flat_hash_set<absl::string_view>& execution_threads_set) { return execution_threads_set.empty() || execution_threads_set.contains(execution_thread); } void HloInstruction::AddSuffixToInstructionName( const absl::string_view suffix) { const std::string dot_suffix = absl::StrCat(".", suffix); size_t index = name().rfind(dot_suffix); if (index == std::string::npos) { this->name_ = absl::StrCat(name(), dot_suffix); } else { auto after_suffix = name().substr(index + dot_suffix.size()); if (after_suffix.empty()) { this->name_ = absl::StrCat(name(), "2"); } else { int64_t numeric_suffix; if (absl::SimpleAtoi(after_suffix, &numeric_suffix)) { this->name_ = StrCat(name().substr(0, index), dot_suffix, numeric_suffix + 1); } else { this->name_ = absl::StrCat(name(), dot_suffix); } } } } std::unique_ptr<HloInstruction> HloInstruction::CloneWithNewOperands( const Shape& shape, absl::Span<HloInstruction* const> new_operands, HloCloneContext* context) const { return CloneWithNewOperands(shape, new_operands, "", context); } std::unique_ptr<HloInstruction> HloInstruction::CloneWithNewOperands( const Shape& shape, absl::Span<HloInstruction* const> new_operands, const std::string& suffix, HloCloneContext* context) const { VLOG(3) << "CloneWithNewOperands:\n " << ToString(); VLOG(3) << " new operands:"; for (const HloInstruction* new_operand : new_operands) { VLOG(3) << " %" << new_operand->name(); } std::unique_ptr<HloInstruction> clone; switch (opcode_) { case HloOpcode::kBatchNormTraining: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormGrad: case HloOpcode::kFft: case HloOpcode::kCompare: case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: case HloOpcode::kCopyStart: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kReverse: case HloOpcode::kConcatenate: case HloOpcode::kReduce: case HloOpcode::kTranspose: case HloOpcode::kBroadcast: case HloOpcode::kReshape: case HloOpcode::kDynamicReshape: case HloOpcode::kMap: case HloOpcode::kSlice: case HloOpcode::kConstant: case HloOpcode::kFusion: case HloOpcode::kRng: case HloOpcode::kRngBitGenerator: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kParameter: case HloOpcode::kGetTupleElement: case HloOpcode::kReducePrecision: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kConvolution: case HloOpcode::kCustomCall: case HloOpcode::kReduceWindow: case HloOpcode::kSelectAndScatter: case HloOpcode::kPad: case HloOpcode::kDynamicSlice: case HloOpcode::kSort: case HloOpcode::kGather: case HloOpcode::kScatter: case HloOpcode::kIota: case HloOpcode::kDot: case HloOpcode::kDomain: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kTriangularSolve: case HloOpcode::kCholesky: case HloOpcode::kTopK: clone = CloneWithNewOperandsImpl(shape, new_operands, context); break; case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kBitcast: case HloOpcode::kCeil: case HloOpcode::kClz: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopy: case HloOpcode::kOptimizationBarrier: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kFloor: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kRsqrt: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTan: case HloOpcode::kTanh: CHECK_EQ(new_operands.size(), 1); clone = CreateUnary(shape, opcode_, new_operands[0]); break; case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kComplex: case HloOpcode::kDivide: case HloOpcode::kMultiply: case HloOpcode::kSubtract: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: CHECK_EQ(new_operands.size(), 2); clone = CreateBinary(shape, opcode_, new_operands[0], new_operands[1]); break; case HloOpcode::kClamp: case HloOpcode::kSelect: CHECK_EQ(new_operands.size(), 3); clone = CreateTernary(shape, opcode_, new_operands[0], new_operands[1], new_operands[2]); break; case HloOpcode::kCall: clone = CreateCall(shape, new_operands, to_apply()); break; case HloOpcode::kConvert: CHECK_EQ(new_operands.size(), 1); clone = CreateConvert(shape, new_operands[0]); break; case HloOpcode::kBitcastConvert: CHECK_EQ(new_operands.size(), 1); clone = CreateBitcastConvert(shape, new_operands[0]); break; case HloOpcode::kStochasticConvert: CHECK_EQ(new_operands.size(), 2); clone = CreateStochasticConvert(shape, new_operands[0], new_operands[1]); break; case HloOpcode::kDynamicUpdateSlice: clone = CreateDynamicUpdateSlice(shape, new_operands[0], new_operands[1], new_operands.subspan(2)); break; case HloOpcode::kTuple: clone = CreateTuple(new_operands); *clone->mutable_shape() = shape; break; case HloOpcode::kWhile: CHECK_EQ(new_operands.size(), 1); clone = CreateWhile(shape, while_condition(), while_body(), new_operands[0]); while_body()->SetWhileCallInstruction(const_cast<HloInstruction*>(this)); break; case HloOpcode::kConditional: CHECK_EQ(new_operands.size(), branch_count() + 1); clone = CreateConditional(shape, new_operands[0], absl::MakeSpan(branch_computations()), new_operands.subspan(1)); break; case HloOpcode::kAfterAll: if (new_operands.empty()) { clone = CreateToken(); } else { clone = CreateAfterAll(new_operands); } break; case HloOpcode::kAddDependency: CHECK_EQ(new_operands.size(), 2); clone = CreateAddDependency(new_operands[0], new_operands[1]); break; case HloOpcode::kReplicaId: CHECK_EQ(new_operands.size(), 0); clone = CreateReplicaId(shape); break; case HloOpcode::kPartitionId: CHECK_EQ(new_operands.size(), 0); clone = CreatePartitionId(shape); break; default: CHECK(0) << "Unsupported opcode: " << opcode_; } SetupDerivedInstruction(clone.get()); clone->set_parent(parent_); clone->backend_config_ = BackendConfigWrapper(backend_config_); clone->SetAndSanitizeName(name()); if (context != nullptr) { context->MapInstruction(this, clone.get()); clone->ReplaceCalledComputations([&](HloComputation* callee) { return callee->parent() != context->module() ? context->module()->DeepCloneComputation(callee, context) : callee; }); if (opcode() == HloOpcode::kWhile) { clone->while_body()->SetWhileCallInstruction(clone.get()); } } if (!suffix.empty()) { clone->AddSuffixToInstructionName(suffix); } return clone; } void HloInstruction::DetachFromOperandsAndUsers() { if (cleaned_up_) { return; } cleaned_up_ = true; for (int64_t operand_num = 0; operand_num < operand_count(); ++operand_num) { HloInstruction* operand = operands_[operand_num]; if (operand == nullptr) { continue; } operand->users_.MaybeRemoveUser(this); operands_[operand_num] = nullptr; } for (auto& user : this->users()) { for (int i = 0; i < user->operand_count(); ++i) { if (user->operands_[i] == this) { user->operands_[i] = nullptr; } } } } std::unique_ptr<HloInstruction> HloInstruction::CloneWithNewShape( const Shape& shape, const std::string& suffix, HloCloneContext* context) const { std::unique_ptr<HloInstruction> clone = CloneWithNewOperands(shape, operands_, context); if (suffix.empty()) { clone->name_.assign(name().begin(), name().end()); } else { clone->AddSuffixToInstructionName(suffix); } return clone; } std::unique_ptr<HloInstruction> HloInstruction::Clone( const std::string& suffix, HloCloneContext* context) const { std::unique_ptr<HloInstruction> clone = CloneWithNewShape(shape_, suffix, context); return clone; } std::pair<const HloInstruction*, ShapeIndex> HloInstruction::LatestNonGteAncestorAndIndex() const { const HloInstruction* hlo = this; ShapeIndex index; while (hlo->opcode() == HloOpcode::kGetTupleElement) { index.push_back(hlo->tuple_index()); hlo = hlo->operand(0); } std::reverse(index.begin(), index.end()); return {hlo, index}; } const HloInstruction* HloInstruction::LatestNonGteAncestor() const { const HloInstruction* hlo = this; while (hlo->opcode() == HloOpcode::kGetTupleElement) { hlo = hlo->operand(0); } return hlo; } const HloInstruction* HloInstruction::operand(int64_t i) const { return operands_[i]; } HloInstruction* HloInstruction::mutable_operand(int64_t i) { CHECK(operands_[i] != nullptr); return operands_[i]; } int64_t HloInstruction::operand_index(const HloInstruction* target) const { for (int64_t i = 0; i < operand_count(); ++i) { if (target == operand(i)) { return i; } } LOG(FATAL) << "target was not an operand: " << target->ToString(); } std::vector<int64_t> HloInstruction::operand_indices( const HloInstruction* target) const { std::vector<int64_t> indices; for (int64_t i = 0; i < operand_count(); ++i) { if (target == operand(i)) { indices.push_back(i); } } if (indices.empty()) { LOG(FATAL) << "target was not an operand: " << target->ToString(); } return indices; } HloInstruction::InstructionVector HloInstruction::unique_operands() const { InstructionVector unique; absl::flat_hash_set<const HloInstruction*> seen; for (HloInstruction* operand : operands()) { if (seen.insert(operand).second) { unique.push_back(operand); } } return unique; } absl::Status HloInstruction::AddControlDependencyTo( HloInstruction* instruction) { TF_RET_CHECK(instruction->parent() == parent()); if (!absl::c_linear_search(control_successors(), instruction)) { mutable_rare()->control_successors.push_back(instruction); TF_RET_CHECK(!absl::c_linear_search( instruction->rare()->control_predecessors, this)); instruction->mutable_rare()->control_predecessors.push_back(this); } return absl::OkStatus(); } absl::Status HloInstruction::RemoveControlDependencyTo( HloInstruction* instruction) { TF_RET_CHECK(instruction->parent() == parent()); if (has_rare()) { TF_RETURN_IF_ERROR(EraseElementFromVector( &mutable_rare()->control_successors, instruction)); } if (instruction->has_rare()) { TF_RETURN_IF_ERROR(EraseElementFromVector( &instruction->mutable_rare()->control_predecessors, this)); } return absl::OkStatus(); } absl::Status HloInstruction::DropAllControlDeps() { if (has_rare()) { for (auto* ctrl_succ : rare()->control_successors) { TF_RETURN_IF_ERROR(EraseElementFromVector( &ctrl_succ->mutable_rare()->control_predecessors, this)); } for (auto* ctrl_pred : rare()->control_predecessors) { TF_RETURN_IF_ERROR(EraseElementFromVector( &ctrl_pred->mutable_rare()->control_successors, this)); } Rare* r = mutable_rare(); r->control_successors.clear(); r->control_predecessors.clear(); } return absl::OkStatus(); } absl::Status HloInstruction::SafelyDropAllControlDependencies() { if (has_rare()) { for (HloInstruction* predecessor : rare()->control_predecessors) { for (HloInstruction* successor : rare()->control_successors) { TF_RETURN_IF_ERROR(predecessor->AddControlDependencyTo(successor)); } } } TF_RETURN_IF_ERROR(DropAllControlDeps()); return absl::OkStatus(); } bool HloInstruction::HasControlDependencies() const { const Rare* r = rare(); return (!r->control_predecessors.empty() || !r->control_successors.empty()); } absl::Status HloInstruction::CopyAllControlDepsTo(HloInstruction* start, HloInstruction* end) const { for (auto* ctrl_pred : control_predecessors()) { TF_RETURN_IF_ERROR(ctrl_pred->AddControlDependencyTo(start)); } for (auto* ctrl_succ : control_successors()) { TF_RETURN_IF_ERROR(end->AddControlDependencyTo(ctrl_succ)); } return absl::OkStatus(); } bool HloInstruction::IdenticalInternal( const HloInstruction& other, absl::FunctionRef<bool(const HloInstruction*, const HloInstruction*)> eq_operands, absl::FunctionRef<bool(const HloComputation*, const HloComputation*)> eq_computations, bool layout_sensitive, bool sharding_sensitive, bool ignore_channel_id_values, bool ignore_commutative_operand_order) const { if (this == &other) { return true; } if (opcode() != other.opcode()) { return false; } if (!(layout_sensitive ? ShapeUtil::Equal(shape(), other.shape()) : ShapeUtil::Compatible(shape(), other.shape()))) { return false; } if (sharding_sensitive && has_sharding() && other.has_sharding() && sharding() != other.sharding()) { return false; } if (operands().size() != other.operands().size()) { return false; } if (ignore_commutative_operand_order && HloOpcodeIsBinaryCommutative(opcode())) { CHECK_EQ(operand_count(), 2); if (!(eq_operands(operand(0), other.operand(0)) && eq_operands(operand(1), other.operand(1))) && !(eq_operands(operand(0), other.operand(1)) && eq_operands(operand(1), other.operand(0)))) { return false; } } else { for (size_t i = 0; i < operands().size(); ++i) { if (!eq_operands(operand(i), other.operand(i))) { return false; } } } if (backend_config_ != other.backend_config_) { return false; } if (ignore_channel_id_values) { if (auto channel_inst = DynCast<HloChannelInstruction>(this)) { return channel_inst->IdenticalSlowPathIgnoringChannelIdValues( other, eq_computations); } } return IdenticalSlowPath(other, eq_computations); } void HloInstruction::AppendOperand(HloInstruction* operand) { if (operand->parent() != nullptr) { DCHECK(!operand->parent()->IsMarkedAsDead(operand)) << "Operand " << operand->name() << " is already marked dead"; } operands_.push_back(operand); operand->AddUser(this); } void HloInstruction::RemoveOperandsAtAscendingIndices( absl::Span<const int> ascending_indices) { if (ascending_indices.empty()) { return; } int next_index = 0; int removed_count = 0; for (int to_remove : ascending_indices) { while (next_index < to_remove) { operands_[next_index - removed_count] = operands_[next_index]; ++next_index; } CHECK_LT(to_remove, operands_.size()); ++removed_count; ++next_index; } while (next_index < operands_.size()) { operands_[next_index - removed_count] = operands_[next_index]; ++next_index; } CHECK_EQ(removed_count, ascending_indices.size()); operands_.resize(operands_.size() - removed_count); } bool HloInstruction::HasConstantOperand() const { for (const HloInstruction* operand : operands_) { if (operand->IsConstant()) { return true; } } return false; } bool HloInstruction::IdenticalSlowPath( const HloInstruction& other, absl::FunctionRef<bool(const HloComputation*, const HloComputation*)> eq_computations) const { switch (opcode()) { case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kAtan2: case HloOpcode::kAdd: case HloOpcode::kBitcast: case HloOpcode::kBitcastConvert: case HloOpcode::kCeil: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kComplex: case HloOpcode::kConvert: case HloOpcode::kCopy: case HloOpcode::kCopyStart: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kDivide: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kAnd: case HloOpcode::kNot: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kOptimizationBarrier: case HloOpcode::kPartitionId: case HloOpcode::kPopulationCount: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kRemainder: case HloOpcode::kReshape: case HloOpcode::kDynamicReshape: case HloOpcode::kReplicaId: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kStochasticConvert: case HloOpcode::kCbrt: case HloOpcode::kSubtract: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kTuple: return true; case HloOpcode::kAfterAll: case HloOpcode::kAddDependency: return false; case HloOpcode::kCall: return eq_computations(to_apply(), other.to_apply()); case HloOpcode::kConditional: for (int j = 0; j < branch_count(); ++j) { if (!eq_computations(branch_computation(j), other.branch_computation(j))) { return false; } } return true; case HloOpcode::kWhile: return (eq_computations(while_body(), other.while_body()) && eq_computations(while_condition(), other.while_condition())); case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: case HloOpcode::kBatchNormTraining: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormGrad: case HloOpcode::kFft: case HloOpcode::kCompare: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kReverse: case HloOpcode::kConcatenate: case HloOpcode::kReduce: case HloOpcode::kSort: case HloOpcode::kTranspose: case HloOpcode::kBroadcast: case HloOpcode::kMap: case HloOpcode::kSlice: case HloOpcode::kConstant: case HloOpcode::kIota: case HloOpcode::kFusion: case HloOpcode::kRng: case HloOpcode::kRngBitGenerator: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kParameter: case HloOpcode::kGetTupleElement: case HloOpcode::kReducePrecision: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kConvolution: case HloOpcode::kCustomCall: case HloOpcode::kReduceWindow: case HloOpcode::kSelectAndScatter: case HloOpcode::kPad: case HloOpcode::kDynamicSlice: case HloOpcode::kGather: case HloOpcode::kScatter: case HloOpcode::kDot: case HloOpcode::kDomain: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kTriangularSolve: case HloOpcode::kCholesky: case HloOpcode::kTopK: LOG(FATAL) << "Base class impl called for opcode with subclass: " << opcode(); } return false; } absl::Status HloInstruction::ReplaceUseWith(HloInstruction* user, HloInstruction* new_producer) { TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << "this shape: " << ShapeUtil::HumanString(shape()) << ", replacement shape: " << ShapeUtil::HumanString(new_producer->shape()); return ReplaceUseWithDifferentShape(user, new_producer); } absl::Status HloInstruction::ReplaceUseWithDifferentShape( HloInstruction* user, HloInstruction* new_producer) { VLOG(3) << "Replacing uses of " << name() << " in " << user->name() << " with " << new_producer->name(); RemoveUser(user); TF_RET_CHECK(absl::c_count(user->operands_, this) >= 0); std::replace(user->operands_.begin(), user->operands_.end(), this, new_producer); new_producer->AddUser(user); if (user->opcode() == HloOpcode::kFusion) { TF_RETURN_IF_ERROR( Cast<HloFusionInstruction>(user)->DeduplicateFusionOperands()); } return absl::OkStatus(); } absl::Status HloInstruction::ReplaceUseWith(HloInstruction* user, int operand_number, HloInstruction* new_producer) { TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << "this shape: " << ShapeUtil::HumanString(shape()) << ", replacement shape: " << ShapeUtil::HumanString(new_producer->shape()); return ReplaceUseWithDifferentShape(user, operand_number, new_producer); } absl::Status HloInstruction::ReplaceUseWithDifferentShape( HloInstruction* user, int operand_number, HloInstruction* new_producer) { VLOG(3) << "Replacing operand " << operand_number << " of " << name() << " in " << user->name() << " with " << new_producer->name(); if (absl::c_count(user->operands_, this) == 1) { RemoveUser(user); } TF_RET_CHECK(user->operand(operand_number) == this) << "Expected operand " << operand_number << " of " << user->ToString() << " to be equal to " << ToString(); user->operands_[operand_number] = new_producer; new_producer->AddUser(user); return absl::OkStatus(); } absl::Status HloInstruction::ReplaceOperandWith(int64_t operand_num, HloInstruction* new_operand) { auto old_operand = operand(operand_num); TF_RET_CHECK(ShapeUtil::CompatibleIgnoringFpPrecision(old_operand->shape(), new_operand->shape())) << old_operand->shape() << " is not compatible with " << new_operand->shape(); return ReplaceOperandWithDifferentShape(operand_num, new_operand); } absl::Status HloInstruction::ReplaceOperandWithDifferentShape( int64_t operand_num, HloInstruction* new_operand) { TF_RET_CHECK(operand_num >= 0); TF_RET_CHECK(operand_num < operand_count()); HloInstruction* old_operand = mutable_operand(operand_num); if (old_operand == new_operand) { return absl::OkStatus(); } operands_[operand_num] = new_operand; VLOG(3) << "Replacing operand " << operand_num << " of " << name() << " with " << new_operand->name() << ", was " << old_operand->name(); if (!absl::c_linear_search(operands_, old_operand)) { old_operand->RemoveUser(this); } new_operand->AddUser(this); return absl::OkStatus(); } absl::Status HloInstruction::Defuse() { if (opcode() != HloOpcode::kFusion) { return absl::OkStatus(); } VLOG(2) << "Defusing instruction: " << ToString(); HloComputation* fused_computation = fused_instructions_computation(); absl::flat_hash_map<const HloInstruction*, HloInstruction*> defused_instructions; for (int64_t i = 0; i < operand_count(); ++i) { defused_instructions[fused_computation->parameter_instruction(i)] = mutable_operand(i); } for (HloInstruction* fused_instruction : fused_computation->MakeInstructionPostOrder()) { if (fused_instruction->opcode() == HloOpcode::kParameter) { continue; } std::vector<HloInstruction*> new_operands; for (HloInstruction* operand : fused_instruction->operands()) { new_operands.push_back(defused_instructions.at(operand)); } HloInstruction* defused_instruction = parent()->AddInstruction(fused_instruction->CloneWithNewOperands( fused_instruction->shape(), new_operands)); defused_instructions[fused_instruction] = defused_instruction; } TF_RETURN_IF_ERROR( ReplaceAllUsesWith(defused_instructions.at(fused_expression_root()))); HloModule* module = GetModule(); TF_RETURN_IF_ERROR(parent()->RemoveInstruction(this)); return module->RemoveEmbeddedComputation(fused_computation); } absl::StatusOr<HloInstruction*> HloInstruction::UnfuseInstruction( HloInstruction* instruction) { CHECK_EQ(opcode(), HloOpcode::kFusion); std::vector<HloInstruction*> new_operands; for (int64_t operand_num = 0; operand_num < instruction->operand_count(); ++operand_num) { HloInstruction* operand = instruction->mutable_operand(operand_num); if (operand->opcode() == HloOpcode::kParameter) { HloInstruction* extracted_operand = mutable_operand(operand->parameter_number()); new_operands.push_back(extracted_operand); } else if (operand->opcode() == HloOpcode::kConstant) { HloInstruction* cloned_constant = AddInstruction(operand->Clone()); new_operands.push_back(cloned_constant); } else if (operand->opcode() == HloOpcode::kBroadcast && operand->operand(0)->opcode() == HloOpcode::kConstant) { HloInstruction* cloned_constant = AddInstruction(operand->operand(0)->Clone()); new_operands.push_back(AddInstruction( operand->CloneWithNewOperands(operand->shape(), {cloned_constant}))); } else { return InvalidArgument( "Unsupported operand type for unfusing: %s. Currently only " "parameters and constants are supported.", operand->ToString()); } } HloInstruction* unfused_instruction = AddInstruction( instruction->CloneWithNewOperands(instruction->shape(), new_operands)); HloComputation* fusion_computation = fused_instructions_computation(); HloInstruction* new_parameter = AddFusionOperand(unfused_instruction); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(new_parameter)); TF_RETURN_IF_ERROR( fusion_computation->RemoveInstructionAndUnusedOperands(instruction)); return unfused_instruction; } absl::Status HloInstruction::ReplaceUsesWith( absl::Span<HloInstruction* const> users, HloInstruction* new_producer) { TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << shape() << " is not compatible with " << new_producer->shape(); return ReplaceAllUsesWithDifferentShape(users, new_producer); } absl::Status HloInstruction::ReplaceAllUsesWithDifferentShape( absl::Span<HloInstruction* const> users, HloInstruction* new_producer) { std::vector<HloInstruction*> users_vector(users.begin(), users.end()); for (HloInstruction* user : users_vector) { TF_RETURN_IF_ERROR(ReplaceUseWithDifferentShape(user, new_producer)); } if (parent_ && parent_->root_instruction() == this) { parent_->set_root_instruction(new_producer, true); } return absl::OkStatus(); } absl::Status HloInstruction::ReplaceAllUsesWith(HloInstruction* new_producer, absl::string_view trigger) { auto print_options = HloPrintOptions::ShortParsable() .set_print_operand_shape(true) .set_print_extra_attributes(false); TF_RET_CHECK( ShapeUtil::CompatibleIgnoringFpPrecision(shape(), new_producer->shape())) << "The shape doesn't match when replacing '" << ToString(print_options) << "' with '" << new_producer->ToString(print_options) << "'. " << shape() << " is not compatible with " << new_producer->shape() << "\n '" << trigger << "' triggered this wrong replacement."; return ReplaceAllUsesWithDifferentShape(new_producer); } absl::Status HloInstruction::ReplaceAllUsesWithDifferentShape( HloInstruction* new_producer) { bool new_producer_is_user = false; std::vector<HloInstruction*> users_vector(users().begin(), users().end()); for (HloInstruction* user : users_vector) { if (user == new_producer) { new_producer_is_user = true; } else { std::replace(user->operands_.begin(), user->operands_.end(), this, new_producer); new_producer->AddUser(user); if (user->opcode() == HloOpcode::kFusion) { TF_RETURN_IF_ERROR( Cast<HloFusionInstruction>(user)->DeduplicateFusionOperands()); } } } users_.Clear(); if (new_producer_is_user) { AddUser(new_producer); } if (parent_ && parent_->root_instruction() == this) { parent_->set_root_instruction(new_producer, true); } return absl::OkStatus(); } bool HloInstruction::IsEffectiveBitcast() const { return opcode_ == HloOpcode::kBitcast || (opcode_ == HloOpcode::kTranspose && ShapeUtil::TransposeIsBitcast(operand(0)->shape(), shape(), dimensions())); } HloComputation* HloInstruction::to_apply() const { if (has_to_apply()) { CHECK_EQ(called_computations().size(), 1) << "Expected a to_apply computation for " << opcode(); return called_computations()[0]; } LOG(FATAL) << "Invalid opcode for to_apply(): " << opcode(); } void HloInstruction::set_to_apply(HloComputation* computation) { if (has_to_apply()) { CHECK_EQ(called_computations().size(), 1) << "Expected a to_apply computation for " << opcode(); rare_->called_computations[0] = computation; return; } LOG(FATAL) << "Invalid opcode for to_apply(): " << opcode(); } bool HloInstruction::has_to_apply() const { switch (opcode_) { case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kCall: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kReduceScatter: case HloOpcode::kReduceWindow: case HloOpcode::kScatter: case HloOpcode::kSort: return true; case HloOpcode::kCustomCall: return called_computations().size() == 1; default: return false; } } HloComputation* HloInstruction::while_condition() const { CHECK_EQ(HloOpcode::kWhile, opcode_); return called_computations()[kConditionComputationIndex]; } HloComputation* HloInstruction::while_body() const { CHECK_EQ(HloOpcode::kWhile, opcode_); return called_computations()[kBodyComputationIndex]; } void HloInstruction::set_while_condition(HloComputation* computation) { CHECK_EQ(HloOpcode::kWhile, opcode_); rare_->called_computations[kConditionComputationIndex] = computation; } void HloInstruction::set_while_body(HloComputation* computation) { CHECK_EQ(HloOpcode::kWhile, opcode_); rare_->called_computations[kBodyComputationIndex] = computation; } HloInstruction* HloInstruction::while_init() const { CHECK_EQ(HloOpcode::kWhile, opcode_); return operands_[0]; } HloComputation* HloInstruction::true_computation() const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_EQ(PRED, operand(0)->shape().element_type()); return called_computations()[kTrueComputationIndex]; } HloComputation* HloInstruction::false_computation() const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_EQ(PRED, operand(0)->shape().element_type()); return called_computations()[kFalseComputationIndex]; } const PtrVec<HloComputation*>& HloInstruction::branch_computations() const { CHECK(HloOpcode::kConditional == opcode_); return called_computations(); } int32_t HloInstruction::branch_count() const { CHECK(HloOpcode::kConditional == opcode_); return called_computations().size(); } HloComputation* HloInstruction::branch_computation(int32_t b) const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_GE(b, 0); CHECK_LT(b, called_computations().size()); return called_computations()[b]; } int32_t HloInstruction::branch_index(HloComputation* computation) const { CHECK_EQ(HloOpcode::kConditional, opcode_); CHECK_NE(computation, nullptr); for (int32_t idx = 0; idx < branch_count(); idx++) { if (branch_computation(idx) == computation) { return idx; } } LOG(FATAL) << absl::StrFormat("Conditional %s does not contain branch %s", name(), computation->name()); } void HloInstruction::set_branch_computation(int b, HloComputation* computation) { CHECK_EQ(HloOpcode::kConditional, opcode_); rare_->called_computations[b] = computation; } std::string HloInstruction::SignatureString() const { std::string operands = StrJoin(operands_, ", ", [](std::string* out, HloInstruction* operand) { StrAppend(out, ShapeUtil::HumanString(operand->shape())); }); return StrCat("(", operands, ") -> ", ShapeUtil::HumanString(shape())); } absl::string_view PrintName(absl::string_view name, bool print_ids) { if (print_ids) { return name; } else { auto dot_position = name.find_first_of('.'); return name.substr(0, dot_position); } } namespace { using DFSStack = absl::InlinedVector<std::pair<int, HloInstruction*>, 16>; void PrintNameInternal(Printer* printer, absl::string_view name, const HloPrintOptions& options) { if (options.print_percent()) { printer->Append("%"); } printer->Append(PrintName(name, options.print_ids())); } std::string PrintCycle(const HloInstruction* child, DFSStack* dfs_stack, bool ignore_control_predecessors) { absl::flat_hash_set<const HloInstruction*> subgraph; while (!dfs_stack->empty() && dfs_stack->back().second != child) { subgraph.insert(dfs_stack->back().second); dfs_stack->pop_back(); } absl::flat_hash_set<const HloInstruction*> visited; absl::InlinedVector<const HloInstruction*, 16> dfs; dfs.push_back(child); std::string result; while (!dfs.empty() && result.empty()) { bool found_next_instr = false; auto process_users_or_successors = [&](const std::vector<HloInstruction*>& users_or_successors) { for (const auto& user : users_or_successors) { if (user == child) { dfs.push_back(child); result = "\n\nDirected cycle:\n " + absl::StrJoin( dfs, "\n ", [](std::string* out, const HloInstruction* instr) { absl::StrAppend(out, instr->name()); }); return; } if (!subgraph.contains(user) || visited.contains(user)) { continue; } visited.insert(user); dfs.push_back(user); found_next_instr = true; } }; const HloInstruction* back = dfs.back(); process_users_or_successors(back->users()); if (!ignore_control_predecessors) { process_users_or_successors(back->control_successors()); } if (!found_next_instr) { dfs.pop_back(); } } return result; } } void HloInstruction::Print(Printer* printer, const HloPrintOptions& options) const { CanonicalNameMap new_map; PrintWithCanonicalNameMap(printer, options, &new_map); } std::string HloInstruction::ToString(const HloPrintOptions& options) const { StringPrinter printer; Print(&printer, options); return std::move(printer).ToString(); } std::string HloInstruction::ToString() const { return ToString(HloPrintOptions::Default()); } bool HloInstruction::IsOpElementwise(HloOpcode opcode) { switch (opcode) { case HloOpcode::kAbs: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kCeil: case HloOpcode::kClz: case HloOpcode::kConvert: case HloOpcode::kBitcastConvert: case HloOpcode::kCopy: case HloOpcode::kCos: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kReducePrecision: case HloOpcode::kRsqrt: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTan: case HloOpcode::kTanh: return true; case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kDivide: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kSubtract: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kStochasticConvert: return true; case HloOpcode::kSelect: case HloOpcode::kClamp: return true; default: return false; } } bool HloInstruction::IsElementwiseImpl( const std::optional<int64_t>& operand_idx) const { if (opcode_ == HloOpcode::kDynamicUpdateSlice) { return operand_idx.has_value() && operand_idx.value() == 0; } if (opcode_ == HloOpcode::kBitcastConvert && primitive_util::BitWidth(shape_.element_type()) != primitive_util::BitWidth(operands_[0]->shape().element_type())) { return false; } return IsOpElementwise(opcode_); } bool HloInstruction::IsCrossModuleAllReduce() const { if (opcode() == HloOpcode::kAllReduce || opcode() == HloOpcode::kAllReduceStart) { return channel_id() != std::nullopt; } else if (opcode() == HloOpcode::kAllReduceDone) { CHECK_EQ(operand_count(), 1); const HloInstruction* operand = this->operand(0); CHECK_EQ(operand->opcode(), HloOpcode::kAllReduceStart); return operand->channel_id() != std::nullopt; } return false; } bool HloInstruction::IsCrossReplicaAllReduce() const { if (opcode() == HloOpcode::kAllReduce || opcode() == HloOpcode::kAllReduceStart) { return channel_id() == std::nullopt; } else if (opcode() == HloOpcode::kAllReduceDone) { CHECK_EQ(operand_count(), 1); const HloInstruction* operand = this->operand(0); CHECK_EQ(operand->opcode(), HloOpcode::kAllReduceStart); return operand->channel_id() == std::nullopt; } return false; } void HloInstruction::PrintWithCanonicalNameMap( Printer* printer, const HloPrintOptions& options, CanonicalNameMap* canonical_name_map) const { if (options.canonicalize_instruction_names()) { if (options.is_in_nested_computation()) { DCHECK(!options.print_percent()); printer->Append(canonical_name_map->LookupOrInsert(unique_id())); printer->Append(" = "); } } else { PrintNameInternal(printer, name(), options); printer->Append(" = "); } if (options.print_result_shape()) { if (options.include_layout_in_shapes()) { ShapeUtil::PrintHumanStringWithLayout(printer, shape()); } else { ShapeUtil::PrintHumanString(printer, shape()); } printer->Append(" "); } if (options.syntax_sugar_async_ops() && HloOpcodeIsAsync(opcode()) && (async_wrapped_computation() && async_wrapped_computation()->CanExpandIntoSingleInstruction())) { absl::string_view suffix = [&]() { switch (opcode()) { case HloOpcode::kAsyncStart: return "-start"; case HloOpcode::kAsyncUpdate: return "-update"; default: CHECK(opcode() == HloOpcode::kAsyncDone) << "Unexpected async opcode: " << opcode(); return "-done"; } }(); printer->Append(HloOpcodeString(async_wrapped_opcode())); printer->Append(suffix); } else { printer->Append(HloOpcodeString(opcode())); } printer->Append("("); PrintOperandsWithCanonicalNameMap(printer, options, canonical_name_map); printer->Append(")"); AttributePrinter attr_printer([printer]() { printer->Append(", "); return printer; }); PrintExtraAttributes(attr_printer, options); if (original_value_) { printer->Append(", origin={"); printer->Append(OriginalValueToString(*original_value())); printer->Append("}"); } if (options.print_metadata() && (!metadata_->op_type().empty() || !metadata_->op_name().empty() || !metadata_->source_file().empty() || !metadata_->scheduling_name().empty())) { printer->Append(", metadata={"); printer->Append(xla::OpMetadataToString( *metadata_, options.print_metadata_only_op_name())); printer->Append("}"); } if (options.print_backend_config() && !backend_config_.empty()) { absl::string_view config = backend_config_.GetRawString(); std::string sorted_config; if (options.sort_backend_config()) { sorted_config = SortJson(config).value_or(std::string(config)); config = sorted_config; } printer->Append(", backend_config="); if (LexesAsJsonDict(config)) { printer->Append(config); } else { printer->Append("\""); printer->Append(CEscape(config)); printer->Append("\""); } } } void HloInstruction::PrintOperandsWithCanonicalNameMap( Printer* printer, const HloPrintOptions& options, CanonicalNameMap* canonical_name_map) const { if (operands_.empty()) return; absl::Span<HloInstruction* const> slice(operands_); constexpr int64_t kMaxOperandsToShowIfCompact = 4; if (options.compact_operands() && slice.size() > kMaxOperandsToShowIfCompact) { slice.remove_suffix(slice.size() - kMaxOperandsToShowIfCompact); } auto print_one = [&](const HloInstruction* operand) { if (operand == nullptr) { printer->Append("null "); return; } bool add_space = false; if (options.print_operand_shape()) { if (options.include_layout_in_shapes()) { ShapeUtil::PrintHumanStringWithLayout(printer, operand->shape()); } else { ShapeUtil::PrintHumanString(printer, operand->shape()); } add_space = true; } if (options.canonicalize_instruction_names()) { if (options.is_in_nested_computation()) { DCHECK(!options.print_percent()); if (add_space) printer->Append(" "); printer->Append( canonical_name_map->LookupOrInsert(operand->unique_id())); } } else if (options.print_operand_names()) { if (add_space) printer->Append(" "); PrintNameInternal(printer, operand->name(), options); } }; print_one(slice[0]); for (int64_t i = 1; i < slice.size(); ++i) { if (options.print_operand_index_annotation_interval() != 0 && i % options.print_operand_index_annotation_interval() == 0) { printer->Append(absl::StrFormat(", ", i)); } else { printer->Append(", "); } print_one(slice[i]); } const int64_t remaining = operands_.size() - slice.size(); if (remaining > 0) { printer->Append(", ...(+"); printer->Append(remaining); printer->Append(")"); } } namespace { bool IsSequentialCall(HloOpcode opcode) { switch (opcode) { case HloOpcode::kCall: case HloOpcode::kConditional: case HloOpcode::kWhile: return true; default: return false; } } } void HloInstruction::PrintExtraAttributes( AttributePrinter& printer, const HloPrintOptions& options) const { if (options.print_extra_attributes()) { PrintExtraAttributesImpl(printer, options); } const auto subcomputation_mode = options.print_subcomputation_mode(); if (subcomputation_mode == HloPrintOptions::PrintSubcomputationMode::kNameOnly) { if (opcode() == HloOpcode::kWhile) { printer.Next([this, &options](Printer* printer) { printer->Append("condition="); PrintNameInternal(printer, while_condition()->name(), options); }); printer.Next([this, &options](Printer* printer) { printer->Append("body="); PrintNameInternal(printer, while_body()->name(), options); }); } else if (opcode() == HloOpcode::kSelectAndScatter) { printer.Next([this, &options](Printer* printer) { printer->Append("select="); PrintNameInternal(printer, select()->name(), options); }); printer.Next([this, &options](Printer* printer) { printer->Append("scatter="); PrintNameInternal(printer, scatter()->name(), options); }); } else if (opcode() == HloOpcode::kConditional) { if (operand(0)->shape().element_type() == PRED) { printer.Next([this, &options](Printer* printer) { printer->Append("true_computation="); PrintNameInternal(printer, true_computation()->name(), options); }); printer.Next([this, &options](Printer* printer) { printer->Append("false_computation="); PrintNameInternal(printer, false_computation()->name(), options); }); } else { printer.Next([this, &options](Printer* printer) { printer->Append("branch_computations={"); AppendJoin(printer, branch_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { PrintNameInternal(printer, computation->name(), options); }); printer->Append("}"); }); } } else if (opcode() == HloOpcode::kCall || opcode() == HloOpcode::kMap || opcode() == HloOpcode::kReduceWindow || opcode() == HloOpcode::kReduce || opcode() == HloOpcode::kAllReduce || opcode() == HloOpcode::kReduceScatter || opcode() == HloOpcode::kAllReduceStart || opcode() == HloOpcode::kScatter || opcode() == HloOpcode::kTopK || opcode() == HloOpcode::kSort) { if (!called_computations().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("to_apply="); PrintNameInternal(printer, to_apply()->name(), options); }); } if (opcode() == HloOpcode::kCall && is_composite()) { printer.Next( [](Printer* printer) { printer->Append("is_composite=true"); }); } } else if (opcode() == HloOpcode::kCustomCall) { if (!called_computations().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("called_computations={"); AppendJoin(printer, called_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { PrintNameInternal(printer, computation->name(), options); }); printer->Append("}"); }); } } else if (HloOpcodeIsAsync(opcode())) { if (opcode() == HloOpcode::kAsyncStart && (!options.syntax_sugar_async_ops() || (async_wrapped_computation() && !async_wrapped_computation()->CanExpandIntoSingleInstruction()))) { printer.Next([this, &options](Printer* printer) { printer->Append("calls="); PrintNameInternal(printer, async_wrapped_computation()->name(), options); }); } } else if (!called_computations().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("calls="); AppendJoin(printer, called_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { PrintNameInternal(printer, computation->name(), options); }); }); } } else if ((subcomputation_mode == HloPrintOptions::PrintSubcomputationMode::kFullBodies) || (subcomputation_mode == HloPrintOptions::PrintSubcomputationMode:: kNonSequentialBodies && !IsSequentialCall(opcode()))) { HloPrintOptions new_options = options; new_options.set_is_in_nested_computation(true); switch (opcode()) { case HloOpcode::kWhile: printer.Next([this, &new_options](Printer* printer) { printer->Append("condition=\n"); while_condition()->Print(printer, new_options); }); printer.Next([this, &new_options](Printer* printer) { printer->Append("body=\n"); while_body()->Print(printer, new_options); }); break; case HloOpcode::kSelectAndScatter: printer.Next([this, &new_options](Printer* printer) { printer->Append("select=\n"); select()->Print(printer, new_options); }); printer.Next([this, &new_options](Printer* printer) { printer->Append("scatter=\n"); scatter()->Print(printer, new_options); }); break; case HloOpcode::kConditional: if (operand(0)->shape().element_type() == PRED) { printer.Next([this, &new_options](Printer* printer) { printer->Append("true_computation=\n"); true_computation()->Print(printer, new_options); }); printer.Next([this, &new_options](Printer* printer) { printer->Append("false_computation=\n"); false_computation()->Print(printer, new_options); }); } else { printer.Next([this, &new_options](Printer* printer) { printer->Append("branch_computations={\n"); AppendJoin( printer, branch_computations(), ",\n", [&](Printer* printer, const HloComputation* computation) { computation->Print(printer, new_options); }); printer->Append("\n}"); }); } break; case HloOpcode::kCall: case HloOpcode::kMap: case HloOpcode::kReduceWindow: case HloOpcode::kReduce: case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kScatter: case HloOpcode::kSort: case HloOpcode::kTopK: if (!called_computations().empty()) { printer.Next([this, &new_options](Printer* printer) { printer->Append("to_apply=\n"); to_apply()->Print(printer, new_options); }); } if (opcode() == HloOpcode::kCall && is_composite()) { printer.Next( [](Printer* printer) { printer->Append("is_composite=true"); }); } break; default: if (!called_computations().empty()) { printer.Next([this, &new_options](Printer* printer) { printer->Append("calls=\n"); AppendJoin( printer, called_computations(), ", ", [&](Printer* printer, const HloComputation* computation) { computation->Print(printer, new_options); }); }); } break; } } if (has_sharding()) { printer.Next([this, &options](Printer* printer) { printer->Append("sharding="); sharding().Print(printer, options.print_metadata()); }); } if (!frontend_attributes().map().empty()) { printer.Next([this](Printer* printer) { AppendCat(printer, "frontend_attributes=", FrontendAttributesToString(frontend_attributes())); }); } if (opcode() != HloOpcode::kCall) { CHECK(!is_composite()) << "Only kCall instructions should have is_composite set"; } if (options.print_control_dependencies() && !control_predecessors().empty()) { printer.Next([this, &options](Printer* printer) { printer->Append("control-predecessors={"); AppendJoin(printer, control_predecessors(), ", ", [&](Printer* printer, HloInstruction* pre) { PrintNameInternal(printer, pre->name(), options); }); printer->Append("}"); }); } if (!statistics_viz().statistics().empty()) { printer.Next([this](Printer* printer) { AppendCat(printer, "statistics=", StatisticsVizToString(statistics_viz())); }); } } std::vector<std::string> HloInstruction::ExtraAttributesToString( const HloPrintOptions& options) const { class MultiStringPrinter : public Printer { public: void Append(const absl::AlphaNum& a) override { if (strings_.empty()) { strings_.push_back({}); } absl::StrAppend(&strings_.back(), a); } void Next() { strings_.push_back({}); } std::vector<std::string> ConsumeStrings() && { return std::move(strings_); } private: std::vector<std::string> strings_; } multi_string_printer; AttributePrinter attr_printer([&multi_string_printer] { multi_string_printer.Next(); return &multi_string_printer; }); PrintExtraAttributes(attr_printer, options); return std::move(multi_string_printer).ConsumeStrings(); } std::string FrontendAttributesToString( const FrontendAttributes& frontend_attributes) { std::vector<std::pair<std::string, std::string>> sorted_attributes( frontend_attributes.map().begin(), frontend_attributes.map().end()); absl::c_sort(sorted_attributes); const auto formatter = [](std::string* out, const std::pair<std::string, std::string>& item) { if (LexesAsJsonDict(item.second)) { absl::StrAppend(out, item.first, "=", item.second); } else { absl::StrAppend(out, item.first, "=\"", item.second, "\""); } }; return absl::StrFormat("{%s}", absl::StrJoin(sorted_attributes, ",", formatter)); } std::string HloInstruction::ToShortString() const { return StrCat("%", name(), " = ", HloOpcodeString(opcode()), "(", StrJoin(operands_, ", ", [](std::string* out, HloInstruction* operand) { StrAppend(out, "%", operand->name()); }), ")"); } HloInstructionProto HloInstruction::ToProto() const { HloInstructionProto proto; CHECK(unique_id_ != -1) << "This instruction does not have a valid id. Please make sure the " "instruction is inside a module before dumping it."; proto.set_id(unique_id_); proto.set_name(name_); *proto.mutable_opcode() = std::string(HloOpcodeString(opcode_)); *proto.mutable_shape() = shape_.ToProto(); for (const HloInstruction* operand : operands_) { proto.add_operand_ids(operand->unique_id()); } for (const HloInstruction* control : control_predecessors()) { proto.add_control_predecessor_ids(control->unique_id()); } *proto.mutable_metadata() = *metadata_; proto.set_backend_config(backend_config_.GetRawString()); if (opcode() != HloOpcode::kFusion) { for (const HloComputation* computation : called_computations()) { proto.add_called_computation_ids(computation->unique_id()); } } if (has_sharding()) { *proto.mutable_sharding() = sharding().ToProto(); } *proto.mutable_frontend_attributes() = frontend_attributes(); proto.set_is_composite(is_composite()); *proto.mutable_statistics_viz() = statistics_viz(); if (original_value_) { *proto.mutable_original_value() = OriginalValueToProto(*original_value_); } return proto; } std::string HloInstruction::ToCategory() const { if (opcode() == HloOpcode::kTranspose || opcode() == HloOpcode::kCopy || opcode() == HloOpcode::kReshape || opcode() == HloOpcode::kDynamicReshape) { return "data formatting"; } if (IsElementwise()) { return "non-fusion elementwise"; } return std::string(HloOpcodeString(opcode())); } bool HloInstruction::IsFused() const { return parent_ != nullptr && parent_->IsFusionComputation(); } bool HloInstruction::IsCustomCall(absl::string_view target) const { return opcode() == HloOpcode::kCustomCall && custom_call_target() == target; } bool HloInstruction::IsCustomCall( absl::Span<const absl::string_view> targets) const { return opcode() == HloOpcode::kCustomCall && absl::c_linear_search(targets, custom_call_target()); } bool HloInstruction::IsInputFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kInput; } bool HloInstruction::IsLoopFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kLoop; } bool HloInstruction::IsOutputFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kOutput; } bool HloInstruction::IsCustomFusion() const { return opcode() == HloOpcode::kFusion && fusion_kind() == FusionKind::kCustom; } bool HloInstruction::IsFusible() const { switch (opcode_) { case HloOpcode::kDomain: case HloOpcode::kParameter: case HloOpcode::kWhile: case HloOpcode::kConditional: case HloOpcode::kCall: return false; case HloOpcode::kFusion: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kReduceWindow: return true; case HloOpcode::kRng: return user_count() <= 1; default: return !HasSideEffect(); } } HloInstruction::HloInstruction(HloOpcode opcode, const Shape& shape) : unique_id_(-1), index_in_parent_(~0u), opcode_(opcode), is_default_config_(false), cleaned_up_(false), marked_as_dead_(false), is_root_(false), shape_(shape), name_(HloOpcodeString(opcode)) { TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(shape_)); } template <typename HloInstructionPtr> absl::Status HloInstruction::Visit( DfsHloVisitorBase<HloInstructionPtr>* visitor) { switch (opcode_) { case HloOpcode::kAbs: return visitor->HandleAbs(this); case HloOpcode::kAtan2: return visitor->HandleAtan2(this); case HloOpcode::kRoundNearestAfz: return visitor->HandleRound(this); case HloOpcode::kRoundNearestEven: return visitor->HandleRoundNearestEven(this); case HloOpcode::kBatchNormTraining: return visitor->HandleBatchNormTraining(this); case HloOpcode::kBatchNormInference: return visitor->HandleBatchNormInference(this); case HloOpcode::kBatchNormGrad: return visitor->HandleBatchNormGrad(this); case HloOpcode::kErf: return visitor->HandleErf(this); case HloOpcode::kLogistic: return visitor->HandleLogistic(this); case HloOpcode::kSign: return visitor->HandleSign(this); case HloOpcode::kConstant: return visitor->HandleConstant(this); case HloOpcode::kGetTupleElement: return visitor->HandleGetTupleElement(this); case HloOpcode::kParameter: return visitor->HandleParameter(this); case HloOpcode::kCompare: return visitor->HandleCompare(this); case HloOpcode::kComplex: return visitor->HandleComplex(this); case HloOpcode::kAdd: return visitor->HandleAdd(this); case HloOpcode::kDivide: return visitor->HandleDivide(this); case HloOpcode::kSubtract: return visitor->HandleSubtract(this); case HloOpcode::kMaximum: return visitor->HandleMaximum(this); case HloOpcode::kMinimum: return visitor->HandleMinimum(this); case HloOpcode::kAnd: return visitor->HandleAnd(this); case HloOpcode::kOr: return visitor->HandleOr(this); case HloOpcode::kXor: return visitor->HandleXor(this); case HloOpcode::kShiftLeft: return visitor->HandleShiftLeft(this); case HloOpcode::kShiftRightArithmetic: return visitor->HandleShiftRightArithmetic(this); case HloOpcode::kShiftRightLogical: return visitor->HandleShiftRightLogical(this); case HloOpcode::kConcatenate: return visitor->HandleConcatenate(this); case HloOpcode::kConvert: return visitor->HandleConvert(this); case HloOpcode::kBitcastConvert: return visitor->HandleBitcastConvert(this); case HloOpcode::kStochasticConvert: return visitor->HandleStochasticConvert(this); case HloOpcode::kCopy: return visitor->HandleCopy(this); case HloOpcode::kMultiply: return visitor->HandleMultiply(this); case HloOpcode::kDot: return visitor->HandleDot(this); case HloOpcode::kPower: return visitor->HandlePower(this); case HloOpcode::kRemainder: return visitor->HandleRemainder(this); case HloOpcode::kSelect: return visitor->HandleSelect(this); case HloOpcode::kConvolution: return visitor->HandleConvolution(this); case HloOpcode::kFft: return visitor->HandleFft(this); case HloOpcode::kAllGather: return visitor->HandleAllGather(this); case HloOpcode::kAllGatherStart: return visitor->HandleAllGatherStart(this); case HloOpcode::kAllGatherDone: return visitor->HandleAllGatherDone(this); case HloOpcode::kAllReduce: return visitor->HandleAllReduce(this); case HloOpcode::kReduceScatter: return visitor->HandleReduceScatter(this); case HloOpcode::kAllReduceStart: return visitor->HandleAllReduceStart(this); case HloOpcode::kAllReduceDone: return visitor->HandleAllReduceDone(this); case HloOpcode::kAllToAll: return visitor->HandleAllToAll(this); case HloOpcode::kCollectiveBroadcast: return visitor->HandleCollectiveBroadcast(this); case HloOpcode::kCollectivePermute: return visitor->HandleCollectivePermute(this); case HloOpcode::kCollectivePermuteStart: return visitor->HandleCollectivePermuteStart(this); case HloOpcode::kCollectivePermuteDone: return visitor->HandleCollectivePermuteDone(this); case HloOpcode::kReplicaId: return visitor->HandleReplicaId(this); case HloOpcode::kPartitionId: return visitor->HandlePartitionId(this); case HloOpcode::kTuple: return visitor->HandleTuple(this); case HloOpcode::kMap: return visitor->HandleMap(this); case HloOpcode::kClamp: return visitor->HandleClamp(this); case HloOpcode::kReduce: return visitor->HandleReduce(this); case HloOpcode::kReduceWindow: return visitor->HandleReduceWindow(this); case HloOpcode::kSelectAndScatter: return visitor->HandleSelectAndScatter(this); case HloOpcode::kNegate: return visitor->HandleNegate(this); case HloOpcode::kExp: return visitor->HandleExp(this); case HloOpcode::kExpm1: return visitor->HandleExpm1(this); case HloOpcode::kFloor: return visitor->HandleFloor(this); case HloOpcode::kCeil: return visitor->HandleCeil(this); case HloOpcode::kClz: return visitor->HandleClz(this); case HloOpcode::kLog: return visitor->HandleLog(this); case HloOpcode::kLog1p: return visitor->HandleLog1p(this); case HloOpcode::kTan: return visitor->HandleTan(this); case HloOpcode::kTanh: return visitor->HandleTanh(this); case HloOpcode::kCos: return visitor->HandleCos(this); case HloOpcode::kSin: return visitor->HandleSin(this); case HloOpcode::kSqrt: return visitor->HandleSqrt(this); case HloOpcode::kCbrt: return visitor->HandleCbrt(this); case HloOpcode::kRsqrt: return visitor->HandleRsqrt(this); case HloOpcode::kReal: return visitor->HandleReal(this); case HloOpcode::kImag: return visitor->HandleImag(this); case HloOpcode::kIsFinite: return visitor->HandleIsFinite(this); case HloOpcode::kNot: return visitor->HandleNot(this); case HloOpcode::kPopulationCount: return visitor->HandlePopulationCount(this); case HloOpcode::kBitcast: return visitor->HandleBitcast(this); case HloOpcode::kBroadcast: return visitor->HandleBroadcast(this); case HloOpcode::kPad: return visitor->HandlePad(this); case HloOpcode::kReshape: return visitor->HandleReshape(this); case HloOpcode::kDynamicReshape: return visitor->HandleDynamicReshape(this); case HloOpcode::kTranspose: return visitor->HandleTranspose(this); case HloOpcode::kReverse: return visitor->HandleReverse(this); case HloOpcode::kReducePrecision: return visitor->HandleReducePrecision(this); case HloOpcode::kSlice: return visitor->HandleSlice(this); case HloOpcode::kDynamicSlice: return visitor->HandleDynamicSlice(this); case HloOpcode::kDynamicUpdateSlice: return visitor->HandleDynamicUpdateSlice(this); case HloOpcode::kSort: return visitor->HandleSort(this); case HloOpcode::kInfeed: return visitor->HandleInfeed(this); case HloOpcode::kOutfeed: return visitor->HandleOutfeed(this); case HloOpcode::kRng: return visitor->HandleRng(this); case HloOpcode::kRngBitGenerator: return visitor->HandleRngBitGenerator(this); case HloOpcode::kRngGetAndUpdateState: return visitor->HandleRngGetAndUpdateState(this); case HloOpcode::kWhile: return visitor->HandleWhile(this); case HloOpcode::kFusion: return visitor->HandleFusion(this); case HloOpcode::kCall: return visitor->HandleCall(this); case HloOpcode::kConditional: return visitor->HandleConditional(this); case HloOpcode::kCustomCall: return visitor->HandleCustomCall(this); case HloOpcode::kAsyncStart: return visitor->HandleAsyncStart(this); case HloOpcode::kAsyncUpdate: return visitor->HandleAsyncUpdate(this); case HloOpcode::kAsyncDone: return visitor->HandleAsyncDone(this); case HloOpcode::kCopyStart: return visitor->HandleCopyStart(this); case HloOpcode::kCopyDone: return visitor->HandleCopyDone(this); case HloOpcode::kRecv: return visitor->HandleRecv(this); case HloOpcode::kTopK: return visitor->HandleTopK(this); case HloOpcode::kRecvDone: return visitor->HandleRecvDone(this); case HloOpcode::kSend: return visitor->HandleSend(this); case HloOpcode::kSendDone: return visitor->HandleSendDone(this); case HloOpcode::kGather: return visitor->HandleGather(this); case HloOpcode::kScatter: return visitor->HandleScatter(this); case HloOpcode::kDomain: return visitor->HandleDomain(this); case HloOpcode::kAfterAll: return visitor->HandleAfterAll(this); case HloOpcode::kAddDependency: return visitor->HandleAddDependency(this); case HloOpcode::kIota: return visitor->HandleIota(this); case HloOpcode::kGetDimensionSize: return visitor->HandleGetDimensionSize(this); case HloOpcode::kSetDimensionSize: return visitor->HandleSetDimensionSize(this); case HloOpcode::kTriangularSolve: return visitor->HandleTriangularSolve(this); case HloOpcode::kCholesky: return visitor->HandleCholesky(this); case HloOpcode::kOptimizationBarrier: return visitor->HandleOptimizationBarrier(this); default: return Internal( "Unhandled HloOpcode for DfsHloVisitor: %s. This should not happen - " "please file a bug for XLA.", HloOpcodeString(opcode_)); } } template absl::Status HloInstruction::Visit(DfsHloVisitor* visitor); template absl::Status HloInstruction::Visit(ConstDfsHloVisitor* visitor); template <typename Visitor> inline bool PushDFSChild(Visitor* visitor, DFSStack* dfs_stack, HloInstruction* child) { CHECK(child != nullptr); const int id = child->unique_id(); CHECK_GE(id, 0) << "instruction may not have a parent computation"; switch (visitor->GetVisitState(id)) { case Visitor::kVisiting: return false; case Visitor::kVisited: return true; case Visitor::kNotVisited: dfs_stack->push_back(std::make_pair(id, child)); return true; } } using InternalCompareFunction = absl::FunctionRef<bool(std::pair<int, const HloInstruction*>, std::pair<int, const HloInstruction*>)>; template <typename Visitor> static absl::Status PostOrderDFS( HloInstruction* root, Visitor* visitor, std::optional<InternalCompareFunction> operand_order, bool ignore_control_predecessors, bool cross_computation) { visitor->ReserveVisitStates(root->parent()->instruction_count()); DFSStack dfs_stack; dfs_stack.emplace_back(root->unique_id(), root); do { DCHECK(!dfs_stack.empty()); int current_id = dfs_stack.back().first; HloInstruction* current_node = dfs_stack.back().second; CHECK_GE(current_id, 0) << current_id << ": " << current_node << ": instruction may not have parent computation"; typename Visitor::VisitState visit_state = visitor->GetVisitState(current_id); if (visit_state == Visitor::kVisited) { dfs_stack.pop_back(); VLOG(3) << "Not visiting HLO (id = " << current_id << ") as it was already visited."; continue; } if (visit_state == Visitor::kVisiting) { dfs_stack.pop_back(); TF_RETURN_IF_ERROR(visitor->Preprocess(current_node)); VLOG(2) << "Visiting HLO %" << current_node->name(); TF_RETURN_IF_ERROR(current_node->Visit(visitor)); visitor->SetVisitState(current_id, Visitor::kVisited); TF_RETURN_IF_ERROR(visitor->Postprocess(current_node)); continue; } visitor->SetVisitState(current_id, Visitor::kVisiting); const size_t old_dfs_stack_size = dfs_stack.size(); for (HloInstruction* child : current_node->operands()) { if (!ABSL_PREDICT_TRUE(PushDFSChild(visitor, &dfs_stack, child))) { return FailedPrecondition( "A cycle is detected while visiting instruction %s %s", current_node->ToString(), PrintCycle(child, &dfs_stack, ignore_control_predecessors)); } } if (!ignore_control_predecessors) { for (HloInstruction* child : current_node->control_predecessors()) { if (!ABSL_PREDICT_TRUE(PushDFSChild(visitor, &dfs_stack, child))) { return FailedPrecondition( "A cycle is detected while visiting instruction %s %s", current_node->ToString(), PrintCycle(child, &dfs_stack, ignore_control_predecessors)); } } } if (cross_computation) { for (const HloComputation* called_computation : current_node->called_computations()) { HloInstruction* root_instruction = called_computation->root_instruction(); if (!ABSL_PREDICT_TRUE( PushDFSChild(visitor, &dfs_stack, root_instruction))) { return FailedPrecondition( "A cycle is detected while visiting instruction %s %s", current_node->ToString(), PrintCycle(root_instruction, &dfs_stack, ignore_control_predecessors)); } } } if (operand_order != std::nullopt) { std::sort(dfs_stack.begin() + old_dfs_stack_size, dfs_stack.end(), *operand_order); } std::reverse(dfs_stack.begin() + old_dfs_stack_size, dfs_stack.end()); } while (!dfs_stack.empty()); return absl::OkStatus(); } template <typename HloInstructionPtr> absl::Status HloInstruction::Accept( DfsHloVisitorBase<HloInstructionPtr>* visitor, bool call_finish_visit, bool ignore_control_predecessors, bool cross_computation) { VLOG(3) << "HloInstruction::Accept(%" << name() << ")"; TF_RETURN_IF_ERROR(PostOrderDFS(this, visitor, std::nullopt, ignore_control_predecessors, cross_computation)); if (call_finish_visit) { TF_RETURN_IF_ERROR(visitor->FinishVisit(this)); } return absl::OkStatus(); } template absl::Status HloInstruction::Accept(DfsHloVisitor*, bool, bool, bool); template absl::Status HloInstruction::Accept(ConstDfsHloVisitor*, bool, bool, bool); absl::Status HloInstruction::AcceptWithOperandOrder( DfsHloVisitor* visitor, CompareFunction operand_order, bool call_finish_visit) { VLOG(2) << "HloInstruction::AcceptWithOperandOrder(%" << name() << ")"; auto func = [operand_order](std::pair<int, const HloInstruction*> a, std::pair<int, const HloInstruction*> b) { return operand_order(a.second, b.second); }; TF_RETURN_IF_ERROR(PostOrderDFS(this, visitor, func, false, false)); if (call_finish_visit) { VLOG(3) << "HloInstruction::AcceptWithOperandOrder BEFORE FINISH VISIT"; TF_RETURN_IF_ERROR(visitor->FinishVisit(this)); VLOG(3) << "HloInstruction::AcceptWithOperandOrder AFTER FINISH VISIT"; } VLOG(2) << "HloInstruction::AcceptWithOperandOrder EXIT"; return absl::OkStatus(); } const Shape& HloInstruction::shape() const { return shape_; } absl::InlinedVector<int64_t, 4> HloInstruction::OperandIndices( const HloInstruction* operand) const { absl::InlinedVector<int64_t, 4> result; for (int64_t i = 0; i < operand_count(); ++i) { if (this->operand(i) == operand) { result.push_back(i); } } return result; } bool HloInstruction::IsElementwiseBinary() const { return IsElementwise() && operand_count() == 2; } bool HloInstruction::IsElementwise() const { return IsElementwiseImpl(std::nullopt); } bool HloInstruction::IsElementwiseOnOperand(int64_t operand_idx) const { return IsElementwiseImpl(operand_idx); } namespace { enum class UseKind { kReuse = 0, kUse = 1, kNoUse = 2 }; class FusionReusesParamElements { public: static UseKind Compute(int64_t i, const HloInstruction& hlo) { absl::flat_hash_map<const HloInstruction*, UseKind> memoization_cache; return ComputeInternal(i, hlo, &memoization_cache); } private: static UseKind ComputeInternal( int64_t outer_param_num, const HloInstruction& hlo, absl::flat_hash_map<const HloInstruction*, UseKind>* cache); }; } static UseKind OperandElementUse(const HloInstruction& instr, int64_t operand_num) { switch (instr.opcode()) { case HloOpcode::kBitcast: case HloOpcode::kConcatenate: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kSlice: case HloOpcode::kTranspose: case HloOpcode::kGather: return UseKind::kUse; case HloOpcode::kPad: return operand_num > 0 ? UseKind::kReuse : UseKind::kUse; case HloOpcode::kReduce: return operand_num >= Cast<HloReduceInstruction>(&instr)->input_count() ? UseKind::kReuse : UseKind::kUse; case HloOpcode::kFusion: return FusionReusesParamElements::Compute(operand_num, *instr.fused_expression_root()); case HloOpcode::kDot: if (instr.shape().dimensions_size() <= 1) { if ((operand_num == 0 && instr.operand(1)->shape().rank() <= 1) || (operand_num == 1 && instr.operand(0)->shape().rank() <= 1)) { return UseKind::kUse; } } return UseKind::kReuse; case HloOpcode::kDynamicUpdateSlice: if (operand_num == 0 || operand_num == 1) { return UseKind::kUse; } return UseKind::kReuse; default: return instr.IsElementwise() ? UseKind::kUse : UseKind::kReuse; } } UseKind FusionReusesParamElements::ComputeInternal( int64_t outer_param_num, const HloInstruction& hlo, absl::flat_hash_map<const HloInstruction*, UseKind>* cache) { if (auto hlo_param = DynCast<HloParameterInstruction>(&hlo)) { if (hlo_param->parameter_number() == outer_param_num) { return UseKind::kUse; } } auto p = cache->emplace(&hlo, UseKind::kNoUse); auto value_it = p.first; const bool key_is_new = p.second; if (!key_is_new) { return value_it->second; } for (int64_t operand_num = 0; operand_num < hlo.operands().size(); ++operand_num) { UseKind old_val = value_it->second; UseKind new_val = [&] { UseKind hlo_use = OperandElementUse(hlo, operand_num); if (hlo_use == UseKind::kNoUse) { return old_val; } UseKind operand_use = ComputeInternal(outer_param_num, *hlo.operand(operand_num), cache); if (operand_use == UseKind::kNoUse) { return old_val; } return std::min({old_val, hlo_use, operand_use}); }(); value_it = cache->find(&hlo); value_it->second = new_val; if (new_val == UseKind::kReuse) { break; } } return value_it->second; } bool HloInstruction::ReusesOperandElements(int64_t i) const { return OperandElementUse(*this, i) == UseKind::kReuse; } std::optional<ShapeUtil::ShapeEqualityDescriptor> HloInstruction::ReshapeMerelyInsertsOrDeletes1SizedDimensions() const { if (HloOpcode::kReshape != opcode_) { return std::nullopt; } return ShapeUtil::InsertedOrDeleted1SizedDimensions(operand(0)->shape_, shape_); } absl::string_view ToString(HloInstruction::FusionKind kind) { switch (kind) { case HloInstruction::FusionKind::kLoop: return "kLoop"; case HloInstruction::FusionKind::kInput: return "kInput"; case HloInstruction::FusionKind::kOutput: return "kOutput"; case HloInstruction::FusionKind::kCustom: return "kCustom"; } } absl::StatusOr<HloInstruction::FusionKind> StringToFusionKind( absl::string_view kind_name) { if (kind_name == "kLoop") { return HloInstruction::FusionKind::kLoop; } if (kind_name == "kInput") { return HloInstruction::FusionKind::kInput; } if (kind_name == "kOutput") { return HloInstruction::FusionKind::kOutput; } if (kind_name == "kCustom") { return HloInstruction::FusionKind::kCustom; } return InvalidArgument("Unknown fusion kind: %s", kind_name); } std::string StatisticsVizToString(const StatisticsViz& statistics_viz) { if (statistics_viz.statistics().empty()) return "{}"; std::vector<Statistic> all_statistics(statistics_viz.statistics().begin(), statistics_viz.statistics().end()); const auto formatter = [](std::string* out, const Statistic& item) { absl::StrAppend(out, item.stat_name(), "=", item.stat_val()); }; return absl::StrFormat("{%s,%s}", absl::StrCat("visualizing_index=", statistics_viz.stat_index_to_visualize()), absl::StrJoin(all_statistics, ",", formatter)); } std::string PaddingConfigToString(const PaddingConfig& padding) { bool has_interior_padding = absl::c_any_of(padding.dimensions(), [](const PaddingConfig::PaddingConfigDimension& dim) { return dim.interior_padding() != 0; }); return StrJoin( padding.dimensions(), "x", [&](std::string* out, const PaddingConfig::PaddingConfigDimension& dim) { StrAppend( out, dim.edge_padding_low(), "_", dim.edge_padding_high(), has_interior_padding ? StrCat("_", dim.interior_padding()) : ""); }); } std::string RandomDistributionToString(const RandomDistribution& distribution) { return absl::AsciiStrToLower(RandomDistribution_Name(distribution)); } std::string RandomAlgorithmToString(const RandomAlgorithm& algorithm) { return absl::AsciiStrToLower(RandomAlgorithm_Name(algorithm)); } std::string PrecisionToString(const PrecisionConfig::Precision& precision) { return absl::AsciiStrToLower(PrecisionConfig::Precision_Name(precision)); } std::string AlgorithmToString(const PrecisionConfig::Algorithm& algorithm) { constexpr absl::string_view kPrefix = "ALG_"; const std::string& name = PrecisionConfig::Algorithm_Name(algorithm); DCHECK(absl::StartsWith(name, kPrefix)); return absl::AsciiStrToLower(name.substr(kPrefix.size())); } static std::string CustomCallScheduleToString( const CustomCallSchedule& schedule) { return absl::AsciiStrToLower(CustomCallSchedule_Name(schedule)); } static std::string CustomCallApiVersionToString( const CustomCallApiVersion& schedule) { return absl::AsciiStrToLower(CustomCallApiVersion_Name(schedule)); } std::string DotDimensionNumbersToString(const DotDimensionNumbers& dnums) { std::vector<std::string> result; if (!dnums.lhs_batch_dimensions().empty()) { result.push_back(StrCat("lhs_batch_dims={", StrJoin(dnums.lhs_batch_dimensions(), ","), "}")); } result.push_back(StrCat("lhs_contracting_dims={", StrJoin(dnums.lhs_contracting_dimensions(), ","), "}")); if (!dnums.rhs_batch_dimensions().empty()) { result.push_back(StrCat("rhs_batch_dims={", StrJoin(dnums.rhs_batch_dimensions(), ","), "}")); } result.push_back(StrCat("rhs_contracting_dims={", StrJoin(dnums.rhs_contracting_dimensions(), ","), "}")); return StrJoin(result, ", "); } std::string ConvolutionDimensionNumbersToString( const ConvolutionDimensionNumbers& dnums) { auto len_required = [](int64_t a, int64_t b, absl::Span<const int64_t> cs) { return std::max({a, b, cs.empty() ? 0 : *absl::c_max_element(cs)}) + 1; }; std::vector<std::string> lhs_dims( len_required(dnums.input_batch_dimension(), dnums.input_feature_dimension(), dnums.input_spatial_dimensions()), "?"); lhs_dims[dnums.input_batch_dimension()] = 'b'; lhs_dims[dnums.input_feature_dimension()] = 'f'; for (int64_t i = 0; i < dnums.input_spatial_dimensions().size(); ++i) { lhs_dims[dnums.input_spatial_dimensions(i)] = StrCat(i); } std::vector<std::string> rhs_dims( len_required(dnums.kernel_input_feature_dimension(), dnums.kernel_output_feature_dimension(), dnums.kernel_spatial_dimensions()), "?"); rhs_dims[dnums.kernel_input_feature_dimension()] = "i"; rhs_dims[dnums.kernel_output_feature_dimension()] = "o"; for (int64_t i = 0; i < dnums.kernel_spatial_dimensions().size(); ++i) { rhs_dims[dnums.kernel_spatial_dimensions(i)] = StrCat(i); } std::vector<std::string> output_dims( len_required(dnums.output_batch_dimension(), dnums.output_feature_dimension(), dnums.output_spatial_dimensions()), "?"); output_dims[dnums.output_batch_dimension()] = 'b'; output_dims[dnums.output_feature_dimension()] = 'f'; for (int64_t i = 0; i < dnums.output_spatial_dimensions().size(); ++i) { output_dims[dnums.output_spatial_dimensions(i)] = StrCat(i); } return StrCat(StrJoin(lhs_dims, ""), "_", StrJoin(rhs_dims, ""), "->", StrJoin(output_dims, "")); } absl::StatusOr<RandomAlgorithm> StringToRandomAlgorithm( const std::string& name) { static absl::flat_hash_map<std::string, RandomAlgorithm>* map = [] { static auto* map = new absl::flat_hash_map<std::string, RandomAlgorithm>; for (int i = 0; i < RandomAlgorithm_ARRAYSIZE; i++) { if (RandomAlgorithm_IsValid(i)) { auto value = static_cast<RandomAlgorithm>(i); (*map)[RandomAlgorithmToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown algorithm"); } return found->second; } absl::StatusOr<RandomDistribution> StringToRandomDistribution( const std::string& name) { static absl::flat_hash_map<std::string, RandomDistribution>* map = [] { static auto* map = new absl::flat_hash_map<std::string, RandomDistribution>; for (int i = 0; i < RandomDistribution_ARRAYSIZE; i++) { if (RandomDistribution_IsValid(i)) { auto value = static_cast<RandomDistribution>(i); (*map)[RandomDistributionToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown distribution"); } return found->second; } absl::StatusOr<PrecisionConfig::Precision> StringToPrecision( const std::string& name) { static absl::flat_hash_map<std::string, PrecisionConfig::Precision>* map = [] { static auto* map = new absl::flat_hash_map<std::string, PrecisionConfig::Precision>; for (int i = 0; i < PrecisionConfig::Precision_ARRAYSIZE; i++) { if (PrecisionConfig::Precision_IsValid(i)) { auto value = static_cast<PrecisionConfig::Precision>(i); (*map)[PrecisionToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown precision"); } return found->second; } absl::StatusOr<PrecisionConfig::Algorithm> StringToAlgorithm( const std::string& name) { static absl::flat_hash_map<std::string, PrecisionConfig::Algorithm>* map = [] { static auto* map = new absl::flat_hash_map<std::string, PrecisionConfig::Algorithm>; for (int i = 0; i < PrecisionConfig::Algorithm_ARRAYSIZE; i++) { if (PrecisionConfig::Algorithm_IsValid(i)) { auto value = static_cast<PrecisionConfig::Algorithm>(i); (*map)[AlgorithmToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown algorithm"); } return found->second; } absl::StatusOr<CustomCallSchedule> StringToCustomCallSchedule( absl::string_view name) { static const absl::flat_hash_map<std::string, CustomCallSchedule>* map = [] { static auto* map = new absl::flat_hash_map<std::string, CustomCallSchedule>; for (int i = 0; i < CustomCallSchedule_ARRAYSIZE; i++) { if (CustomCallSchedule_IsValid(i)) { auto value = static_cast<CustomCallSchedule>(i); (*map)[CustomCallScheduleToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown schedule"); } return found->second; } absl::StatusOr<CustomCallApiVersion> StringToCustomCallApiVersion( absl::string_view name) { static const absl::flat_hash_map<std::string, CustomCallApiVersion>* map = [] { static auto* map = new absl::flat_hash_map<std::string, CustomCallApiVersion>; for (int i = 0; i < CustomCallApiVersion_ARRAYSIZE; i++) { if (CustomCallApiVersion_IsValid(i)) { auto value = static_cast<CustomCallApiVersion>(i); (*map)[CustomCallApiVersionToString(value)] = value; } } return map; }(); auto found = map->find(absl::AsciiStrToLower(name)); if (found == map->end()) { return InvalidArgument("Unknown API version"); } return found->second; } std::ostream& operator<<(std::ostream& os, HloInstruction::FusionKind kind) { return os << ToString(kind); } bool HloPtrComparator::operator()(const HloInstruction* const& lhs, const HloInstruction* const& rhs) const { if (rhs == nullptr) { return false; } if (lhs == nullptr) { return true; } auto lhs_module = lhs->GetModule(); auto rhs_module = rhs->GetModule(); CHECK((lhs_module == nullptr && rhs_module == nullptr) || (lhs_module != nullptr && rhs_module != nullptr)); if (lhs_module != nullptr && lhs_module->unique_id() != rhs_module->unique_id()) { return lhs_module->unique_id() < rhs_module->unique_id(); } return lhs->unique_id() < rhs->unique_id(); } const PrecisionConfig& HloInstruction::precision_config() const { if (auto* convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->precision_config(); } if (auto* dot = DynCast<HloDotInstruction>(this)) { return dot->precision_config(); } if (auto* custom_call = DynCast<HloCustomCallInstruction>(this)) { return custom_call->precision_config(); } LOG(FATAL) << "Unimplemented method."; } PrecisionConfig* HloInstruction::mutable_precision_config() { if (auto* convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->mutable_precision_config(); } if (auto* dot = DynCast<HloDotInstruction>(this)) { return dot->mutable_precision_config(); } if (auto* custom_call = DynCast<HloCustomCallInstruction>(this)) { return custom_call->mutable_precision_config(); } LOG(FATAL) << "Unimplemented method."; } HloModule* HloInstruction::GetModule() const { if (parent_) { return parent_->parent(); } return nullptr; } void HloInstruction::UniquifyName(NameUniquer* name_uniquer) { name_ = name_uniquer->GetUniqueName(name_); } void HloInstruction::UniquifyName(HloModule* module) { UniquifyName(&module->instruction_name_uniquer()); } void HloInstruction::UniquifyId(HloModule* module) { SetUniqueId(module->NewUniqueInstructionId()); } void HloInstruction::SortInstructionUsersAndControlLists( const MappedPtrContainerSorter<HloInstruction>::MapPtrFn& map_fn, const HloInstruction& sorted_instruction) { using Sorter = MappedPtrContainerSorter<HloInstruction>; users_.SortInstructionUsers(map_fn, sorted_instruction.users_); absl::Status status; if (has_rare()) { status = Sorter::Sort(map_fn, Sorter::IndexAfterMappedElementsFn(), sorted_instruction.control_predecessors(), mutable_rare()->control_predecessors); } if (!status.ok()) { LOG(ERROR) << "Failed to sort instruction control predecessors for " << name() << "; " << status; } if (has_rare()) { status = Sorter::Sort(map_fn, Sorter::IndexAfterMappedElementsFn(), sorted_instruction.control_successors(), mutable_rare()->control_successors); } if (!status.ok()) { LOG(ERROR) << "Failed to sort instruction control successors for " << name() << "; " << status; } } int64_t HloInstruction::feature_index() const { return Cast<HloBatchNormInstruction>(this)->feature_index(); } float HloInstruction::epsilon() const { return Cast<HloBatchNormInstruction>(this)->epsilon(); } FftType HloInstruction::fft_type() const { return Cast<HloFftInstruction>(this)->fft_type(); } const std::vector<int64_t>& HloInstruction::fft_length() const { return Cast<HloFftInstruction>(this)->fft_length(); } int64_t HloInstruction::concatenate_dimension() const { return Cast<HloConcatenateInstruction>(this)->concatenate_dimension(); } int64_t HloInstruction::dimension() const { if (auto set_size = DynCast<HloSetDimensionSizeInstruction>(this)) { return set_size->dimension(); } return Cast<HloGetDimensionSizeInstruction>(this)->dimension(); } int64_t HloInstruction::inferred_dimension() const { return Cast<HloReshapeInstruction>(this)->inferred_dimension(); } bool HloInstruction::IsRank2Transpose() const { auto transpose = DynCast<HloTransposeInstruction>(this); return transpose != nullptr && transpose->IsRank2Transpose(); } int64_t HloInstruction::slice_starts(int64_t dimension) const { return Cast<HloSliceInstruction>(this)->slice_starts(dimension); } const std::vector<int64_t>& HloInstruction::slice_starts() const { return Cast<HloSliceInstruction>(this)->slice_starts(); } std::vector<int64_t>* HloInstruction::mutable_slice_starts() { return Cast<HloSliceInstruction>(this)->mutable_slice_starts(); } int64_t HloInstruction::slice_limits(int64_t dimension) const { return Cast<HloSliceInstruction>(this)->slice_limits(dimension); } const std::vector<int64_t>& HloInstruction::slice_limits() const { return Cast<HloSliceInstruction>(this)->slice_limits(); } std::vector<int64_t>* HloInstruction::mutable_slice_limits() { return Cast<HloSliceInstruction>(this)->mutable_slice_limits(); } int64_t HloInstruction::slice_strides(int64_t dimension) const { return Cast<HloSliceInstruction>(this)->slice_strides(dimension); } const std::vector<int64_t>& HloInstruction::slice_strides() const { return Cast<HloSliceInstruction>(this)->slice_strides(); } std::vector<int64_t>* HloInstruction::mutable_slice_strides() { return Cast<HloSliceInstruction>(this)->mutable_slice_strides(); } const Literal& HloInstruction::literal() const { return Cast<HloConstantInstruction>(this)->literal(); } bool HloInstruction::IsConstant() const { return DynCast<HloConstantInstruction>(this) != nullptr; } void HloInstruction::RelayoutConstant(const Layout& new_layout, const ShapeIndex& shape_index) { Cast<HloConstantInstruction>(this)->RelayoutConstant(new_layout, shape_index); } HloInstruction* HloInstruction::AppendInstructionIntoCalledComputation( HloInstruction* instruction_to_append, bool add_output) { return Cast<HloCallableInstruction>(this) ->AppendInstructionIntoCalledComputation(instruction_to_append, add_output); } HloInstruction* HloInstruction::AddFusionOperand(HloInstruction* new_operand) { return Cast<HloFusionInstruction>(this)->AddFusionOperand(new_operand); } void HloInstruction::MergeFusionInstruction( HloInstruction* instruction_to_merge) { return Cast<HloFusionInstruction>(this)->MergeFusionInstruction( Cast<HloFusionInstruction>(instruction_to_merge)); } void HloInstruction::MergeFusionInstructionIntoMultiOutput( HloInstruction* instruction_to_merge) { return Cast<HloFusionInstruction>(this) ->MergeFusionInstructionIntoMultiOutput( Cast<HloFusionInstruction>(instruction_to_merge)); } HloInstruction* HloInstruction::FuseInstruction( HloInstruction* instruction_to_fuse) { return Cast<HloFusionInstruction>(this)->FuseInstruction(instruction_to_fuse); } HloInstruction* HloInstruction::FuseInstructionIntoMultiOutput( HloInstruction* instruction_to_fuse) { return Cast<HloFusionInstruction>(this)->FuseInstructionIntoMultiOutput( instruction_to_fuse); } HloComputation* HloInstruction::fused_instructions_computation() const { return Cast<HloFusionInstruction>(this)->fused_instructions_computation(); } HloInstruction* HloInstruction::fused_expression_root() const { return Cast<HloFusionInstruction>(this)->fused_expression_root(); } tsl::gtl::iterator_range<HloInstructionUnwrappingConstIterator> HloInstruction::fused_instructions() const { return Cast<HloFusionInstruction>(this)->fused_instructions(); } tsl::gtl::iterator_range<HloInstructionUnwrappingIterator> HloInstruction::fused_instructions() { return Cast<HloFusionInstruction>(this)->fused_instructions(); } int64_t HloInstruction::fused_instruction_count() const { return Cast<HloFusionInstruction>(this)->fused_instruction_count(); } HloInstruction* HloInstruction::fused_parameter( int64_t parameter_number) const { return Cast<HloFusionInstruction>(this)->fused_parameter(parameter_number); } const HloInstruction::InstructionVector& HloInstruction::fused_parameters() const { return Cast<HloFusionInstruction>(this)->fused_parameters(); } bool HloInstruction::IsMultiOutputFusion() const { const HloFusionInstruction* fusion = DynCast<HloFusionInstruction>(this); return fusion != nullptr && fusion->IsMultiOutputFusion(); } HloInstruction::FusionKind HloInstruction::fusion_kind() const { return Cast<HloFusionInstruction>(this)->fusion_kind(); } void HloInstruction::set_fusion_kind(FusionKind kind) { return Cast<HloFusionInstruction>(this)->set_fusion_kind(kind); } RandomDistribution HloInstruction::random_distribution() const { return Cast<HloRngInstruction>(this)->random_distribution(); } int64_t HloInstruction::parameter_number() const { return Cast<HloParameterInstruction>(this)->parameter_number(); } void HloInstruction::set_parameter_replicated_at_leaf_buffers( absl::Span<const bool> parameter_replicated_at_leaf_buffers) { return Cast<HloParameterInstruction>(this) ->set_parameter_replicated_at_leaf_buffers( parameter_replicated_at_leaf_buffers); } void HloInstruction::set_parameter_replicated_at_leaf_buffers( const std::vector<bool>& parameter_replicated_at_leaf_buffers) { return Cast<HloParameterInstruction>(this) ->set_parameter_replicated_at_leaf_buffers( parameter_replicated_at_leaf_buffers); } const std::optional<std::vector<bool>>& HloInstruction::parameter_replicated_at_leaf_buffers() const { return Cast<HloParameterInstruction>(this) ->parameter_replicated_at_leaf_buffers(); } int64_t HloInstruction::tuple_index() const { return Cast<HloGetTupleElementInstruction>(this)->tuple_index(); } void HloInstruction::set_tuple_index(int64_t new_tuple_index) { return Cast<HloGetTupleElementInstruction>(this)->set_tuple_index( new_tuple_index); } int32_t HloInstruction::exponent_bits() const { return Cast<HloReducePrecisionInstruction>(this)->exponent_bits(); } int32_t HloInstruction::mantissa_bits() const { return Cast<HloReducePrecisionInstruction>(this)->mantissa_bits(); } std::string HloInstruction::infeed_config() const { return Cast<HloInfeedInstruction>(this)->infeed_config(); } void HloInstruction::set_infeed_config(const std::string& config) { return Cast<HloInfeedInstruction>(this)->set_infeed_config(config); } const Shape& HloInstruction::outfeed_shape() const { return Cast<HloOutfeedInstruction>(this)->outfeed_shape(); } Shape* HloInstruction::mutable_outfeed_shape() { return Cast<HloOutfeedInstruction>(this)->mutable_outfeed_shape(); } const std::string& HloInstruction::outfeed_config() const { return Cast<HloOutfeedInstruction>(this)->outfeed_config(); } void HloInstruction::set_outfeed_config(const std::string& config) { return Cast<HloOutfeedInstruction>(this)->set_outfeed_config(config); } const std::vector<ReplicaGroup>& HloInstruction::replica_groups() const { return Cast<HloCollectiveInstruction>(this)->replica_groups(); } const CollectiveDeviceList& HloInstruction::device_list() const { return Cast<HloCollectiveInstruction>(this)->device_list(); } const std::vector<std::pair<int64_t, int64_t>>& HloInstruction::source_target_pairs() const { return Cast<HloCollectivePermuteInstruction>(this)->source_target_pairs(); } std::optional<int64_t> HloInstruction::channel_id() const { return Cast<HloChannelInstruction>(this)->channel_id(); } void HloInstruction::set_channel_id(const std::optional<int64_t>& channel_id) { return Cast<HloChannelInstruction>(this)->set_channel_id(channel_id); } const ConvolutionDimensionNumbers& HloInstruction::convolution_dimension_numbers() const { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->convolution_dimension_numbers(); } if (auto custom_call = DynCast<HloCustomCallInstruction>(this)) { return custom_call->convolution_dimension_numbers(); } LOG(FATAL) << "Unimplemented method."; } void HloInstruction::set_convolution_dimension_numbers( const ConvolutionDimensionNumbers& dnums) { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { convolution->set_convolution_dimension_numbers(dnums); } else if (auto custom_call = DynCast<HloCustomCallInstruction>(this)) { custom_call->set_convolution_dimension_numbers(dnums); } else { LOG(FATAL) << "Unimplemented method."; } } int64_t HloInstruction::feature_group_count() const { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->feature_group_count(); } return Cast<HloCustomCallInstruction>(this)->feature_group_count(); } void HloInstruction::set_feature_group_count(int64_t feature_group_count) { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->set_feature_group_count(feature_group_count); } Cast<HloCustomCallInstruction>(this)->set_feature_group_count( feature_group_count); } int64_t HloInstruction::batch_group_count() const { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->batch_group_count(); } return Cast<HloCustomCallInstruction>(this)->batch_group_count(); } void HloInstruction::set_batch_group_count(int64_t batch_group_count) { if (auto convolution = DynCast<HloConvolutionInstruction>(this)) { return convolution->set_batch_group_count(batch_group_count); } Cast<HloCustomCallInstruction>(this)->set_batch_group_count( batch_group_count); } HloComputation* HloInstruction::select() const { return Cast<HloSelectAndScatterInstruction>(this)->select(); } HloComputation* HloInstruction::scatter() const { return Cast<HloSelectAndScatterInstruction>(this)->scatter(); } void HloInstruction::set_select(HloComputation* computation) { return Cast<HloSelectAndScatterInstruction>(this)->set_select(computation); } void HloInstruction::set_scatter(HloComputation* computation) { return Cast<HloSelectAndScatterInstruction>(this)->set_scatter(computation); } const std::string& HloInstruction::custom_call_target() const { return Cast<HloCustomCallInstruction>(this)->custom_call_target(); } void HloInstruction::set_custom_call_target(absl::string_view target) { Cast<HloCustomCallInstruction>(this)->set_custom_call_target(target); } const PaddingConfig& HloInstruction::padding_config() const { return Cast<HloPadInstruction>(this)->padding_config(); } PaddingType HloInstruction::padding_type() const { return Cast<HloCustomCallInstruction>(this)->padding_type(); } PaddingConfig* HloInstruction::mutable_padding_config() { return Cast<HloPadInstruction>(this)->mutable_padding_config(); } int64_t HloInstruction::slice_sizes(int64_t dimension) const { return Cast<HloDynamicSliceInstruction>(this)->slice_sizes(dimension); } const std::vector<int64_t>& HloInstruction::dynamic_slice_sizes() const { return Cast<HloDynamicSliceInstruction>(this)->dynamic_slice_sizes(); } const std::vector<std::vector<int64_t>>& HloInstruction::dynamic_slice_sizes_list() const { return Cast<HloCollectivePermuteInstruction>(this) ->dynamic_slice_sizes_list(); } const GatherDimensionNumbers& HloInstruction::gather_dimension_numbers() const { return Cast<HloGatherInstruction>(this)->gather_dimension_numbers(); } absl::Span<const int64_t> HloInstruction::gather_slice_sizes() const { return Cast<HloGatherInstruction>(this)->gather_slice_sizes(); } const ScatterDimensionNumbers& HloInstruction::scatter_dimension_numbers() const { return Cast<HloScatterInstruction>(this)->scatter_dimension_numbers(); } const DotDimensionNumbers& HloInstruction::dot_dimension_numbers() const { return Cast<HloDotInstruction>(this)->dot_dimension_numbers(); } const DomainMetadata& HloInstruction::operand_side_metadata() const { return Cast<HloDomainInstruction>(this)->operand_side_metadata(); } const DomainMetadata& HloInstruction::user_side_metadata() const { return Cast<HloDomainInstruction>(this)->user_side_metadata(); } bool HloInstruction::IsAsynchronous() const { return HloOpcodeIsAsync(opcode()); } HloInstruction* HloInstruction::async_chain_start() const { return Cast<HloAsyncInstruction>(this)->async_chain_start(); } HloInstruction* HloInstruction::async_chain_done() const { return Cast<HloAsyncInstruction>(this)->async_chain_done(); } HloComputation* HloInstruction::async_wrapped_computation() const { return Cast<HloAsyncInstruction>(this)->async_wrapped_computation(); } HloInstruction* HloInstruction::async_wrapped_instruction() const { return Cast<HloAsyncInstruction>(this)->async_wrapped_instruction(); } HloOpcode HloInstruction::async_wrapped_opcode() const { return Cast<HloAsyncInstruction>(this)->async_wrapped_opcode(); } absl::string_view HloInstruction::async_execution_thread() const { return Cast<HloAsyncInstruction>(this)->async_execution_thread(); } void HloInstruction::set_async_execution_thread( absl::string_view async_execution_thread) { Cast<HloAsyncInstruction>(this)->set_async_execution_thread( async_execution_thread); } void HloInstruction::set_called_computations_execution_thread( absl::string_view async_execution_thread, bool skip_async_execution_thread_overwrite) { Cast<HloCallableInstruction>(this)->RecursivelySetComputationsThreadName( async_execution_thread, skip_async_execution_thread_overwrite); } std::optional<int> HloInstruction::cross_program_prefetch_index() const { return Cast<HloCopyStartInstruction>(this)->cross_program_prefetch_index(); } ComparisonDirection HloInstruction::comparison_direction() const { return Cast<HloCompareInstruction>(this)->direction(); } ComparisonOrder HloInstruction::comparison_order() const { return Cast<HloCompareInstruction>(this)->order(); } const TriangularSolveOptions& HloInstruction::triangular_solve_options() const { return Cast<HloTriangularSolveInstruction>(this)->triangular_solve_options(); } const CholeskyOptions& HloInstruction::cholesky_options() const { return Cast<HloCholeskyInstruction>(this)->cholesky_options(); } const std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>& HloInstruction::output_operand_aliasing() const { return Cast<HloCallableInstruction>(this)->output_to_operand_aliasing(); } void HloInstruction::set_output_to_operand_aliasing( std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> aliasing) { Cast<HloCallableInstruction>(this)->set_output_to_operand_aliasing( std::move(aliasing)); } std::shared_ptr<OriginalValue> HloInstruction::original_value() const { return original_value_; } void HloInstruction::set_original_value( std::shared_ptr<OriginalValue> original_value) { original_value_ = original_value; } }
#include "xla/hlo/ir/hlo_instruction.h" #include <cstddef> #include <cstdint> #include <initializer_list> #include <limits> #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/protobuf_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; class HloInstructionTest : public HloTestBase { protected: Shape r0f32_ = ShapeUtil::MakeShape(F32, {}); }; class OpAndUserCollectingVisitor : public DfsHloVisitorWithDefault { public: absl::Status DefaultAction(HloInstruction* hlo_instruction) override { return Unimplemented("not implemented %s", HloOpcodeString(hlo_instruction->opcode())); } absl::Status HandleParameter(HloInstruction* parameter) override { EXPECT_FALSE(count_.contains(parameter)); count_[parameter] = GetCountsForNode(parameter); return absl::OkStatus(); } absl::Status HandleConstant(HloInstruction* constant) override { EXPECT_FALSE(count_.contains(constant)); count_[constant] = GetCountsForNode(constant); return absl::OkStatus(); } absl::Status HandleAdd(HloInstruction* add) override { auto lhs = add->operand(0); auto rhs = add->operand(1); EXPECT_FALSE(count_.contains(add)); EXPECT_TRUE(count_.contains(lhs)); EXPECT_TRUE(count_.contains(rhs)); count_[add] = GetCountsForNode(add); return absl::OkStatus(); } absl::Status HandleNegate(HloInstruction* negate) override { auto operand = negate->operand(0); EXPECT_FALSE(count_.contains(negate)); EXPECT_TRUE(count_.contains(operand)); count_[negate] = GetCountsForNode(negate); return absl::OkStatus(); } absl::Status HandleMap(HloInstruction* map) override { EXPECT_FALSE(count_.contains(map)); for (HloInstruction* arg : map->operands()) { EXPECT_TRUE(count_.contains(arg)); } count_[map] = GetCountsForNode(map); return absl::OkStatus(); } absl::Status HandleReduce(HloInstruction* reduce) override { auto arg = reduce->operand(0); auto init_value = reduce->operand(1); EXPECT_FALSE(count_.contains(reduce)); EXPECT_TRUE(count_.contains(arg)); EXPECT_TRUE(count_.contains(init_value)); count_[reduce] = GetCountsForNode(reduce); return absl::OkStatus(); } int64_t NumOperands(const HloInstruction* node) { auto count_iterator = count_.find(node); EXPECT_NE(count_.end(), count_iterator); return count_iterator->second.operand_count; } int64_t NumUsers(const HloInstruction* node) { auto count_iterator = count_.find(node); EXPECT_NE(count_.end(), count_iterator); return count_iterator->second.user_count; } private: struct NumOpsAndUsers { int64_t operand_count; int64_t user_count; }; NumOpsAndUsers GetCountsForNode(const HloInstruction* node) { NumOpsAndUsers counts{node->operand_count(), node->user_count()}; return counts; } absl::flat_hash_map<const HloInstruction*, NumOpsAndUsers> count_; }; TEST_F(HloInstructionTest, BasicProperties) { auto parameter = HloInstruction::CreateParameter(1, r0f32_, "foo"); EXPECT_EQ(HloOpcode::kParameter, parameter->opcode()); EXPECT_TRUE(ShapeUtil::IsScalarWithElementType(parameter->shape(), F32)); EXPECT_FALSE(ShapeUtil::IsScalarWithElementType(parameter->shape(), S32)); EXPECT_FALSE(parameter->operand_count()); } TEST_F(HloInstructionTest, UserWithTwoOperands) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_THAT(add->operands(), UnorderedElementsAre(foo, bar)); EXPECT_THAT(foo->users(), UnorderedElementsAre(add)); EXPECT_THAT(bar->users(), UnorderedElementsAre(add)); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(2, visitor.NumOperands(add)); EXPECT_EQ(0, visitor.NumUsers(add)); EXPECT_EQ(1, visitor.NumUsers(foo)); EXPECT_EQ(1, visitor.NumUsers(bar)); } TEST_F(HloInstructionTest, MultipleUsers) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, foo->user_count()); EXPECT_EQ(1, bar->user_count()); EXPECT_EQ(0, exp1->user_count()); EXPECT_EQ(0, exp2->user_count()); EXPECT_EQ(0, add->user_count()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(2, visitor.NumOperands(add)); EXPECT_EQ(3, visitor.NumUsers(foo)); } TEST_F(HloInstructionTest, RepeatedUser) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(1, foo->user_count()); EXPECT_EQ(2, add->operand_count()); } TEST_F(HloInstructionTest, MultipleUsersAndOperands) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "param1")); auto c0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto addleft = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param0, c0)); auto addright = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, c0, param1)); auto addtotal = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, addleft, addright)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(addtotal->Accept(&visitor)); EXPECT_EQ(2, visitor.NumUsers(c0)); EXPECT_EQ(2, visitor.NumOperands(addleft)); EXPECT_EQ(2, visitor.NumOperands(addright)); EXPECT_EQ(2, visitor.NumOperands(addtotal)); } TEST_F(HloInstructionTest, MultipleUsersAndOperandsWithUnaryOps) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "param1")); auto c0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto neg1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, c0)); auto addleft = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param0, neg1)); auto addright = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, neg1, param1)); auto addtotal = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, addleft, addright)); auto neg2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, addtotal)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(neg2->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(c0)); EXPECT_EQ(2, visitor.NumUsers(neg1)); EXPECT_EQ(2, visitor.NumOperands(addleft)); EXPECT_EQ(2, visitor.NumOperands(addright)); EXPECT_EQ(2, visitor.NumOperands(addtotal)); EXPECT_EQ(1, visitor.NumOperands(neg2)); EXPECT_EQ(0, visitor.NumUsers(neg2)); } TEST_F(HloInstructionTest, TrivialMap) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); Shape f32a100x10 = ShapeUtil::MakeShape(F32, {100, 10}); auto module = CreateNewVerifiedModule(); auto embedded_builder = HloComputation::Builder("f32+1"); auto param = embedded_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); auto value = embedded_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); embedded_builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, param, value)); auto add_f32 = module->AddEmbeddedComputation(embedded_builder.Build()); HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10, "p")); auto map = builder.AddInstruction( HloInstruction::CreateMap(f32a100x10, {param0}, add_f32)); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(map->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(param0)); EXPECT_EQ(0, visitor.NumUsers(map)); EXPECT_EQ(1, visitor.NumOperands(map)); } TEST_F(HloInstructionTest, TrivialReduce) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); Shape f32v100 = ShapeUtil::MakeShape(F32, {100}); Shape f32a100x10 = ShapeUtil::MakeShape(F32, {100, 10}); auto embedded_builder = HloComputation::Builder("f32+f32"); auto paramx = embedded_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); auto paramy = embedded_builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32, "y")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, paramx, paramy)); auto module = CreateNewVerifiedModule(); auto add_f32 = module->AddEmbeddedComputation(embedded_builder.Build()); HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10, "p")); auto const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto reduce = builder.AddInstruction( HloInstruction::CreateReduce(f32v100, param0, const0, {1}, add_f32)); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(reduce->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(param0)); EXPECT_EQ(1, visitor.NumUsers(const0)); EXPECT_EQ(0, visitor.NumUsers(reduce)); EXPECT_EQ(2, visitor.NumOperands(reduce)); } TEST_F(HloInstructionTest, ReplaceUseInBinaryOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto add_foofoo = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, add_foobar, add_foofoo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_EQ(1, bar->user_count()); ASSERT_IS_OK(foo->ReplaceUseWith(add_foofoo, bar)); EXPECT_EQ(1, foo->user_count()); EXPECT_EQ(2, bar->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(add_foobar)); EXPECT_THAT(add_foobar->operands(), ElementsAre(foo, bar)); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, add_foofoo)); EXPECT_THAT(add_foobar->operands(), ElementsAre(foo, bar)); EXPECT_THAT(add_foofoo->operands(), ElementsAre(bar, bar)); } TEST_F(HloInstructionTest, ReplaceUseInVariadicOp) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto baz = builder.AddInstruction(HloInstruction::CreateParameter(2, r0f32_, "baz")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({foo, bar, baz, foo})); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(tuple, add_foobar)); ASSERT_IS_OK(foo->ReplaceUseWith(tuple, bar)); EXPECT_THAT(foo->users(), UnorderedElementsAre(add_foobar)); EXPECT_THAT(tuple->operands(), ElementsAre(bar, bar, baz, bar)); } TEST_F(HloInstructionTest, ReplaceUseInUnaryOp) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto log = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kLog, foo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(exp, log)); EXPECT_EQ(0, bar->user_count()); ASSERT_IS_OK(foo->ReplaceUseWith(exp, bar)); EXPECT_EQ(1, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(log)); EXPECT_THAT(log->operands(), ElementsAre(foo)); EXPECT_EQ(1, bar->user_count()); EXPECT_EQ(*bar->users().begin(), exp); EXPECT_EQ(1, exp->operands().size()); EXPECT_EQ(*exp->operands().begin(), bar); } TEST_F(HloInstructionTest, ReplaceAllUsesWithInBinaryOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto add_foofoo = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, add_foobar, add_foofoo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_EQ(1, bar->user_count()); ASSERT_IS_OK(foo->ReplaceAllUsesWith(bar)); EXPECT_EQ(0, foo->user_count()); EXPECT_EQ(2, bar->user_count()); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, add_foofoo)); } TEST_F(HloInstructionTest, ReplaceAllUsesInMultipleOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({foo, bar})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, foo->user_count()); EXPECT_EQ(2, bar->user_count()); ASSERT_IS_OK(foo->ReplaceAllUsesWith(bar)); EXPECT_EQ(0, foo->user_count()); EXPECT_EQ(3, bar->user_count()); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, exp, tuple)); } class NodeCollectorAndPostProcessor : public DfsHloVisitorWithDefault { public: NodeCollectorAndPostProcessor() {} absl::Status Postprocess(HloInstruction* hlo) override { post_processed_nodes_.push_back(hlo); return absl::OkStatus(); } absl::Status DefaultAction(HloInstruction* hlo_instruction) override { visited_nodes_.push_back(hlo_instruction); return absl::OkStatus(); } const std::vector<const HloInstruction*>& visited_nodes() { return visited_nodes_; } const std::vector<const HloInstruction*>& post_processed_nodes() { return post_processed_nodes_; } private: std::vector<const HloInstruction*> visited_nodes_; std::vector<const HloInstruction*> post_processed_nodes_; }; bool Distinct(const std::vector<const HloInstruction*>& vec) { std::set<const HloInstruction*> distinct_nodes(vec.begin(), vec.end()); return distinct_nodes.size() == vec.size(); } TEST_F(HloInstructionTest, PostProcessAllVisitedNodes) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto log = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kLog, foo)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, exp, log)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); NodeCollectorAndPostProcessor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(visitor.visited_nodes(), visitor.post_processed_nodes()); EXPECT_TRUE(Distinct(visitor.visited_nodes())); } TEST_F(HloInstructionTest, PostProcessAllVisitedNodesMultiComputation) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) c.3 = f32[] add(c.1, c.2) c.4 = f32[] constant(4) ROOT ret = f32[] multiply(c.4, c.3) } ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* add1 = FindInstruction(module.get(), "add.1"); EXPECT_EQ(add1, module->entry_computation()->root_instruction()); NodeCollectorAndPostProcessor visitor; ASSERT_IS_OK(add1->Accept(&visitor, true, false, true)); EXPECT_EQ(visitor.visited_nodes(), visitor.post_processed_nodes()); EXPECT_TRUE(Distinct(visitor.visited_nodes())); } TEST_F(HloInstructionTest, SingletonFusionOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, BinaryFusionOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(fusion)); EXPECT_THAT(constant2->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, ChainFusionOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp3, exp2, exp1}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, PreserveMetadataInFusionAndClone) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); OpMetadata metadata; metadata.set_op_name("tf_op"); exp1->set_metadata(metadata); exp2->set_metadata(metadata); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp2, exp1}, HloInstruction::FusionKind::kLoop); EXPECT_TRUE(protobuf_util::ProtobufEquals(metadata, fusion->metadata())); EXPECT_TRUE(protobuf_util::ProtobufEquals( metadata, fusion->fused_expression_root()->metadata())); EXPECT_TRUE(protobuf_util::ProtobufEquals( metadata, fusion->fused_expression_root()->operand(0)->metadata())); std::string new_name = "foobarfoo"; auto cloned = fusion->CloneWithNewOperands(fusion->shape(), {}, new_name); EXPECT_TRUE(protobuf_util::ProtobufEquals(metadata, fusion->metadata())); size_t index = cloned->name().rfind(new_name); EXPECT_TRUE(index != std::string::npos); } TEST_F(HloInstructionTest, BinaryCallOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({add}); EXPECT_THAT(call->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(call)); EXPECT_THAT(constant2->users(), ElementsAre(call)); } TEST_F(HloInstructionTest, ChainCallOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({exp3, exp2, exp1}); EXPECT_THAT(call->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(call)); } TEST_F(HloInstructionTest, MultiOutputCallOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto exp4 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, exp3, exp4)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({exp3, exp2, exp1}); call->AppendInstructionIntoCalledComputation(exp4, true); EXPECT_THAT(call->operands(), ElementsAre(constant)); EXPECT_EQ(add->operand(0)->opcode(), HloOpcode::kGetTupleElement); EXPECT_THAT(add->operand(0)->operands(), ElementsAre(call)); EXPECT_EQ(add->operand(1)->opcode(), HloOpcode::kGetTupleElement); EXPECT_THAT(add->operand(1)->operands(), ElementsAre(call)); } TEST_F(HloInstructionTest, AsyncOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( auto* async_done, computation->CreateAsyncInstructions( add, {ShapeUtil::MakeScalarShape(U32)}, "parallel_thread")); auto* async_start = async_done->operand(0); EXPECT_EQ(async_start->shape().tuple_shapes_size(), 3); EXPECT_EQ(async_start->async_execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_execution_thread(), "parallel_thread"); EXPECT_TRUE(ShapeUtil::Equal(async_start->shape().tuple_shapes(2), ShapeUtil::MakeScalarShape(U32))); EXPECT_EQ(async_start->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_THAT(async_start->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(async_start)); EXPECT_THAT(constant2->users(), ElementsAre(async_start)); EXPECT_EQ(computation->root_instruction(), async_done); } TEST_F(HloInstructionTest, AsyncOpWithDeps) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant3, constant4)); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto add2 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); TF_ASSERT_OK(add1->AddControlDependencyTo(add)); TF_ASSERT_OK(add->AddControlDependencyTo(add2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( auto* async_done, computation->CreateAsyncInstructions( add, {ShapeUtil::MakeScalarShape(U32)}, "parallel_thread")); auto* async_start = async_done->operand(0); EXPECT_EQ(async_start->control_predecessors().size(), 1); EXPECT_EQ(async_start->control_predecessors()[0], add1); EXPECT_EQ(async_done->control_successors().size(), 1); EXPECT_EQ(async_done->control_successors()[0], add2); EXPECT_EQ(async_start->shape().tuple_shapes_size(), 3); EXPECT_EQ(async_start->async_execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_execution_thread(), "parallel_thread"); EXPECT_TRUE(ShapeUtil::Equal(async_start->shape().tuple_shapes(2), ShapeUtil::MakeScalarShape(U32))); EXPECT_EQ(async_start->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_EQ(async_done->async_wrapped_computation()->execution_thread(), "parallel_thread"); EXPECT_THAT(async_start->operands(), ElementsAre(constant1, constant2)); } TEST_F(HloInstructionTest, PreserveOutfeedShapeThroughClone) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto shape10 = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0}); auto shape01 = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1}); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto outfeed10 = builder.AddInstruction( HloInstruction::CreateOutfeed(shape10, constant, token, "")); auto outfeed01 = builder.AddInstruction( HloInstruction::CreateOutfeed(shape01, constant, token, "")); auto clone01 = builder.AddInstruction(outfeed01->Clone()); auto clone10 = builder.AddInstruction(outfeed10->Clone()); EXPECT_TRUE(ShapeUtil::Equal(clone01->outfeed_shape(), shape01)); EXPECT_TRUE(ShapeUtil::Equal(clone10->outfeed_shape(), shape10)); } TEST_F(HloInstructionTest, PreserveTupleShapeThroughClone) { HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); *ShapeUtil::GetMutableSubshape(tuple->mutable_shape(), {0}) ->mutable_layout() = LayoutUtil::MakeLayout({0, 1}); *ShapeUtil::GetMutableSubshape(tuple->mutable_shape(), {1}) ->mutable_layout() = LayoutUtil::MakeLayout({1, 0}); auto tuple_clone = tuple->Clone(); EXPECT_TRUE(ShapeUtil::Equal(tuple_clone->shape(), tuple->shape())); } TEST_F(HloInstructionTest, PreserveShardingThroughCompatibleClone) { HloSharding sharding = HloSharding::AssignDevice(5); HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); HloSharding tuple_sharding = HloSharding::SingleTuple(tuple->shape(), sharding); tuple->set_sharding(tuple_sharding); auto clone_shape = ShapeUtil::MakeShape(F32, {3, 3}); clone_shape = ShapeUtil::MakeTupleShape({clone_shape, clone_shape}); auto tuple_clone = tuple->CloneWithNewOperands(clone_shape, {}); EXPECT_EQ(tuple_clone->sharding(), tuple_sharding); } TEST_F(HloInstructionTest, DoNotPreserveShardingThroughTupleTreeIncompatibleClone) { HloSharding sharding = HloSharding::AssignDevice(5); HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); tuple->set_sharding(HloSharding::SingleTuple(tuple->shape(), sharding)); auto clone_shape = ShapeUtil::MakeShape(F32, {2, 2}); clone_shape = ShapeUtil::MakeTupleShape({clone_shape, clone_shape, clone_shape}); auto tuple_clone = tuple->CloneWithNewOperands(clone_shape, {}); EXPECT_FALSE(tuple_clone->has_sharding()); } TEST_F(HloInstructionTest, DoNotPreserveShardingThroughLeafRankIncompatibleClone) { HloSharding sharding = HloSharding::AssignDevice(5); HloComputation::Builder builder(TestName()); auto* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>({ {1, 2}, {3, 4}, }))); auto* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); tuple->set_sharding(HloSharding::SingleTuple(tuple->shape(), sharding)); auto clone_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}); clone_shape = ShapeUtil::MakeTupleShape({clone_shape, clone_shape}); auto tuple_clone = tuple->CloneWithNewOperands(clone_shape, {}); EXPECT_FALSE(tuple_clone->has_sharding()); } TEST_F(HloInstructionTest, FusionOpWithCalledComputations) { const Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto module = CreateNewVerifiedModule(); auto make_map_computation = [&]() { auto builder = HloComputation::Builder("FusionMap"); builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param")); return module->AddEmbeddedComputation(builder.Build()); }; HloComputation* computation_x = make_map_computation(); HloComputation* computation_y = make_map_computation(); HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto map_1_x = builder.AddInstruction( HloInstruction::CreateMap(scalar_shape, {constant}, computation_x)); auto map_2_x = builder.AddInstruction( HloInstruction::CreateMap(scalar_shape, {map_1_x}, computation_x)); auto map_3_y = builder.AddInstruction( HloInstruction::CreateMap(scalar_shape, {map_2_x}, computation_y)); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {map_3_y}, HloInstruction::FusionKind::kLoop); auto* fused_computation = fusion->fused_instructions_computation(); EXPECT_THAT(fusion->called_computations(), ElementsAre(fused_computation)); fusion->FuseInstruction(map_2_x); EXPECT_THAT(fusion->called_computations(), ElementsAre(fused_computation)); fusion->FuseInstruction(map_1_x); EXPECT_THAT(fusion->called_computations(), ElementsAre(fused_computation)); } TEST_F(HloInstructionTest, ComplexFusionOp) { HloComputation::Builder builder(TestName()); auto c1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto c2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.1f))); auto c3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(9.0f))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, c1, c2)); auto clamp = builder.AddInstruction( HloInstruction::CreateTernary(r0f32_, HloOpcode::kClamp, c2, add, add)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, add)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kMultiply, exp, c3)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kSubtract, mul, clamp)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({sub, sub, mul, c1})); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {tuple, sub, mul, exp, clamp, add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(c1, c3, c2)); EXPECT_THAT(c1->users(), ElementsAre(fusion)); } static bool Identical(const HloInstruction& instruction1, const HloInstruction& instruction2) { EXPECT_TRUE(instruction1.Identical(instruction1)); EXPECT_TRUE(instruction2.Identical(instruction2)); bool is_equal = instruction1.Identical(instruction2); EXPECT_EQ(is_equal, instruction2.Identical(instruction1)); return is_equal; } static bool StructuralEqual(const HloInstruction& instruction1, const HloInstruction& instruction2) { auto eq_operand_shapes = [](const HloInstruction* a, const HloInstruction* b) { return ShapeUtil::Equal(a->shape(), b->shape()); }; auto eq_computations = [](const HloComputation* a, const HloComputation* b) { return *a == *b; }; EXPECT_TRUE( instruction1.Identical(instruction1, eq_operand_shapes, eq_computations)); EXPECT_TRUE( instruction2.Identical(instruction2, eq_operand_shapes, eq_computations)); bool is_equal = instruction1.Identical(instruction2, eq_operand_shapes, eq_computations); EXPECT_EQ(is_equal, instruction2.Identical(instruction1, eq_operand_shapes, eq_computations)); return is_equal; } TEST_F(HloInstructionTest, IdenticalInstructions) { auto operand1 = HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}})); auto operand2 = HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{10.0, 20.0}, {30.0, 40.0}})); auto vector_operand = HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({42.0, 123.0})); Shape shape = operand1->shape(); HloInstruction* op1 = operand1.get(); HloInstruction* op2 = operand2.get(); EXPECT_TRUE( Identical(*HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1), *HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1))); EXPECT_FALSE( Identical(*HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1), *HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op2))); EXPECT_FALSE( Identical(*HloInstruction::CreateUnary(shape, HloOpcode::kCopy, op1), *HloInstruction::CreateUnary(shape, HloOpcode::kNegate, op1))); EXPECT_TRUE(Identical(*HloInstruction::CreateTuple({op1, op2}), *HloInstruction::CreateTuple({op1, op2}))); EXPECT_FALSE(Identical(*HloInstruction::CreateTuple({op1, op2}), *HloInstruction::CreateTuple({op2, op1}))); EXPECT_TRUE(Identical(*HloInstruction::CreateBroadcast(shape, op1, {0, 1}), *HloInstruction::CreateBroadcast(shape, op1, {0, 1}))); EXPECT_FALSE(Identical(*HloInstruction::CreateBroadcast(shape, op1, {0, 1}), *HloInstruction::CreateBroadcast(shape, op1, {1, 0}))); Shape bcast_shape1 = ShapeUtil::MakeShape(F32, {2, 2, 42}); Shape bcast_shape2 = ShapeUtil::MakeShape(F32, {2, 2, 123}); EXPECT_FALSE( Identical(*HloInstruction::CreateBroadcast(bcast_shape1, op1, {0, 1}), *HloInstruction::CreateBroadcast(bcast_shape2, op1, {0, 1}))); EXPECT_TRUE(Identical( *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2), *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2))); EXPECT_FALSE(Identical( *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2), *HloInstruction::CreateBinary(shape, HloOpcode::kDivide, op2, op1))); EXPECT_FALSE(Identical( *HloInstruction::CreateBinary(shape, HloOpcode::kAdd, op1, op2), *HloInstruction::CreateBinary(shape, HloOpcode::kDivide, op1, op2))); } TEST_F(HloInstructionTest, IdenticalCallInstructions) { const char* const hlo_string = R"( HloModule Module subcomp1 (x: f32[]) -> f32[] { x = f32[] parameter(0) ROOT n = f32[] sine(x) } subcomp2 (x: f32[]) -> f32[] { x = f32[] parameter(0) ROOT n = f32[] cosine(x) } ENTRY entry (param: f32[]) -> (f32[], f32[], f32[]) { p = f32[] parameter(0) t1 = f32[] call(p), to_apply=subcomp1 t2 = f32[] call(p), to_apply=subcomp1 t3 = f32[] call(p), to_apply=subcomp2 ROOT t = (f32[], f32[], f32[]) tuple(t1, t2, t3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto* root = module->entry_computation()->root_instruction(); auto* t1 = root->operand(0); auto* t2 = root->operand(1); auto* t3 = root->operand(2); EXPECT_TRUE(StructuralEqual(*t1, *t2)); EXPECT_FALSE(StructuralEqual(*t1, *t3)); } TEST_F(HloInstructionTest, FunctionVisitor) { const Shape f32 = ShapeUtil::MakeShape(F32, {}); HloComputation::Builder builder(TestName()); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, f32, "0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32, HloOpcode::kNegate, param)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(f32, HloOpcode::kExp, param)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32, HloOpcode::kAdd, negate, exp)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); int visit_num = 0; absl::flat_hash_map<HloInstruction*, int> visit_order; FunctionVisitor visitor([&visit_num, &visit_order](HloInstruction* inst) { EXPECT_FALSE(visit_order.contains(inst)); visit_order[inst] = visit_num; visit_num++; return absl::OkStatus(); }); EXPECT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(0, visit_order.at(param)); EXPECT_TRUE(visit_order.at(exp) == 1 || visit_order.at(exp) == 2); EXPECT_TRUE(visit_order.at(negate) == 1 || visit_order.at(negate) == 2); EXPECT_NE(visit_order.at(exp), visit_order.at(negate)); EXPECT_EQ(3, visit_order.at(add)); } TEST_F(HloInstructionTest, FullyElementwise) { const Shape r1f32 = ShapeUtil::MakeShape(F32, {5}); HloComputation::Builder builder(TestName()); auto x = builder.AddInstruction(HloInstruction::CreateParameter(0, r1f32, "x")); auto y = builder.AddInstruction(HloInstruction::CreateParameter(1, r1f32, "y")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r1f32, HloOpcode::kAdd, x, y)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(add->IsElementwise()); for (int i = 0; i < add->operand_count(); ++i) { EXPECT_TRUE(add->IsElementwiseOnOperand(i)); } } TEST_F(HloInstructionTest, MapIsElementwise) { auto module = CreateNewVerifiedModule(); const Shape r2f32 = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10}, {1, 0}); HloComputation::Builder builder(TestName()); HloComputation::Builder map_builder("id"); map_builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0")); auto map_computation = module->AddEmbeddedComputation(map_builder.Build()); auto x = builder.AddInstruction(HloInstruction::CreateParameter(0, r2f32, "x")); auto map = builder.AddInstruction( HloInstruction::CreateMap(r2f32, {x}, map_computation)); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(map->IsElementwise()); } TEST_F(HloInstructionTest, PartiallyElementwise) { const Shape r1f32 = ShapeUtil::MakeShape(F32, {5}); const Shape r2f32 = ShapeUtil::MakeShape(F32, {3, 5}); HloComputation::Builder builder("PartiallyElementwise"); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, r2f32, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, r2f32, "p1")); HloInstruction* p2 = builder.AddInstruction(HloInstruction::CreateParameter(2, r2f32, "p2")); HloInstruction* p3 = builder.AddInstruction(HloInstruction::CreateParameter(3, r1f32, "p3")); HloInstruction* mul = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kMultiply, p0, p1)); HloInstruction* div = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kDivide, mul, p2)); HloInstruction* broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast(r2f32, p3, {1})); HloInstruction* max = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kMaximum, div, broadcast)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {max, broadcast, div, mul}, HloInstruction::FusionKind::kLoop); EXPECT_FALSE(fusion->IsElementwise()); for (int64_t operand_idx = 0; operand_idx < fusion->operand_count(); ++operand_idx) { const HloInstruction* operand = fusion->operand(operand_idx); if (operand == p3) { EXPECT_FALSE(fusion->IsElementwiseOnOperand(operand_idx)); } else { EXPECT_TRUE(fusion->IsElementwiseOnOperand(operand_idx)); } } } TEST_F(HloInstructionTest, PartiallyElementwiseWithReuse) { const Shape r0f32 = ShapeUtil::MakeShape(F32, {}); const Shape r1f32 = ShapeUtil::MakeShape(F32, {5}); HloComputation::Builder builder("PartiallyElementwiseWithReuse"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, r1f32, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32, "y")); HloInstruction* broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast(r1f32, y, {})); HloInstruction* min = builder.AddInstruction( HloInstruction::CreateBinary(r1f32, HloOpcode::kMinimum, x, broadcast)); HloInstruction* sub = builder.AddInstruction(HloInstruction::CreateBinary( r1f32, HloOpcode::kSubtract, min, broadcast)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {sub, broadcast, min}, HloInstruction::FusionKind::kLoop); EXPECT_FALSE(fusion->IsElementwise()); for (int64_t operand_idx = 0; operand_idx < fusion->operand_count(); ++operand_idx) { if (fusion->operand(operand_idx) == y) { EXPECT_FALSE(fusion->IsElementwiseOnOperand(operand_idx)); } else { EXPECT_TRUE(fusion->IsElementwiseOnOperand(operand_idx)); } } } TEST_F(HloInstructionTest, CloneOfFusionPreservesShape) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {dot, reshape}, HloInstruction::FusionKind::kLoop); auto fusion2 = fusion->Clone(); const HloInstruction* root = fusion->fused_expression_root(); const HloInstruction* root2 = fusion2->fused_expression_root(); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), root2->shape())); EXPECT_TRUE( ShapeUtil::Equal(root->operand(0)->shape(), root2->operand(0)->shape())); EXPECT_TRUE( ShapeUtil::Equal(root->operand(1)->shape(), root2->operand(1)->shape())); EXPECT_TRUE(ShapeUtil::Equal(root->operand(1)->operand(0)->shape(), root2->operand(1)->operand(0)->shape())); EXPECT_TRUE(StructuralEqual(*fusion, *fusion2)); } TEST_F(HloInstructionTest, FuseInstructionKeepsInstruction) { constexpr char kHloString[] = R"( HloModule test_module fused_add { p0 = f32[32,32]{1,0} parameter(0) p1 = f32[32,32]{1,0} parameter(1) ROOT add = f32[32,32]{1,0} add(p0, p1) } ENTRY reduce { p2 = f32[32,32]{1,0} parameter(0) p3 = f32[32,32]{1,0} parameter(1) c1 = f32[] constant(1) broadcast = f32[32,32]{1,0} broadcast(c1), dimensions={} mul = f32[32,32]{1,0} multiply(p2, p3) ROOT add = f32[32,32]{1,0} fusion(mul, broadcast), kind=kLoop, calls=fused_add })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); HloInstruction* fused_add = module->entry_computation()->root_instruction(); HloInstruction* mul = fused_add->mutable_operand(0); EXPECT_EQ(1, mul->user_count()); fused_add->FuseInstruction(mul); EXPECT_EQ(0, mul->user_count()); EXPECT_EQ(fused_add->parent(), mul->parent()); } TEST_F(HloInstructionTest, FuseInstructionIntoMultiOutputKeepsInstruction) { constexpr char kHloString[] = R"( HloModule test_module fused_add { p0 = f32[32,32]{1,0} parameter(0) p1 = f32[32,32]{1,0} parameter(1) ROOT add = f32[32,32]{1,0} add(p0, p1) } ENTRY reduce { p2 = f32[32,32]{1,0} parameter(0) p3 = f32[32,32]{1,0} parameter(1) c1 = f32[] constant(1) mul = f32[32,32]{1,0} multiply(p2, p3) broadcast = f32[32,32]{1,0} broadcast(c1), dimensions={} add = f32[32,32]{1,0} fusion(mul, broadcast), kind=kLoop, calls=fused_add ROOT root = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(mul, add) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); HloInstruction* root = module->entry_computation()->root_instruction(); HloInstruction* mul = root->mutable_operand(0); HloInstruction* fused_add = root->mutable_operand(1); EXPECT_EQ(2, mul->user_count()); fused_add->FuseInstructionIntoMultiOutput(mul); EXPECT_EQ(0, mul->user_count()); EXPECT_EQ(root->parent(), mul->parent()); } TEST_F(HloInstructionTest, NoRedundantFusionOperandsAfterReplacingUse) { const Shape s = ShapeUtil::MakeShape(F32, {10, 10}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( s, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion = computation->CreateFusionInstruction( {dot, reshape}, HloInstruction::FusionKind::kLoop); EXPECT_TRUE(x->ReplaceAllUsesWith(y).ok()); EXPECT_THAT(fusion->operands(), UnorderedElementsAre(y)); EXPECT_EQ(fusion->fused_instructions_computation()->num_parameters(), 1); } TEST_F(HloInstructionTest, FusionEquality) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); auto parameter = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, parameter)); auto neg = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, parameter)); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp}, HloInstruction::FusionKind::kLoop); auto* fusion2 = computation->CreateFusionInstruction( {neg}, HloInstruction::FusionKind::kLoop); EXPECT_FALSE(StructuralEqual(*fusion, *fusion2)); auto clone = fusion->Clone(); EXPECT_TRUE(StructuralEqual(*fusion, *clone)); } TEST_F(HloInstructionTest, NestedFusionEquality) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); Shape data_shape = ShapeUtil::MakeShape(F32, {2, 2}); auto a = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 0.0}, {0.0, 1.0}}))); auto b = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{2.0, 2.0}, {2.0, 2.0}}))); auto b_t = builder.AddInstruction( HloInstruction::CreateTranspose(data_shape, b, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( data_shape, a, b_t, dot_dnums, DefaultPrecisionConfig(2))); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto add_operand = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape, one, {})); auto add = builder.AddInstruction(HloInstruction::CreateBinary( data_shape, HloOpcode::kAdd, dot, add_operand)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( data_shape, HloOpcode::kSubtract, dot, add_operand)); builder.AddInstruction( HloInstruction::CreateBinary(data_shape, HloOpcode::kMultiply, add, sub)); auto computation = module->AddEntryComputation(builder.Build()); auto nested_fusion = computation->CreateFusionInstruction( {dot, b_t}, HloInstruction::FusionKind::kLoop); auto fusion = computation->CreateFusionInstruction( {add, nested_fusion}, HloInstruction::FusionKind::kOutput); auto fusion2 = computation->CreateFusionInstruction( {sub, nested_fusion}, HloInstruction::FusionKind::kOutput); auto clone = fusion->Clone(); EXPECT_TRUE(StructuralEqual(*fusion, *clone)); EXPECT_FALSE(StructuralEqual(*fusion, *fusion2)); } TEST_F(HloInstructionTest, CloneSuffixNames) { auto foo = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "foo"); EXPECT_EQ(foo->Clone()->name(), "foo.clone"); EXPECT_EQ(foo->Clone()->Clone()->name(), "foo.clone2"); EXPECT_EQ(foo->Clone()->Clone()->Clone()->name(), "foo.clone3"); EXPECT_EQ(foo->Clone("bar")->name(), "foo.bar"); EXPECT_EQ(foo->Clone("bar")->Clone("bar")->name(), "foo.bar2"); EXPECT_EQ(foo->Clone("bar")->Clone("bar")->Clone()->name(), "foo.bar2.clone"); auto foo_baz = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.baz"); EXPECT_EQ(foo_baz->Clone()->name(), "foo.baz.clone"); auto foo_clone234 = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.clone234"); EXPECT_EQ(foo_clone234->Clone()->name(), "foo.clone235"); auto foo_clonexyz = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.clonexyz"); EXPECT_EQ(foo_clonexyz->Clone()->name(), "foo.clonexyz.clone"); auto foo_clone_clone3 = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "foo.clone.clone3"); EXPECT_EQ(foo_clone_clone3->Clone()->name(), "foo.clone.clone4"); } TEST_F(HloInstructionTest, StringifyDot) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto options = HloPrintOptions().set_print_metadata(false); EXPECT_EQ(dot->ToString(options), "%dot = f32[5,20]{1,0} dot(f32[5,10]{1,0} %x, f32[10,20]{1,0} " "%transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0}"); auto options2 = HloPrintOptions() .set_print_metadata(false) .set_print_operand_shape(false) .set_print_percent(false) .set_include_layout_in_shapes(false); EXPECT_EQ(dot->ToString(options2), "dot = f32[5,20] dot(x, transpose), " "lhs_contracting_dims={1}, rhs_contracting_dims={0}"); } TEST_F(HloInstructionTest, StringifySparseDot) { HloComputation::Builder builder("SparseDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {5, 16}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {32, 20}), "y")); HloInstruction* meta = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(U16, {5, 2}), "meta")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); SparsityDescriptor sparsity_descriptor; sparsity_descriptor.set_type(SparsityType::SPARSITY_STRUCTURED_N_M); sparsity_descriptor.set_n(2); sparsity_descriptor.set_m(4); sparsity_descriptor.set_index(0); sparsity_descriptor.set_dimension(1); std::vector<HloInstruction*> meta_operands = {meta}; HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( ShapeUtil::MakeShape(F32, {5, 20}), x, y, dot_dnums, DefaultPrecisionConfig(2), {sparsity_descriptor}, meta_operands)); EXPECT_EQ(dot->ToString(), "%dot = f32[5,20]{1,0} dot(f32[5,16]{1,0} %x, f32[32,20]{1,0} %y, " "u16[5,2]{1,0} %meta), lhs_contracting_dims={1}, " "rhs_contracting_dims={0}, sparsity=L.1@2:4"); } TEST_F(HloInstructionTest, StringifyConditional) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); builder.AddInstruction(HloInstruction::CreateDot(sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto options = HloPrintOptions().set_print_metadata(false); auto pred = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloInstruction* conditional = builder.AddInstruction(HloInstruction::CreateConditional( sout, pred, x, computation, x, computation)); EXPECT_EQ(conditional->ToString(options), "%conditional = f32[5,20]{1,0} conditional(pred[] %constant, " "f32[5,10]{1,0} %x, f32[5,10]{1,0} %x), " "true_computation=%TransposeDot, false_computation=%TransposeDot"); } TEST_F(HloInstructionTest, StringifyWhile) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); builder.AddInstruction(HloInstruction::CreateDot(sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto options = HloPrintOptions().set_print_metadata(false); HloInstruction* loop = builder.AddInstruction( HloInstruction::CreateWhile(sout, computation, computation, x)); EXPECT_EQ(loop->ToString(options), "%while = f32[5,20]{1,0} while(f32[5,10]{1,0} %x), " "condition=%TransposeDot, body=%TransposeDot"); } TEST_F(HloInstructionTest, GetSetStatisticsViz) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 10}); HloComputation::Builder builder(TestName()); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "x")); StatisticsViz statistics_viz; statistics_viz.set_stat_index_to_visualize(-1); x->set_statistics_viz(statistics_viz); EXPECT_FALSE(x->has_statistics()); EXPECT_EQ(x->statistics_viz().stat_index_to_visualize(), -1); Statistic statistic; statistic.set_stat_name("stat-1"); statistic.set_stat_val(30.0); x->add_single_statistic(statistic); x->set_stat_index_to_visualize(0); EXPECT_TRUE(x->has_statistics()); EXPECT_TRUE( protobuf_util::ProtobufEquals(x->statistic_to_visualize(), statistic)); statistic.set_stat_val(40.0); *statistics_viz.add_statistics() = statistic; x->set_statistics_viz(statistics_viz); EXPECT_TRUE( protobuf_util::ProtobufEquals(x->statistics_viz(), statistics_viz)); } TEST_F(HloInstructionTest, StringifyStatisticsViz) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 10}); HloComputation::Builder builder(TestName()); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "y")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, x, y)); add->set_statistics_viz({}); EXPECT_EQ(add->ToString(), "%add = f32[5,10]{1,0} add(f32[5,10]{1,0} %x, f32[5,10]{1,0} %y)"); auto CreateStatisticsVizWithStatistics = [](int64_t stat_index_to_visualize, std::initializer_list<std::pair<absl::string_view, double>> statistics) -> StatisticsViz { StatisticsViz statistics_viz; statistics_viz.set_stat_index_to_visualize(stat_index_to_visualize); auto create_statistic = [](absl::string_view statistic_name, double statistic_value) { Statistic statistic; statistic.set_stat_name(std::string(statistic_name)); statistic.set_stat_val(statistic_value); return statistic; }; for (const auto& [statistic_name, statistic_value] : statistics) { *statistics_viz.add_statistics() = create_statistic(statistic_name, statistic_value); } return statistics_viz; }; add->set_statistics_viz(CreateStatisticsVizWithStatistics( 1, {{"stat-1", 33.0}, {"stat-2", 44.0}})); EXPECT_EQ(add->ToString(), "%add = f32[5,10]{1,0} add(f32[5,10]{1,0} %x, f32[5,10]{1,0} %y), " "statistics={visualizing_index=1,stat-1=33,stat-2=44}"); } TEST_F(HloInstructionTest, StringifyGather_0) { Shape input_tensor_shape = ShapeUtil::MakeShape(F32, {50, 49, 48, 47, 46}); Shape start_indices_tensor_shape = ShapeUtil::MakeShape(S64, {10, 9, 8, 7, 5}); Shape gather_result_shape = ShapeUtil::MakeShape(F32, {10, 9, 8, 7, 30, 29, 28, 27, 26}); HloComputation::Builder builder("Gather"); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_tensor_shape, "input_tensor")); HloInstruction* start_indices = builder.AddInstruction(HloInstruction::CreateParameter( 1, start_indices_tensor_shape, "start_indices")); HloInstruction* gather_instruction = builder.AddInstruction( HloInstruction::CreateGather(gather_result_shape, input, start_indices, HloGatherInstruction::MakeGatherDimNumbers( {4, 5, 6, 7, 8}, {}, {0, 1, 2, 3, 4}, 4), {30, 29, 28, 27, 26}, false)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(gather_instruction->ToString(), "%gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} " "gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, " "s64[10,9,8,7,5]{4,3,2,1,0} %start_indices), " "offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, " "start_index_map={0,1,2,3,4}, " "index_vector_dim=4, slice_sizes={30,29,28,27,26}"); } TEST_F(HloInstructionTest, StringifyGather_1) { Shape input_tensor_shape = ShapeUtil::MakeShape(F32, {50, 49, 48, 47, 46}); Shape start_indices_tensor_shape = ShapeUtil::MakeShape(S64, {10, 9, 5, 7, 6}); Shape gather_result_shape = ShapeUtil::MakeShape(F32, {10, 9, 7, 6, 30, 29, 28, 27, 26}); HloComputation::Builder builder("Gather"); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_tensor_shape, "input_tensor")); HloInstruction* start_indices = builder.AddInstruction(HloInstruction::CreateParameter( 1, start_indices_tensor_shape, "start_indices")); HloInstruction* gather_instruction = builder.AddInstruction( HloInstruction::CreateGather(gather_result_shape, input, start_indices, HloGatherInstruction::MakeGatherDimNumbers( {4, 5, 6, 7, 8}, {}, {0, 1, 2, 3, 4}, 2), {30, 29, 28, 27, 26}, false)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(gather_instruction->ToString(), "%gather = f32[10,9,7,6,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} " "gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, " "s64[10,9,5,7,6]{4,3,2,1,0} %start_indices), " "offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, " "start_index_map={0,1,2,3,4}, " "index_vector_dim=2, slice_sizes={30,29,28,27,26}"); } TEST_F(HloInstructionTest, StringifyScatter) { Shape input_tensor_shape = ShapeUtil::MakeShape(F32, {50, 49, 48, 47, 46}); Shape scatter_indices_tensor_shape = ShapeUtil::MakeShape(S64, {10, 9, 5, 7, 6}); Shape scatter_updates_shape = ShapeUtil::MakeShape(F32, {10, 9, 7, 6, 30, 29, 28, 27, 26}); HloComputation::Builder builder("Scatter"); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_tensor_shape, "input_tensor")); HloInstruction* scatter_indices = builder.AddInstruction(HloInstruction::CreateParameter( 1, scatter_indices_tensor_shape, "scatter_indices")); HloInstruction* scatter_updates = builder.AddInstruction(HloInstruction::CreateParameter( 2, scatter_updates_shape, "scatter_updates")); HloComputation::Builder update_builder("Scatter.update"); update_builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p1")); update_builder.AddInstruction( HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {}), "p2")); auto module = CreateNewVerifiedModule(); auto* update_computation = module->AddEmbeddedComputation(update_builder.Build()); HloInstruction* scatter_instruction = builder.AddInstruction(HloInstruction::CreateScatter( input_tensor_shape, input, scatter_indices, scatter_updates, update_computation, HloScatterInstruction::MakeScatterDimNumbers( {4, 5, 6, 7, 8}, {}, {0, 1, 2, 3, 4}, 2), false, false)); module->AddEntryComputation(builder.Build()); EXPECT_EQ( scatter_instruction->ToString(), "%scatter = f32[50,49,48,47,46]{4,3,2,1,0} " "scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, " "s64[10,9,5,7,6]{4,3,2,1,0} %scatter_indices, " "f32[10,9,7,6,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %scatter_updates), " "update_window_dims={4,5,6,7,8}, inserted_window_dims={}, " "scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=2, " "to_apply=%Scatter.update"); } TEST_F(HloInstructionTest, StringifyAsyncOps) { const Shape s1 = ShapeUtil::MakeShape(F32, {10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20}); const Shape s_tuple = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({s1}), s2, ShapeUtil::MakeShape(S32, {})}); HloComputation::Builder async_builder("AsyncOp"); HloInstruction* param = async_builder.AddInstruction( HloInstruction::CreateParameter(0, s1, "p0")); async_builder.AddInstruction( HloInstruction::CreateCustomCall(s2, {param}, "foo")); std::unique_ptr<HloComputation> async_computation = async_builder.Build(); HloComputation::Builder entry_builder("Entry"); HloInstruction* entry_param = entry_builder.AddInstruction( HloInstruction::CreateParameter(0, s1, "p0")); HloInstruction* async_start = entry_builder.AddInstruction(HloInstruction::CreateAsyncStart( s_tuple, {entry_param}, async_computation.get(), "parallel_thread")); HloInstruction* async_update = entry_builder.AddInstruction( HloInstruction::CreateAsyncUpdate(s_tuple, async_start)); entry_builder.AddInstruction( HloInstruction::CreateAsyncDone(s2, async_update)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(entry_builder.Build()); module->AddEmbeddedComputation(std::move(async_computation)); const std::string expected_with_syntax_sugar = R"(HloModule StringifyAsyncOps, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %custom-call-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", custom_call_target="foo" %custom-call-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-start) ROOT %custom-call-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-update) } )"; EXPECT_EQ(module->ToString(), expected_with_syntax_sugar); const std::string expected_without_syntax_sugar = R"(HloModule StringifyAsyncOps, entry_computation_layout={(f32[10]{0})->f32[20]{0}} %AsyncOp (p0.1: f32[10]) -> f32[20] { %p0.1 = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %p0.1), custom_call_target="foo" }, execution_thread="parallel_thread" ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %custom-call-start = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", calls=%AsyncOp %custom-call-update = ((f32[10]{0}), f32[20]{0}, s32[]) async-update(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-start) ROOT %custom-call-done = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %custom-call-update) } )"; auto options = HloPrintOptions().set_syntax_sugar_async_ops(false); EXPECT_EQ(module->ToString(options), expected_without_syntax_sugar); } TEST_F(HloInstructionTest, StringifyAsyncOpsWithReduceScatter) { const Shape rs_input_shape = ShapeUtil::MakeShape(F32, {20}); const Shape rs_output_shape = ShapeUtil::MakeShape(F32, {10}); std::unique_ptr<HloComputation> add_computation; { const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder add_builder("add"); HloInstruction* param0 = add_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* param1 = add_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "p1")); add_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param0, param1)); add_computation = add_builder.Build(); } std::unique_ptr<HloComputation> async_computation; { HloComputation::Builder async_builder("AsyncOp"); HloInstruction* param = async_builder.AddInstruction( HloInstruction::CreateParameter(0, rs_input_shape, "pasync")); async_builder.AddInstruction(HloInstruction::CreateReduceScatter( rs_output_shape, {param}, add_computation.get(), CollectiveDeviceList(), false, std::nullopt, false, 0)); async_computation = async_builder.Build(); } const Shape async_start_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({rs_input_shape}), rs_output_shape}); HloComputation::Builder entry_builder("Entry"); HloInstruction* entry_param = entry_builder.AddInstruction( HloInstruction::CreateParameter(0, rs_input_shape, "pentry")); HloInstruction* async_start = entry_builder.AddInstruction(HloInstruction::CreateAsyncStart( async_start_shape, {entry_param}, async_computation.get(), "parallel_thread")); HloInstruction* async_update = entry_builder.AddInstruction( HloInstruction::CreateAsyncUpdate(async_start_shape, async_start)); entry_builder.AddInstruction( HloInstruction::CreateAsyncDone(rs_output_shape, async_update)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(entry_builder.Build()); module->AddEmbeddedComputation(std::move(async_computation)); module->AddEmbeddedComputation(std::move(add_computation)); const std::string expected_with_syntax_sugar = R"(HloModule StringifyAsyncOpsWithReduceScatter, entry_computation_layout={(f32[20]{0})->f32[10]{0}} %add (p0: f32[], p1: f32[]) -> f32[] { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %p0, f32[] %p1) }, execution_thread="parallel_thread" ENTRY %Entry (pentry: f32[20]) -> f32[10] { %pentry = f32[20]{0} parameter(0) %reduce-scatter-start = ((f32[20]{0}), f32[10]{0}) reduce-scatter-start(f32[20]{0} %pentry), async_execution_thread="parallel_thread", replica_groups={}, dimensions={0}, to_apply=%add %reduce-scatter-update = ((f32[20]{0}), f32[10]{0}) reduce-scatter-update(((f32[20]{0}), f32[10]{0}) %reduce-scatter-start) ROOT %reduce-scatter-done = f32[10]{0} reduce-scatter-done(((f32[20]{0}), f32[10]{0}) %reduce-scatter-update) } )"; EXPECT_EQ(module->ToString(), expected_with_syntax_sugar); const std::string expected_without_syntax_sugar = R"(HloModule StringifyAsyncOpsWithReduceScatter, entry_computation_layout={(f32[20]{0})->f32[10]{0}} %add (p0: f32[], p1: f32[]) -> f32[] { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %p0, f32[] %p1) }, execution_thread="parallel_thread" %AsyncOp (pasync: f32[20]) -> f32[10] { %pasync = f32[20]{0} parameter(0) ROOT %reduce-scatter = f32[10]{0} reduce-scatter(f32[20]{0} %pasync), replica_groups={}, dimensions={0}, to_apply=%add }, execution_thread="parallel_thread" ENTRY %Entry (pentry: f32[20]) -> f32[10] { %pentry = f32[20]{0} parameter(0) %reduce-scatter-start = ((f32[20]{0}), f32[10]{0}) async-start(f32[20]{0} %pentry), async_execution_thread="parallel_thread", calls=%AsyncOp %reduce-scatter-update = ((f32[20]{0}), f32[10]{0}) async-update(((f32[20]{0}), f32[10]{0}) %reduce-scatter-start) ROOT %reduce-scatter-done = f32[10]{0} async-done(((f32[20]{0}), f32[10]{0}) %reduce-scatter-update) } )"; auto options = HloPrintOptions().set_syntax_sugar_async_ops(false); EXPECT_EQ(module->ToString(options), expected_without_syntax_sugar); } TEST_F(HloInstructionTest, CanonicalStringificationFusion) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto options = HloPrintOptions().Canonical(); EXPECT_EQ(dot->ToString(options), "f32[5,20]{1,0} dot(f32[5,10]{1,0}, f32[10,20]{1,0}), " "lhs_contracting_dims={1}, rhs_contracting_dims={0}"); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); constexpr char kParallelThreadName[] = "parallel_thread"; computation->SetExecutionThread(kParallelThreadName); HloInstruction* fusion = computation->CreateFusionInstruction( {dot, reshape}, HloInstruction::FusionKind::kLoop); fusion->set_called_computations_execution_thread( kParallelThreadName, false); const std::string expected_fusion = R"(f32[5,20]{1,0} fusion(f32[5,10]{1,0}, f32[20,10]{1,0}), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="parallel_thread")"; EXPECT_EQ(fusion->ToString(options), expected_fusion); } TEST_F(HloInstructionTest, CanonicalStringificationWhile) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({dot, reshape}, HloInstruction::FusionKind::kLoop); HloInstruction* loop = builder.AddInstruction( HloInstruction::CreateWhile(sout, computation, computation, x)); auto options = HloPrintOptions().Canonical(); const std::string expected_loop = R"(f32[5,20]{1,0} while(f32[5,10]{1,0}), condition= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } }, body= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } })"; EXPECT_EQ(loop->ToString(options), expected_loop); } TEST_F(HloInstructionTest, CanonicalStringificationConditional) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); HloInstruction* dot = builder.AddInstruction(HloInstruction::CreateDot( sout, x, reshape, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({dot, reshape}, HloInstruction::FusionKind::kLoop); auto pred = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloInstruction* conditional = builder.AddInstruction(HloInstruction::CreateConditional( sout, pred, x, computation, x, computation)); auto options = HloPrintOptions().Canonical(); const std::string expected_conditional = R"(f32[5,20]{1,0} conditional(pred[], f32[5,10]{1,0}, f32[5,10]{1,0}), true_computation= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } }, false_computation= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } })"; EXPECT_EQ(conditional->ToString(options), expected_conditional); } TEST_F(HloInstructionTest, CheckDeepClone) { const char* const hlo_string = R"( HloModule Module addy (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT zadd = s32[] add(lhs, rhs) } calla (x: s32[]) -> s32[] { x = s32[] parameter(0) reduce = s32[] reduce-window(x, x), to_apply=addy ROOT xadd = s32[] add(x, reduce) } body (bparam: s32[]) -> s32[] { constant = s32[] constant(1) bparam = s32[] parameter(0) v = s32[] call(bparam), to_apply=calla ROOT add = s32[] add(constant, bparam) } condition (cparam: s32[]) -> pred[] { xconstant = s32[] constant(5) cparam = s32[] parameter(0) ROOT greater-than = pred[] compare(xconstant, cparam), direction=GT } ENTRY entry (param: s32[]) -> s32[] { eparam = s32[] parameter(0) ROOT while = s32[] while(eparam), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> clone = module->Clone(); for (HloComputation* computation : clone->computations()) { EXPECT_EQ(computation->parent(), clone.get()); for (HloInstruction* instruction : computation->instructions()) { EXPECT_EQ(instruction->GetModule(), clone.get()); } } } TEST_F(HloInstructionTest, IdenticalAccountsForBackendConfig) { const Shape shape = ShapeUtil::MakeShape(F32, {42}); HloComputation::Builder builder("test"); HloInstruction* p = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p, p)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p, p)); EXPECT_TRUE(add1->Identical(*add2)); add1->set_raw_backend_config_string("abc"); EXPECT_FALSE(add1->Identical(*add2)); } TEST_F(HloInstructionTest, IdenticalAccountsForCustomCallWindow) { auto instr1 = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto instr2 = instr1->Clone(); EXPECT_TRUE(instr1->Identical(*instr2)); Window w = window_util::MakeWindow({1, 2, 3}); instr1->set_window(w); EXPECT_FALSE(instr1->Identical(*instr2)); } TEST_F(HloInstructionTest, IdenticalAccountsForCustomCallDnums) { auto instr1 = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto instr2 = instr1->Clone(); EXPECT_TRUE(instr1->Identical(*instr2)); ConvolutionDimensionNumbers dnums; dnums.set_output_batch_dimension(42); instr1->set_convolution_dimension_numbers(dnums); EXPECT_FALSE(instr1->Identical(*instr2)); } TEST_F(HloInstructionTest, IdenticalAccountsForCustomCallHasSideEffect) { auto instr1 = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto instr2 = instr1->Clone(); EXPECT_TRUE(instr1->Identical(*instr2)); auto custom_call_instr1 = Cast<HloCustomCallInstruction>(instr1.get()); custom_call_instr1->set_custom_call_has_side_effect(true); EXPECT_FALSE(instr1->Identical(*instr2)); } TEST_F(HloInstructionTest, CloneWindowOnCustomCall) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); Window w = window_util::MakeWindow({1, 2, 3}); instr->set_window(w); auto clone = instr->Clone(); EXPECT_TRUE(protobuf_util::ProtobufEquals(clone->window(), w)) << clone->window().DebugString(); } TEST_F(HloInstructionTest, CloneDnumsOnCustomCall) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); ConvolutionDimensionNumbers dnums; dnums.set_output_batch_dimension(42); instr->set_convolution_dimension_numbers(dnums); auto clone = instr->Clone(); EXPECT_TRUE(protobuf_util::ProtobufEquals( clone->convolution_dimension_numbers(), dnums)) << clone->convolution_dimension_numbers().DebugString(); } TEST_F(HloInstructionTest, CloneHasSideEffectOnCustomCall) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto custom_call_instr = Cast<HloCustomCallInstruction>(instr.get()); EXPECT_FALSE(custom_call_instr->custom_call_has_side_effect()); custom_call_instr->set_custom_call_has_side_effect(true); EXPECT_TRUE(custom_call_instr->custom_call_has_side_effect()); auto clone = instr->Clone(); auto custom_call_clone = Cast<HloCustomCallInstruction>(clone.get()); EXPECT_TRUE(custom_call_clone->custom_call_has_side_effect()); } TEST_F(HloInstructionTest, CustomCallHasSideEffect) { auto instr = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); auto custom_call_instr = Cast<HloCustomCallInstruction>(instr.get()); EXPECT_FALSE(instr->HasSideEffect()); custom_call_instr->set_custom_call_has_side_effect(true); EXPECT_TRUE(instr->HasSideEffect()); } TEST_F(HloInstructionTest, PreserveOperandPrecisionOnCloneConv) { constexpr char kHloString[] = R"( HloModule test_module ENTRY test { arg0 = f32[1,2,1] parameter(0) arg1 = f32[1,1,1] parameter(1) ROOT conv = f32[1,2,1] convolution(arg0, arg1), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); auto* conv = module->entry_computation()->root_instruction(); auto clone = conv->Clone(); EXPECT_THAT( clone->precision_config().operand_precision(), ::testing::ElementsAre(PrecisionConfig::HIGH, PrecisionConfig::DEFAULT)); } TEST_F(HloInstructionTest, ReuseReshapeOfFusionParameter) { constexpr char kHloString[] = R"( HloModule test_module f { p = f32[3,2] parameter(0) r = f32[2,3] reshape(p) x = f32[2,3] multiply(r, r) y = f32[2,3] add(r, r) ROOT sum = f32[2,3] add(x, y) } ENTRY test { p = f32[3,2] parameter(0) ROOT fusion = f32[2,3] fusion(p), calls=f, kind=kLoop })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(root->ReusesOperandElements(0)); } TEST_F(HloInstructionTest, ReuseMultipleReshapesOfFusionParameter) { constexpr char kHloString[] = R"( HloModule test_module f { p = f32[3,2] parameter(0) r1 = f32[2,3] reshape(p) r2 = f32[6,1] reshape(p) ROOT result = (f32[2,3], f32[6,1]) tuple(r1, r2) } ENTRY test { p = f32[3,2] parameter(0) ROOT fusion = (f32[2,3], f32[6,1]) fusion(p), calls=f, kind=kLoop })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_TRUE(root->ReusesOperandElements(0)); } TEST_F(HloInstructionTest, BitcastDoesNotReuseElements) { constexpr char kHloString[] = R"( HloModule test_module ENTRY test { p = f32[3,2]{0,1} parameter(0) ROOT bitcast = f32[6] bitcast(p) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(root->ReusesOperandElements(0)); } TEST_F(HloInstructionTest, GatherDoesNotReuseElements) { constexpr char kHloString[] = R"( HloModule test_module ENTRY test { input = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) idx = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(input, idx), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(root->ReusesOperandElements(0)); EXPECT_FALSE(root->ReusesOperandElements(1)); } TEST_F(HloInstructionTest, BackendConfigCanContainNonFiniteFloats) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = b.AddInstruction(HloInstruction::CreateDot( shape, p0, p0, dot_dnums, DefaultPrecisionConfig(2))); gpu::GpuBackendConfig gpu_config; gpu::GemmBackendConfig& orig_config = *gpu_config.mutable_gemm_backend_config(); orig_config.set_alpha_real(std::numeric_limits<double>::infinity()); orig_config.set_alpha_imag(std::numeric_limits<double>::quiet_NaN()); TF_ASSERT_OK(dot->set_backend_config(gpu_config)); TF_ASSERT_OK_AND_ASSIGN(auto new_gpu_config, dot->backend_config<gpu::GpuBackendConfig>()); EXPECT_GT(new_gpu_config.gemm_backend_config().alpha_real(), std::numeric_limits<double>::max()); EXPECT_NE(new_gpu_config.gemm_backend_config().alpha_imag(), new_gpu_config.gemm_backend_config().alpha_imag()); } TEST_F(HloInstructionTest, VerifyToApplyRegionPointsToReduceScatter) { const Shape rs_input_shape = ShapeUtil::MakeShape(F32, {20}); const Shape rs_output_shape = ShapeUtil::MakeShape(F32, {10}); std::unique_ptr<HloComputation> add_computation; { const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder add_builder("add"); HloInstruction* param0 = add_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* param1 = add_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "p1")); add_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param0, param1)); add_computation = add_builder.Build(); } std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(0, rs_input_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateReduceScatter( rs_output_shape, {param}, add_computation.get(), CollectiveDeviceList(), false, std::nullopt, false, 0)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(main_builder.Build()); module->AddEmbeddedComputation(std::move(add_computation)); for (HloComputation* comp : module->MakeComputationPostOrder()) { if (!comp->IsEntryComputation()) { EXPECT_TRUE(comp->IsCollectiveCalledComputation()); EXPECT_EQ(comp->CollectiveCallInstruction(), module->entry_computation()->root_instruction()); } } } TEST_F(HloInstructionTest, VerifyToApplyRegionPointsToAllReduce) { const Shape ar_input_shape = ShapeUtil::MakeShape(F32, {20}); std::unique_ptr<HloComputation> add_computation; { const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder add_builder("add"); HloInstruction* param0 = add_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* param1 = add_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "p1")); add_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param0, param1)); add_computation = add_builder.Build(); } std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(0, ar_input_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateAllReduce( ar_input_shape, {param}, add_computation.get(), CollectiveDeviceList(), false, std::nullopt, false)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(main_builder.Build()); module->AddEmbeddedComputation(std::move(add_computation)); for (HloComputation* comp : module->MakeComputationPostOrder()) { if (!comp->IsEntryComputation()) { EXPECT_TRUE(comp->IsCollectiveCalledComputation()); EXPECT_EQ(comp->CollectiveCallInstruction(), module->entry_computation()->root_instruction()); } } } TEST_F(HloInstructionTest, PrintCycle) { constexpr char kHloString[] = R"( ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}, {1, 2}}" } send = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}, {1, 2}}" }, control-predecessors={recv} send-done = token[] send-done(send), channel_id=2 recv-done = (f32[1, 1024, 1024], token[]) recv-done(recv), channel_id=2 ROOT recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); HloInstruction* recv = FindInstruction(module.get(), "recv"); HloInstruction* send_done = FindInstruction(module.get(), "send-done"); ASSERT_IS_OK(send_done->AddControlDependencyTo(recv)); HloInstruction* root = FindInstruction(module.get(), "recv-data"); NodeCollectorAndPostProcessor visitor; auto status = root->Accept(&visitor); EXPECT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("recv\n send\n send-done\n recv")); ASSERT_IS_OK(send_done->DropAllControlDeps()); } TEST_F(HloInstructionTest, VerifyBodyComputationPointsToWhile) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder cond_builder("cond"); { HloInstruction* param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1024.0))); cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), param, constant, ComparisonDirection::kLt)); } auto cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); HloComputation::Builder body_builder("body"); { HloInstruction* param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMultiply, param, param)); } auto body_computation = module->AddEmbeddedComputation(body_builder.Build()); std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateWhile( scalar_shape, cond_computation, body_computation, param)); module->AddEntryComputation(main_builder.Build()); int num_while_body_comp = 0; for (HloComputation* comp : module->MakeComputationPostOrder()) { if (comp->IsWhileBodyComputation()) { num_while_body_comp += 1; EXPECT_EQ(comp->WhileCallInstruction(), module->entry_computation()->root_instruction()); } } EXPECT_EQ(num_while_body_comp, 1); for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kWhile) { HloComputation* while_body = instruction->while_body(); EXPECT_TRUE(while_body->IsWhileBodyComputation()); HloInstruction* while_back_ref = while_body->WhileCallInstruction(); EXPECT_EQ(while_back_ref->while_body(), while_body); } } } TEST_F(HloInstructionTest, VerifyBranchComputationPointsToConditonal_TrueFalseConstructor) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); HloComputation::Builder branch_0_builder("branch_0"); { HloInstruction* param = branch_0_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* constant = branch_0_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1024.0))); branch_0_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param, constant)); } auto branch_0_computation = module->AddEmbeddedComputation(branch_0_builder.Build()); HloComputation::Builder branch_1_builder("branch_1"); { HloInstruction* param = branch_1_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); branch_1_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMultiply, param, param)); } auto branch_1_computation = module->AddEmbeddedComputation(branch_1_builder.Build()); std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* pred_param = main_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(PRED, {}), "pred_param")); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "input")); main_builder.AddInstruction(HloInstruction::CreateConditional( scalar_shape, pred_param, param, branch_0_computation, param, branch_1_computation)); module->AddEntryComputation(main_builder.Build()); int num_conditional_branch_comp = 0; for (HloComputation* comp : module->MakeComputationPostOrder()) { if (comp->IsConditionalBranchComputation()) { num_conditional_branch_comp += 1; EXPECT_EQ(comp->ConditionalCallInstruction(), module->entry_computation()->root_instruction()); } } EXPECT_EQ(num_conditional_branch_comp, 2); } TEST_F(HloInstructionTest, VerifyBranchComputationPointsToConditonal_BranchIndexConstructor) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeScalarShape(F32); std::vector<HloComputation*> branch_computations; { HloComputation::Builder builder("branch_0"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1024.0))); builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param, constant)); branch_computations.push_back( module->AddEmbeddedComputation(builder.Build())); } { HloComputation::Builder builder("branch_1"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMultiply, param, param)); branch_computations.push_back( module->AddEmbeddedComputation(builder.Build())); } { HloComputation::Builder builder("branch_2"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "p0")); builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape, HloOpcode::kLog, param)); branch_computations.push_back( module->AddEmbeddedComputation(builder.Build())); } std::unique_ptr<HloComputation> main_computation; HloComputation::Builder main_builder("Entry"); HloInstruction* branch_index = main_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeScalarShape(S32), "branch_index_param")); HloInstruction* param = main_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "input")); std::vector<HloInstruction*> branch_computation_args( branch_computations.size(), param); main_builder.AddInstruction(HloInstruction::CreateConditional( scalar_shape, branch_index, branch_computations, branch_computation_args)); module->AddEntryComputation(main_builder.Build()); int num_conditional_branch_comp = 0; for (HloComputation* comp : module->MakeComputationPostOrder()) { if (comp->IsConditionalBranchComputation()) { num_conditional_branch_comp += 1; EXPECT_EQ(comp->ConditionalCallInstruction(), module->entry_computation()->root_instruction()); } } EXPECT_EQ(num_conditional_branch_comp, branch_computations.size()); } TEST_F(HloInstructionTest, BackendConfigCopiedToDerived) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p1")); auto add = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p1)); gpu::GpuBackendConfig gpu_config; gpu_config.set_operation_queue_id(2); TF_ASSERT_OK(add->set_backend_config(gpu_config)); auto add2 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p0)); add->SetupDerivedInstruction(add2); auto backend_config = add2->backend_config<gpu::GpuBackendConfig>(); EXPECT_TRUE(backend_config.ok()); EXPECT_EQ(backend_config->operation_queue_id(), 2); } TEST_F(HloInstructionTest, BackendConfigNotCopiedToDerivedWithDiffOpcode) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p1")); auto or1 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kOr, p0, p1)); gpu::GpuBackendConfig gpu_config; gpu_config.set_operation_queue_id(2); TF_ASSERT_OK(or1->set_backend_config(gpu_config)); auto add2 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p1)); or1->SetupDerivedInstruction(add2); EXPECT_FALSE(add2->has_backend_config()); } TEST_F(HloInstructionTest, MergeMultiOutputProducerFusionIntoMultiOutputFusion) { const std::string& hlo_string = R"( HloModule mof mof_producer { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) sub = f32[10]{0} subtract(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(param1, add, sub, param0) } mof_consumer { param0.0 = f32[10]{0} parameter(0) param1.0 = f32[10]{0} parameter(1) param2.0 = f32[10]{0} parameter(2) mul = f32[10]{0} multiply(param0.0, param1.0) div = f32[10]{0} divide(param0.0, param1.0) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(mul, div, param2.0) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) producer = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_producer gte0 = f32[10]{0} get-tuple-element(producer), index=0 gte1 = f32[10]{0} get-tuple-element(producer), index=1 gte2 = f32[10]{0} get-tuple-element(producer), index=2 gte3 = f32[10]{0} get-tuple-element(producer), index=3 consumer = (f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(gte1, gte2, gte3), kind=kLoop, calls=mof_consumer gte4 = f32[10]{0} get-tuple-element(consumer), index=0 gte5 = f32[10]{0} get-tuple-element(consumer), index=1 gte6 = f32[10]{0} get-tuple-element(consumer), index=2 ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(gte0, gte1, gte3, gte4, gte5, gte6) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* producer = FindInstruction(module.get(), "producer"); HloInstruction* consumer = FindInstruction(module.get(), "consumer"); consumer->MergeFusionInstructionIntoMultiOutput(producer); HloInstruction* fusion = nullptr; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Parameter(1), m::GetTupleElement(m::Fusion(&fusion), 3), m::Parameter(0), m::GetTupleElement(m::Fusion(), 0), m::GetTupleElement(m::Fusion(), 1), m::GetTupleElement(m::Fusion(), 2)))); EXPECT_THAT(fusion->fused_instructions_computation()->root_instruction(), GmockMatch(m::Tuple( m::Multiply(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Divide(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(HloInstructionTest, MergeMultiOutputProducerFusionIntoMultiOutputFusionAvoidDuplicateRoots) { const std::string& hlo_string = R"( HloModule mof mof_producer { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) sub = f32[10]{0} subtract(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(add, sub) } mof_consumer { param0.0 = f32[10]{0} parameter(0) param1.0 = f32[10]{0} parameter(1) mul = f32[10]{0} multiply(param0.0, param1.0) div = f32[10]{0} divide(param0.0, param1.0) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(mul, div, param0.0) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) producer = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_producer gte1 = f32[10]{0} get-tuple-element(producer), index=0 gte2 = f32[10]{0} get-tuple-element(producer), index=1 consumer = (f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(gte1, gte2), kind=kLoop, calls=mof_consumer gte3 = f32[10]{0} get-tuple-element(consumer), index=0 gte4 = f32[10]{0} get-tuple-element(consumer), index=1 gte5 = f32[10]{0} get-tuple-element(consumer), index=2 ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(gte1, gte3, gte4, gte5) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* producer = FindInstruction(module.get(), "producer"); HloInstruction* consumer = FindInstruction(module.get(), "consumer"); consumer->MergeFusionInstructionIntoMultiOutput(producer); HloInstruction* fusion = nullptr; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion), 2), m::GetTupleElement(m::Fusion(), 0), m::GetTupleElement(m::Fusion(), 1), m::GetTupleElement(m::Fusion(), 2)))); EXPECT_THAT(fusion->fused_instructions_computation()->root_instruction(), GmockMatch(m::Tuple( m::Multiply(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Divide(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(HloInstructionTest, MergeMultiOutputSiblingFusionsAvoidDuplicateFusionParameters) { const std::string& hlo_string = R"( HloModule mof mof_sibling1 { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add) } mof_sibling2 { param0.0 = f32[10]{0} parameter(0) param1.0 = f32[10]{0} parameter(1) mul = f32[10]{0} multiply(param0.0, param1.0) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(mul, param1.0) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) sibling1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_sibling1 gte0 = f32[10]{0} get-tuple-element(sibling1), index=0 gte1 = f32[10]{0} get-tuple-element(sibling1), index=1 sibling2 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=mof_sibling2 gte2 = f32[10]{0} get-tuple-element(sibling2), index=0 gte3 = f32[10]{0} get-tuple-element(sibling2), index=1 ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(gte0, gte1, gte2, gte3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* sibling1 = FindInstruction(module.get(), "sibling1"); HloInstruction* sibling2 = FindInstruction(module.get(), "sibling2"); sibling2->MergeFusionInstructionIntoMultiOutput(sibling1); HloInstruction* fusion = nullptr; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Parameter(1), m::GetTupleElement(m::Fusion(&fusion), 2), m::GetTupleElement(m::Fusion(), 0), m::GetTupleElement(m::Fusion(), 1)))); EXPECT_THAT(fusion->fused_instructions_computation()->root_instruction(), GmockMatch(m::Tuple(m::Multiply(m::Parameter(0), m::Parameter(1)), m::Parameter(1), m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(HloInstructionTest, UnfuseInstruction) { const std::string& hlo_string = R"( HloModule mof fusion_comp { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) fusion.1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=fusion_comp gte0 = f32[10]{0} get-tuple-element(fusion.1), index=0 gte1 = f32[10]{0} get-tuple-element(fusion.1), index=1 ROOT res = (f32[10]{0}, f32[10]{0}) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); HloInstruction* add = fusion->fused_instructions_computation() ->root_instruction() ->mutable_operand(1); TF_ASSERT_OK_AND_ASSIGN(auto unfused, fusion->UnfuseInstruction(add)); EXPECT_THAT(unfused, GmockMatch(m::Add(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloInstructionTest, UnfuseInstruction2) { const std::string& hlo_string = R"( HloModule mof fusion_comp { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) add = f32[10]{0} add(param0, param1) add2 = f32[10]{0} add(add, param1) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add2) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) fusion.1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=fusion_comp gte0 = f32[10]{0} get-tuple-element(fusion.1), index=0 gte1 = f32[10]{0} get-tuple-element(fusion.1), index=1 ROOT res = (f32[10]{0}, f32[10]{0}) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); HloInstruction* add2 = fusion->fused_instructions_computation() ->root_instruction() ->mutable_operand(1); HloInstruction* add = add2->mutable_operand(0); EXPECT_FALSE(fusion->UnfuseInstruction(add2).ok()); TF_ASSERT_OK_AND_ASSIGN(auto unfused, fusion->UnfuseInstruction(add)); EXPECT_THAT(unfused, GmockMatch(m::Add(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloInstructionTest, UnfuseInstructionWithConstantOperand) { const std::string& hlo_string = R"( HloModule mof fusion_comp { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) const = f32[] constant(1.0) broadcast = f32[10]{0} broadcast(const), dimensions={} add = f32[10]{0} add(param0, broadcast) ROOT res = (f32[10]{0}, f32[10]{0}) tuple(param1, add) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) fusion.1 = (f32[10]{0}, f32[10]{0}) fusion(p0, p1), kind=kLoop, calls=fusion_comp gte0 = f32[10]{0} get-tuple-element(fusion.1), index=0 gte1 = f32[10]{0} get-tuple-element(fusion.1), index=1 ROOT res = (f32[10]{0}, f32[10]{0}) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); HloInstruction* add = fusion->fused_instructions_computation() ->root_instruction() ->mutable_operand(1); TF_ASSERT_OK_AND_ASSIGN(auto unfused, fusion->UnfuseInstruction(add)); EXPECT_THAT(unfused, GmockMatch(m::Add(m::Parameter(0), m::Broadcast(m::Constant())))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_instruction.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_instruction_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0fdc034f-4003-4eb4-82c7-e682af795f59
cpp
tensorflow/tensorflow
c_api_debug
tensorflow/c/eager/c_api_debug.cc
tensorflow/c/eager/c_api_debug_test.cc
#include <vector> #include "tensorflow/c/c_api.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/tfe_tensor_debug_info_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_status_internal.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/platform/status.h" using tensorflow::string; namespace { std::vector<int64_t> TensorShapeAsVector(const tensorflow::TensorHandle& handle, tensorflow::Status* status) { std::vector<int64_t> shape; int rank = -1; *status = handle.NumDims(&rank); if (!status->ok()) { return shape; } shape.reserve(rank); for (int i = 0; i < rank; ++i) { int64_t dim; *status = handle.Dim(i, &dim); if (!status->ok()) { return shape; } shape.push_back(dim); } return shape; } } extern "C" { TF_CAPI_EXPORT extern TFE_TensorDebugInfo* TFE_TensorHandleTensorDebugInfo( TFE_TensorHandle* h, TF_Status* status) { tensorflow::TensorHandle* handle = TensorHandleFromInterface(tensorflow::unwrap(h)); const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return nullptr; } std::vector<int64_t> dev_dims = TensorShapeAsVector(*handle, &status->status); if (!status->status.ok()) { return nullptr; } return new TFE_TensorDebugInfo(dev_dims); } TF_CAPI_EXPORT extern void TFE_DeleteTensorDebugInfo( TFE_TensorDebugInfo* debug_info) { delete debug_info; } TF_CAPI_EXPORT extern int TFE_TensorDebugInfoOnDeviceNumDims( TFE_TensorDebugInfo* debug_info) { return debug_info->dev_dims.size(); } TF_CAPI_EXPORT extern int64_t TFE_TensorDebugInfoOnDeviceDim( TFE_TensorDebugInfo* debug_info, int dim_index) { return debug_info->dev_dims[dim_index]; } }
#include "tensorflow/c/eager/c_api.h" #include <string.h> #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" TEST(CApiDebug, ScalarCPU) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* h = TestScalarTensorHandle(ctx, 1.0f); TFE_TensorDebugInfo* debug_info = TFE_TensorHandleTensorDebugInfo(h, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(0, TFE_TensorDebugInfoOnDeviceNumDims(debug_info)); TFE_DeleteTensorDebugInfo(debug_info); TFE_DeleteTensorHandle(h); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CApiDebug, 2DCPU) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* h = TestMatrixTensorHandle3X2(ctx); TFE_TensorDebugInfo* debug_info = TFE_TensorHandleTensorDebugInfo(h, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(2, TFE_TensorDebugInfoOnDeviceNumDims(debug_info)); EXPECT_EQ(3, TFE_TensorDebugInfoOnDeviceDim(debug_info, 0)); EXPECT_EQ(2, TFE_TensorDebugInfoOnDeviceDim(debug_info, 1)); TFE_DeleteTensorDebugInfo(debug_info); TFE_DeleteTensorHandle(h); TFE_DeleteContext(ctx); TF_DeleteStatus(status); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api_debug.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api_debug_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b3a54a4f-5588-4272-a712-c729944c2433
cpp
google/tensorstore
sha256
tensorstore/internal/digest/sha256.cc
tensorstore/internal/digest/sha256_test.cc
#include "tensorstore/internal/digest/sha256.h" #include <string_view> #include "absl/strings/cord.h" namespace tensorstore { namespace internal { void SHA256Digester::Write(const absl::Cord& cord) { for (std::string_view chunk : cord.Chunks()) { Write(chunk); } } } }
#include "tensorstore/internal/digest/sha256.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/escaping.h" using ::tensorstore::internal::SHA256Digester; namespace { TEST(Sha256Digest, Basic) { auto digest = [](auto input) { SHA256Digester digester; digester.Write(input); auto digest = digester.Digest(); return absl::BytesToHexString(std::string_view( reinterpret_cast<char*>(digest.data()), digest.size())); }; EXPECT_THAT( digest(std::string_view("abc")), testing::Eq( "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")); EXPECT_THAT( digest(absl::Cord("abc")), testing::Eq( "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/digest/sha256.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/digest/sha256_test.cc
4f887a6430414cd6088e1743555015b10f116d50
03aad0e0-543f-4086-af9c-38f3b63304f7
cpp
tensorflow/tensorflow
op_resolver
tensorflow/lite/core/api/op_resolver.cc
tensorflow/lite/core/api/op_resolver_test.cc
#include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { TfLiteStatus GetRegistrationFromOpCode( const OperatorCode* opcode, const OpResolver& op_resolver, ErrorReporter* error_reporter, const TfLiteRegistration** registration) { TfLiteStatus status = kTfLiteOk; *registration = nullptr; auto builtin_code = GetBuiltinCode(opcode); int version = opcode->version(); if (builtin_code > BuiltinOperator_MAX) { TF_LITE_REPORT_ERROR( error_reporter, "Op builtin_code out of range: %d. Are you using old TFLite binary " "with newer model?", builtin_code); status = kTfLiteError; } else if (builtin_code != BuiltinOperator_CUSTOM) { *registration = op_resolver.FindOp(builtin_code, version); if (*registration == nullptr) { TF_LITE_REPORT_ERROR( error_reporter, "Didn't find op for builtin opcode '%s' version '%d'. " "An older version of this builtin might be supported. " "Are you using an old TFLite binary with a newer model?\n", EnumNameBuiltinOperator(builtin_code), version); status = kTfLiteError; } } else if (!opcode->custom_code()) { TF_LITE_REPORT_ERROR( error_reporter, "Operator with CUSTOM builtin_code has no custom_code.\n"); status = kTfLiteError; } else { const char* name = opcode->custom_code()->c_str(); *registration = op_resolver.FindOp(name, version); if (*registration == nullptr) { status = kTfLiteError; } } return status; } }
#include "tensorflow/lite/core/api/op_resolver.h" #include <cstring> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/compiler/mlir/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { void* MockInit(TfLiteContext* context, const char* buffer, size_t length) { return nullptr; } void MockFree(TfLiteContext* context, void* buffer) { } TfLiteStatus MockPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus MockInvoke(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } class MockOpResolver : public OpResolver { public: const TfLiteRegistration* FindOp(BuiltinOperator op, int version) const override { if (op == BuiltinOperator_CONV_2D) { static TfLiteRegistration r = {MockInit, MockFree, MockPrepare, MockInvoke}; return &r; } else { return nullptr; } } const TfLiteRegistration* FindOp(const char* op, int version) const override { if (strcmp(op, "mock_custom") == 0) { static TfLiteRegistration r = {MockInit, MockFree, MockPrepare, MockInvoke}; return &r; } else { return nullptr; } } }; class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ = vsnprintf(buffer_, kBufferSize, format, args); return buffer_size_; } char* GetBuffer() { return buffer_; } int GetBufferSize() { return buffer_size_; } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; } TEST(OpResolver, TestResolver) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; const TfLiteRegistration* registration = resolver->FindOp(BuiltinOperator_CONV_2D, 0); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); registration = resolver->FindOp(BuiltinOperator_CAST, 0); EXPECT_EQ(nullptr, registration); registration = resolver->FindOp("mock_custom", 0); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); registration = resolver->FindOp("nonexistent_custom", 0); EXPECT_EQ(nullptr, registration); } TEST(OpResolver, TestGetRegistrationFromOpCodeConv) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect(builder, BuiltinOperator_CONV_2D, nullptr, 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteOk, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeCast) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect(builder, BuiltinOperator_CAST, nullptr, 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteError, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_EQ(nullptr, registration); EXPECT_NE(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeCustom) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect( builder, BuiltinOperator_CUSTOM, "mock_custom", 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteOk, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeNonexistentCustom) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect( builder, BuiltinOperator_CUSTOM, "nonexistent_custom", 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteError, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_EQ(nullptr, registration); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/op_resolver.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/op_resolver_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c9a4925f-1dc5-4ac0-9aa6-484ddcff8724
cpp
tensorflow/tensorflow
composable_splitter
tensorflow/tools/proto_splitter/cc/composable_splitter.h
tensorflow/tools/proto_splitter/cc/composable_splitter_test.cc
#ifndef TENSORFLOW_TOOLS_PROTO_SPLITTER_CC_COMPOSABLE_SPLITTER_H_ #define TENSORFLOW_TOOLS_PROTO_SPLITTER_CC_COMPOSABLE_SPLITTER_H_ #include <vector> #include "tensorflow/tools/proto_splitter/cc/composable_splitter_base.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tsl/platform/protobuf.h" namespace tensorflow { namespace tools::proto_splitter { class ComposableSplitter : public ComposableSplitterBase { public: explicit ComposableSplitter(tsl::protobuf::Message* message) : ComposableSplitterBase(message), message_(message) {} explicit ComposableSplitter(tsl::protobuf::Message* message, ComposableSplitterBase* parent_splitter, std::vector<FieldType>* fields_in_parent) : ComposableSplitterBase(message, parent_splitter, fields_in_parent), message_(message) {} protected: tsl::protobuf::Message* message() { return message_; } private: tsl::protobuf::Message* message_; }; } } #endif
#include "tensorflow/tools/proto_splitter/cc/composable_splitter.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "riegeli/base/maker.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/string_reader.h" #include "riegeli/records/record_reader.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system_helper.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/tools/proto_splitter/cc/test_util.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tensorflow/tools/proto_splitter/testdata/test_message.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #define IS_OSS true namespace tensorflow { namespace tools::proto_splitter { namespace { using ::tensorflow::proto_splitter::ChunkedMessage; using ::tensorflow::proto_splitter::ChunkMetadata; using ::tensorflow::proto_splitter_testdata::RepeatedRepeatedString; using ::tensorflow::proto_splitter_testdata::RepeatedString; using ::testing::HasSubstr; using ::testing::SizeIs; using tsl::testing::StatusIs; using namespace std::string_literals; class RepeatedStringSplitter : public ComposableSplitter { friend class ComposableSplitter; public: using ComposableSplitter::ComposableSplitter; absl::Status BuildChunks() override { RepeatedString* repeated_string = tsl::protobuf::DynamicCastToGenerated<RepeatedString>(message()); auto strings = repeated_string->strings(); if (strings.empty()) { TF_RETURN_IF_ERROR(SetMessageAsBaseChunk()); return absl::OkStatus(); } for (int i = 0; i < strings.size(); i++) { auto s = std::make_unique<MessageBytes>(strings[i]); std::vector<FieldType> fields = {"strings"s, i}; TF_RETURN_IF_ERROR(AddChunk(std::move(s), &fields)); } return absl::OkStatus(); } }; RepeatedString SetUpRepeatedString(std::vector<string> strings) { RepeatedString message; *message.mutable_strings() = {strings.begin(), strings.end()}; return message; } TEST(RepeatedStringSplitterTest, TestSplitChunks) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); ChunkedMessage* chunked_message = ret.chunked_message; ASSERT_NE(chunked_message, nullptr); for (int i = 0; i < chunks->size(); i++) { MessageBytes chunk = (*chunks)[i]; EXPECT_THAT(chunk, ::testing::VariantWith<std::string>(strings[i])); } EXPECT_THAT(*chunked_message, EqualsProto(R"pb(chunked_fields { field_tag { field: 1 } field_tag { index: 0 } message { chunk_index: 0 } } chunked_fields { field_tag { field: 1 } field_tag { index: 1 } message { chunk_index: 1 } } chunked_fields { field_tag { field: 1 } field_tag { index: 2 } message { chunk_index: 2 } })pb")); TF_ASSERT_OK_AND_ASSIGN(auto ret2, splitter.Split()); std::vector<MessageBytes>* chunks2 = ret2.chunks; ChunkedMessage* chunked_message2 = ret2.chunked_message; EXPECT_EQ(chunks2, chunks); EXPECT_EQ(chunked_message2, chunked_message); } static void CheckChunks(riegeli::RecordReaderBase& reader, std::vector<string>& strings) { ChunkMetadata chunk_metadata; reader.Seek(reader.Size().value()); reader.SeekBack(); reader.ReadRecord(chunk_metadata); auto& chunk_info = chunk_metadata.chunks(); EXPECT_EQ(chunk_info.size(), strings.size()); for (int i = 0; i < chunk_info.size(); i++) { reader.Seek(chunk_info[i].offset()); absl::string_view chunk; reader.ReadRecord(chunk); EXPECT_EQ(strings[i], std::string(chunk)); } EXPECT_THAT(chunk_metadata.message(), EqualsProto(R"pb(chunked_fields { field_tag { field: 1 } field_tag { index: 0 } message { chunk_index: 0 } } chunked_fields { field_tag { field: 1 } field_tag { index: 1 } message { chunk_index: 1 } } chunked_fields { field_tag { field: 1 } field_tag { index: 2 } message { chunk_index: 2 } })pb")); } TEST(RepeatedStringSplitterTest, TestWrite) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); std::string output_prefix = tensorflow::io::GetTempFilename(""); TF_ASSERT_OK(splitter.Write(output_prefix)); std::string expected_file = absl::StrCat(output_prefix, ".cpb"); TF_ASSERT_OK_AND_ASSIGN(auto exists, internal::FileExists(Env::Default(), expected_file)); EXPECT_TRUE(exists); riegeli::RecordReader file_reader( riegeli::Maker<riegeli::FdReader>(std::move(expected_file))); CheckChunks(file_reader, strings); } TEST(RepeatedStringSplitterTest, TestWriteToString) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); auto string_output_results = splitter.WriteToString(); TF_EXPECT_OK(string_output_results.status()); std::string string_output = std::get<0>(string_output_results.value()); bool is_chunked = std::get<1>(string_output_results.value()); EXPECT_TRUE(is_chunked); riegeli::RecordReader string_reader( riegeli::Maker<riegeli::StringReader>(string_output)); CheckChunks(string_reader, strings); } #if !IS_OSS TEST(RepeatedStringSplitterTest, TestWriteToCord) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); auto cord_output_results = splitter.WriteToCord(); TF_EXPECT_OK(cord_output_results.status()); absl::Cord cord_output = std::get<0>(cord_output_results.value()); bool is_chunked = std::get<1>(cord_output_results.value()); EXPECT_TRUE(is_chunked); riegeli::RecordReader cord_reader( riegeli::Maker<riegeli::CordReader>(&cord_output)); CheckChunks(cord_reader, strings); } #endif TEST(RepeatedStringSplitterTest, TestNoSplit) { RepeatedString message; RepeatedStringSplitter splitter = RepeatedStringSplitter(&message); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); ChunkedMessage* chunked_message = ret.chunked_message; ASSERT_NE(chunked_message, nullptr); EXPECT_THAT(*chunks, SizeIs(1)); EXPECT_THAT(*std::get<tsl::protobuf::Message*>((*chunks)[0]), EqualsProto("")); EXPECT_THAT(*chunked_message, EqualsProto(R"pb(chunk_index: 0)pb")); } class RepeatedRepeatedStringSplitter : public ComposableSplitter { public: using ComposableSplitter::ComposableSplitter; absl::Status BuildChunks() override { TF_RETURN_IF_ERROR(SetMessageAsBaseChunk()); RepeatedRepeatedString* msg = tsl::protobuf::DynamicCastToGenerated<RepeatedRepeatedString>( message()); auto repeated_strings = msg->rs(); for (int i = 0; i < repeated_strings.size(); i++) { std::vector<FieldType> fields = {"rs"s, i}; auto splitter = RepeatedStringSplitter(&repeated_strings[i], this, &fields); TF_RETURN_IF_ERROR(splitter.BuildChunks()); } return absl::OkStatus(); } }; TEST(ComposableTest, RepeatedRepeatedStringTest) { std::vector<string> strings1 = {"piece-1", "piece-2", "piece-3"}; auto rs1 = SetUpRepeatedString(strings1); std::vector<string> strings2 = {"new-strings-1"}; auto rs2 = SetUpRepeatedString(strings2); std::vector<string> strings3 = {"foo-1", "foo-2"}; auto rs3 = SetUpRepeatedString(strings3); std::vector<RepeatedString> rs = {rs1, rs2, rs3}; RepeatedRepeatedString message; message.mutable_rs()->Add(rs.begin(), rs.end()); RepeatedRepeatedStringSplitter splitter = RepeatedRepeatedStringSplitter(&message); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); ChunkedMessage* chunked_message = ret.chunked_message; ASSERT_NE(chunked_message, nullptr); std::vector<string> expected_chunks = {"piece-1", "piece-2", "piece-3", "new-strings-1", "foo-1", "foo-2"}; EXPECT_THAT(*chunks, SizeIs(7)); EXPECT_THAT(*std::get<tsl::protobuf::Message*>((*chunks)[0]), EqualsProto(message)); for (int i = 1; i < chunks->size(); i++) { MessageBytes chunk = (*chunks)[i]; EXPECT_THAT(chunk, ::testing::VariantWith<std::string>(expected_chunks[i - 1])); } EXPECT_THAT(chunked_message->chunked_fields()[4], EqualsProto(R"pb(field_tag { field: 2 } field_tag { index: 2 } field_tag { field: 1 } field_tag { index: 0 } message { chunk_index: 5 })pb")); } TEST(ComposableTest, ChildSplitterTest) { std::vector<string> strings1 = {"piece-1", "piece-2", "piece-3"}; auto message1 = SetUpRepeatedString(strings1); RepeatedStringSplitter splitter(&message1); std::vector<FieldType> fields = {}; std::vector<string> strings2 = {"s1", "s2"}; auto message2 = SetUpRepeatedString(strings2); RepeatedStringSplitter child(&message2, &splitter, &fields); TF_EXPECT_OK(child.BuildChunks()); TF_ASSERT_OK_AND_ASSIGN(auto ret, splitter.Split()); std::vector<MessageBytes>* chunks = ret.chunks; ASSERT_NE(chunks, nullptr); EXPECT_THAT(*chunks, SizeIs(5)); } TEST(ComposableTest, ChildSplitterUnimplementedTest) { RepeatedString message; RepeatedStringSplitter splitter(&message); std::vector<FieldType> fields = {}; RepeatedStringSplitter child(&message, &splitter, &fields); EXPECT_THAT(child.Split(), StatusIs(absl::StatusCode::kUnimplemented, HasSubstr("`Split` function behavior"))); EXPECT_THAT(child.Write("str"), StatusIs(absl::StatusCode::kUnimplemented, HasSubstr("`Write` function behavior"))); } class NoOpSplitter : public ComposableSplitter { public: using ComposableSplitter::ComposableSplitter; absl::Status BuildChunks() override { return absl::OkStatus(); } }; TEST(NoOpSplitterTest, TestWrite) { std::vector<string> strings = {"piece-1", "piece-2", "piece-3"}; auto message = SetUpRepeatedString(strings); NoOpSplitter splitter(&message); std::string output_prefix = tensorflow::io::GetTempFilename(""); TF_ASSERT_OK(splitter.Write(output_prefix)); std::string expected_file = absl::StrCat(output_prefix, ".pb"); TF_ASSERT_OK_AND_ASSIGN(auto exists, internal::FileExists(Env::Default(), expected_file)); EXPECT_TRUE(exists); RepeatedString read_message; auto status = tensorflow::ReadBinaryProto(tensorflow::Env::Default(), expected_file, &read_message); EXPECT_THAT(read_message, EqualsProto(message)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/proto_splitter/cc/composable_splitter.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/proto_splitter/cc/composable_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b2e3dc4c-9f53-49f1-8f40-d936b4c2f102
cpp
google/tensorstore
s3_metadata
tensorstore/kvstore/s3/s3_metadata.cc
tensorstore/kvstore/s3/s3_metadata_test.cc
#include "tensorstore/kvstore/s3/s3_metadata.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <initializer_list> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/no_destructor.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "re2/re2.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tinyxml2.h" using ::tensorstore::internal_http::HttpResponse; namespace tensorstore { namespace internal_kvstore_s3 { namespace { static constexpr char kEtag[] = "etag"; static constexpr char kLt[] = "&lt;"; static constexpr char kGt[] = "&gt;"; static constexpr char kQuot[] = "&quot;"; static constexpr char kApos[] = "&apos;"; static constexpr char kAmp[] = "&amp;"; std::string UnescapeXml(std::string_view data) { static LazyRE2 kSpecialXmlSymbols = {"(&gt;|&lt;|&quot;|&apos;|&amp;)"}; std::string_view search = data; std::string_view symbol; size_t result_len = data.length(); while (RE2::FindAndConsume(&search, *kSpecialXmlSymbols, &symbol)) { result_len -= symbol.length() - 1; } if (result_len == data.length()) { return std::string(data); } search = data; size_t pos = 0; size_t res_pos = 0; auto result = std::string(result_len, '0'); while (RE2::FindAndConsume(&search, *kSpecialXmlSymbols, &symbol)) { size_t next = data.length() - search.length(); for (size_t i = pos; i < next - symbol.length(); ++i, ++res_pos) { result[res_pos] = data[i]; } if (symbol == kGt) { result[res_pos++] = '>'; } else if (symbol == kLt) { result[res_pos++] = '<'; } else if (symbol == kQuot) { result[res_pos++] = '"'; } else if (symbol == kApos) { result[res_pos++] = '`'; } else if (symbol == kAmp) { result[res_pos++] = '&'; } else { assert(false); } pos = next; } for (size_t i = pos; i < data.length(); ++i, ++res_pos) { result[res_pos] = data[i]; } return result; } bool IsRetryableAwsStatusCode(int32_t status_code) { switch (status_code) { case 408: case 419: case 429: case 440: case 500: case 502: case 503: case 504: case 509: case 598: case 599: return true; default: return false; } } bool IsRetryableAwsMessageCode(std::string_view code) { static const absl::NoDestructor<absl::flat_hash_set<std::string_view>> kRetryableMessages(absl::flat_hash_set<std::string_view>({ "InternalFailureException", "InternalFailure", "InternalServerError", "InternalError", "RequestExpiredException", "RequestExpired", "ServiceUnavailableException", "ServiceUnavailableError", "ServiceUnavailable", "RequestThrottledException", "RequestThrottled", "ThrottlingException", "ThrottledException", "Throttling", "SlowDownException", "SlowDown", "RequestTimeTooSkewedException", "RequestTimeTooSkewed", "RequestTimeoutException", "RequestTimeout", })); return kRetryableMessages->contains(code); } } std::optional<int64_t> GetNodeInt(tinyxml2::XMLNode* node) { if (!node) { return std::nullopt; } tinyxml2::XMLPrinter printer; for (auto* child = node->FirstChild(); child != nullptr; child = child->NextSibling()) { child->Accept(&printer); } int64_t result; if (absl::SimpleAtoi(printer.CStr(), &result)) { return result; } return std::nullopt; } std::optional<absl::Time> GetNodeTimestamp(tinyxml2::XMLNode* node) { if (!node) { return std::nullopt; } tinyxml2::XMLPrinter printer; for (auto* child = node->FirstChild(); child != nullptr; child = child->NextSibling()) { child->Accept(&printer); } absl::Time result; if (absl::ParseTime(absl::RFC3339_full, printer.CStr(), absl::UTCTimeZone(), &result, nullptr)) { return result; } return std::nullopt; } std::string GetNodeText(tinyxml2::XMLNode* node) { if (!node) { return ""; } tinyxml2::XMLPrinter printer; for (auto* child = node->FirstChild(); child != nullptr; child = child->NextSibling()) { child->Accept(&printer); } return UnescapeXml(printer.CStr()); } Result<StorageGeneration> StorageGenerationFromHeaders( const absl::btree_multimap<std::string, std::string>& headers) { if (auto it = headers.find(kEtag); it != headers.end()) { return StorageGeneration::FromString(it->second); } return absl::NotFoundError("etag not found in response headers"); } absl::Status AwsHttpResponseToStatus(const HttpResponse& response, bool& retryable, SourceLocation loc) { auto absl_status_code = internal_http::HttpResponseCodeToStatusCode(response); if (absl_status_code == absl::StatusCode::kOk) { return absl::OkStatus(); } std::string error_type; if (auto error_header = response.headers.find("x-amzn-errortype"); error_header != response.headers.end()) { error_type = error_header->second; } absl::Cord request_id; if (auto request_id_header = response.headers.find("x-amzn-requestid"); request_id_header != response.headers.end()) { request_id = request_id_header->second; } std::string message; auto payload = response.payload; auto payload_str = payload.Flatten(); [&]() { if (payload.empty()) return; tinyxml2::XMLDocument xmlDocument; if (int xmlcode = xmlDocument.Parse(payload_str.data(), payload_str.size()); xmlcode != tinyxml2::XML_SUCCESS) { return; } auto* root_node = xmlDocument.FirstChildElement("Error"); if (root_node == nullptr) return; if (error_type.empty()) { error_type = GetNodeText(root_node->FirstChildElement("Code")); } if (request_id.empty()) { request_id = GetNodeText(root_node->FirstChildElement("RequestId")); } message = GetNodeText(root_node->FirstChildElement("Message")); }(); retryable = error_type.empty() ? IsRetryableAwsStatusCode(response.status_code) : IsRetryableAwsMessageCode(error_type); if (error_type.empty()) { error_type = "Unknown"; } absl::Status status(absl_status_code, absl::StrFormat("%s%s%s", error_type, message.empty() ? "" : ": ", message)); status.SetPayload("http_response_code", absl::Cord(absl::StrFormat("%d", response.status_code))); if (!payload_str.empty()) { status.SetPayload( "http_response_body", payload.Subcord(0, payload_str.size() < 256 ? payload_str.size() : 256)); } if (!request_id.empty()) { status.SetPayload("x-amzn-requestid", request_id); } MaybeAddSourceLocation(status, loc); return status; } } }
#include "tensorstore/kvstore/s3/s3_metadata.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/util/status_testutil.h" #include "tinyxml2.h" namespace { using ::tensorstore::StatusIs; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_kvstore_s3::AwsHttpResponseToStatus; using ::tensorstore::internal_kvstore_s3::GetNodeInt; using ::tensorstore::internal_kvstore_s3::GetNodeText; using ::tensorstore::internal_kvstore_s3::GetNodeTimestamp; static constexpr char kListXml[] = R"(<ListBucketResult xmlns="http: R"(<Name>i-dont-exist</Name>)" R"(<Prefix>tensorstore/test/</Prefix>)" R"(<KeyCount>3</KeyCount>)" R"(<MaxKeys>1000</MaxKeys>)" R"(<IsTruncated>false</IsTruncated>)" R"(<Contents>)" R"(<Key>tensorstore/test/abc</Key>)" R"(<LastModified>2023-07-08T15:26:55.000Z</LastModified>)" R"(<ETag>&quot;900150983cd24fb0d6963f7d28e17f72&quot;</ETag>)" R"(<ChecksumAlgorithm>SHA256</ChecksumAlgorithm>)" R"(<Size>3</Size>)" R"(<StorageClass>STANDARD</StorageClass>)" R"(</Contents>)" R"(<Contents>)" R"(<Key>tensorstore/test/ab&gt;cd</Key>)" R"(<LastModified>2023-07-08T15:26:55.000Z</LastModified>)" R"(<ETag>&quot;e2fc714c4727ee9395f324cd2e7f331f&quot;</ETag>)" R"(<ChecksumAlgorithm>SHA256</ChecksumAlgorithm>)" R"(<Size>4</Size>)" R"(<StorageClass>STANDARD</StorageClass>)" R"(</Contents>)" R"(<Contents>)" R"(<Key>tensorstore/test/abcde</Key>)" R"(<LastModified>2023-07-08T15:26:55.000Z</LastModified>)" R"(<ETag>&quot;ab56b4d92b40713acc5af89985d4b786&quot;</ETag>)" R"(<ChecksumAlgorithm>SHA256</ChecksumAlgorithm>)" R"(<Size>5</Size>)" R"(<StorageClass>STANDARD</StorageClass>)" R"(</Contents>)" R"(</ListBucketResult>)"; TEST(XmlSearchTest, GetNodeValues) { tinyxml2::XMLDocument xmlDocument; ASSERT_EQ(xmlDocument.Parse(kListXml), tinyxml2::XML_SUCCESS); auto* root = xmlDocument.FirstChildElement("ListBucketResult"); ASSERT_NE(root, nullptr); EXPECT_EQ("i-dont-exist", GetNodeText(root->FirstChildElement("Name"))); auto* contents = root->FirstChildElement("Contents"); ASSERT_NE(contents, nullptr); EXPECT_EQ(R"("900150983cd24fb0d6963f7d28e17f72")", GetNodeText(contents->FirstChildElement("ETag"))); EXPECT_THAT(GetNodeInt(contents->FirstChildElement("Size")), ::testing::Optional(::testing::Eq(3))); EXPECT_THAT( GetNodeTimestamp(contents->FirstChildElement("LastModified")), ::testing::Optional(::testing::Eq(absl::FromUnixSeconds(1688830015)))); } TEST(S3MetadataTest, AwsHttpResponseToStatus) { HttpResponse response; { response.status_code = 404; bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kNotFound)); EXPECT_FALSE(retryable); } { response.status_code = 429; bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kUnavailable)); EXPECT_TRUE(retryable); } { response.status_code = 400; response.payload = absl::Cord(R"(<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>UnknownError</Code> <Message>Unknown message</Message> <Resource>/mybucket/myfoto.jpg</Resource> <RequestId>4442587FB7D0A2F9</RequestId> </Error> )"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_FALSE(retryable); } { response.status_code = 400; response.payload = absl::Cord(R"(<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>ThrottledException</Code> <Message>Throttled message</Message> <Resource>/mybucket/myfoto.jpg</Resource> <RequestId>4442587FB7D0A2F9</RequestId> </Error> )"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_TRUE(retryable); } { response.status_code = 400; response.headers.emplace("x-amzn-errortype", "UnknownError"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_FALSE(retryable); } { response.status_code = 400; response.headers.clear(); response.headers.emplace("x-amzn-errortype", "ThrottledException"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_TRUE(retryable); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_metadata.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_metadata_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b89a5ac0-a504-4299-9d79-cc34ac6e6151
cpp
google/quiche
tls_server_handshaker
quiche/quic/core/tls_server_handshaker.cc
quiche/quic/core/tls_server_handshaker_test.cc
#include "quiche/quic/core/tls_server_handshaker.h" #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "openssl/base.h" #include "openssl/bytestring.h" #include "openssl/ssl.h" #include "openssl/tls1.h" #include "quiche/quic/core/crypto/crypto_handshake.h" #include "quiche/quic/core/crypto/crypto_message_parser.h" #include "quiche/quic/core/crypto/crypto_utils.h" #include "quiche/quic/core/crypto/proof_source.h" #include "quiche/quic/core/crypto/proof_verifier.h" #include "quiche/quic/core/crypto/quic_crypto_server_config.h" #include "quiche/quic/core/crypto/quic_decrypter.h" #include "quiche/quic/core/crypto/quic_encrypter.h" #include "quiche/quic/core/crypto/transport_parameters.h" #include "quiche/quic/core/http/http_encoder.h" #include "quiche/quic/core/http/http_frames.h" #include "quiche/quic/core/quic_config.h" #include "quiche/quic/core/quic_connection.h" #include "quiche/quic/core/quic_connection_context.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_connection_stats.h" #include "quiche/quic/core/quic_crypto_server_stream_base.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_time_accumulator.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/core/tls_handshaker.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_hostname_utils.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_server_stats.h" #include "quiche/quic/platform/api/quic_socket_address.h" #define RECORD_LATENCY_IN_US(stat_name, latency, comment) \ do { \ const int64_t latency_in_us = (latency).ToMicroseconds(); \ QUIC_DVLOG(1) << "Recording " stat_name ": " << latency_in_us; \ QUIC_SERVER_HISTOGRAM_COUNTS(stat_name, latency_in_us, 1, 10000000, 50, \ comment); \ } while (0) namespace quic { namespace { uint16_t kDefaultPort = 443; } TlsServerHandshaker::DefaultProofSourceHandle::DefaultProofSourceHandle( TlsServerHandshaker* handshaker, ProofSource* proof_source) : handshaker_(handshaker), proof_source_(proof_source) {} TlsServerHandshaker::DefaultProofSourceHandle::~DefaultProofSourceHandle() { CloseHandle(); } void TlsServerHandshaker::DefaultProofSourceHandle::CloseHandle() { QUIC_DVLOG(1) << "CloseHandle. is_signature_pending=" << (signature_callback_ != nullptr); if (signature_callback_) { signature_callback_->Cancel(); signature_callback_ = nullptr; } } QuicAsyncStatus TlsServerHandshaker::DefaultProofSourceHandle::SelectCertificate( const QuicSocketAddress& server_address, const QuicSocketAddress& client_address, const QuicConnectionId& , absl::string_view , const std::string& hostname, absl::string_view , const std::string& , std::optional<std::string> , const std::vector<uint8_t>& , const std::optional<std::vector<uint8_t>>& , const QuicSSLConfig& ) { if (!handshaker_ || !proof_source_) { QUIC_BUG(quic_bug_10341_1) << "SelectCertificate called on a detached handle"; return QUIC_FAILURE; } bool cert_matched_sni; quiche::QuicheReferenceCountedPointer<ProofSource::Chain> chain = proof_source_->GetCertChain(server_address, client_address, hostname, &cert_matched_sni); handshaker_->OnSelectCertificateDone( true, true, ProofSourceHandleCallback::LocalSSLConfig{chain.get(), QuicDelayedSSLConfig()}, absl::string_view(), cert_matched_sni); if (!handshaker_->select_cert_status().has_value()) { QUIC_BUG(quic_bug_12423_1) << "select_cert_status() has no value after a synchronous select cert"; return QUIC_SUCCESS; } return *handshaker_->select_cert_status(); } QuicAsyncStatus TlsServerHandshaker::DefaultProofSourceHandle::ComputeSignature( const QuicSocketAddress& server_address, const QuicSocketAddress& client_address, const std::string& hostname, uint16_t signature_algorithm, absl::string_view in, size_t max_signature_size) { if (!handshaker_ || !proof_source_) { QUIC_BUG(quic_bug_10341_2) << "ComputeSignature called on a detached handle"; return QUIC_FAILURE; } if (signature_callback_) { QUIC_BUG(quic_bug_10341_3) << "ComputeSignature called while pending"; return QUIC_FAILURE; } signature_callback_ = new DefaultSignatureCallback(this); proof_source_->ComputeTlsSignature( server_address, client_address, hostname, signature_algorithm, in, std::unique_ptr<DefaultSignatureCallback>(signature_callback_)); if (signature_callback_) { QUIC_DVLOG(1) << "ComputeTlsSignature is pending"; signature_callback_->set_is_sync(false); return QUIC_PENDING; } bool success = handshaker_->HasValidSignature(max_signature_size); QUIC_DVLOG(1) << "ComputeTlsSignature completed synchronously. success:" << success; return success ? QUIC_SUCCESS : QUIC_FAILURE; } TlsServerHandshaker::DecryptCallback::DecryptCallback( TlsServerHandshaker* handshaker) : handshaker_(handshaker) {} void TlsServerHandshaker::DecryptCallback::Run(std::vector<uint8_t> plaintext) { if (handshaker_ == nullptr) { return; } TlsServerHandshaker* handshaker = handshaker_; handshaker_ = nullptr; handshaker->decrypted_session_ticket_ = std::move(plaintext); const bool is_async = (handshaker->expected_ssl_error() == SSL_ERROR_PENDING_TICKET); std::optional<QuicConnectionContextSwitcher> context_switcher; if (is_async) { context_switcher.emplace(handshaker->connection_context()); } QUIC_TRACESTRING( absl::StrCat("TLS ticket decryption done. len(decrypted_ticket):", handshaker->decrypted_session_ticket_.size())); if (is_async) { handshaker->AdvanceHandshakeFromCallback(); } handshaker->ticket_decryption_callback_ = nullptr; } void TlsServerHandshaker::DecryptCallback::Cancel() { QUICHE_DCHECK(handshaker_); handshaker_ = nullptr; } TlsServerHandshaker::TlsServerHandshaker( QuicSession* session, const QuicCryptoServerConfig* crypto_config) : TlsHandshaker(this, session), QuicCryptoServerStreamBase(session), proof_source_(crypto_config->proof_source()), pre_shared_key_(crypto_config->pre_shared_key()), crypto_negotiated_params_(new QuicCryptoNegotiatedParameters), tls_connection_(crypto_config->ssl_ctx(), this, session->GetSSLConfig()), crypto_config_(crypto_config) { QUIC_DVLOG(1) << "TlsServerHandshaker: client_cert_mode initial value: " << client_cert_mode(); QUICHE_DCHECK_EQ(PROTOCOL_TLS1_3, session->connection()->version().handshake_protocol); SSL_set_accept_state(ssl()); int use_legacy_extension = 0; if (session->version().UsesLegacyTlsExtension()) { use_legacy_extension = 1; } SSL_set_quic_use_legacy_codepoint(ssl(), use_legacy_extension); if (session->connection()->context()->tracer) { tls_connection_.EnableInfoCallback(); } #if BORINGSSL_API_VERSION >= 22 if (!crypto_config->preferred_groups().empty()) { SSL_set1_group_ids(ssl(), crypto_config->preferred_groups().data(), crypto_config->preferred_groups().size()); } #endif } TlsServerHandshaker::~TlsServerHandshaker() { CancelOutstandingCallbacks(); } void TlsServerHandshaker::CancelOutstandingCallbacks() { if (proof_source_handle_) { proof_source_handle_->CloseHandle(); } if (ticket_decryption_callback_) { ticket_decryption_callback_->Cancel(); ticket_decryption_callback_ = nullptr; } } void TlsServerHandshaker::InfoCallback(int type, int value) { QuicConnectionTracer* tracer = session()->connection()->context()->tracer.get(); if (tracer == nullptr) { return; } if (type & SSL_CB_LOOP) { tracer->PrintString( absl::StrCat("SSL:ACCEPT_LOOP:", SSL_state_string_long(ssl()))); } else if (type & SSL_CB_ALERT) { const char* prefix = (type & SSL_CB_READ) ? "SSL:READ_ALERT:" : "SSL:WRITE_ALERT:"; tracer->PrintString(absl::StrCat(prefix, SSL_alert_type_string_long(value), ":", SSL_alert_desc_string_long(value))); } else if (type & SSL_CB_EXIT) { const char* prefix = (value == 1) ? "SSL:ACCEPT_EXIT_OK:" : "SSL:ACCEPT_EXIT_FAIL:"; tracer->PrintString(absl::StrCat(prefix, SSL_state_string_long(ssl()))); } else if (type & SSL_CB_HANDSHAKE_START) { tracer->PrintString( absl::StrCat("SSL:HANDSHAKE_START:", SSL_state_string_long(ssl()))); } else if (type & SSL_CB_HANDSHAKE_DONE) { tracer->PrintString( absl::StrCat("SSL:HANDSHAKE_DONE:", SSL_state_string_long(ssl()))); } else { QUIC_DLOG(INFO) << "Unknown event type " << type << ": " << SSL_state_string_long(ssl()); tracer->PrintString( absl::StrCat("SSL:unknown:", value, ":", SSL_state_string_long(ssl()))); } } std::unique_ptr<ProofSourceHandle> TlsServerHandshaker::MaybeCreateProofSourceHandle() { return std::make_unique<DefaultProofSourceHandle>(this, proof_source_); } bool TlsServerHandshaker::GetBase64SHA256ClientChannelID( std::string* ) const { return false; } void TlsServerHandshaker::SendServerConfigUpdate( const CachedNetworkParameters* ) { } bool TlsServerHandshaker::DisableResumption() { if (!can_disable_resumption_ || !session()->connection()->connected()) { return false; } tls_connection_.DisableTicketSupport(); return true; } bool TlsServerHandshaker::IsZeroRtt() const { return SSL_early_data_accepted(ssl()); } bool TlsServerHandshaker::IsResumption() const { return SSL_session_reused(ssl()); } bool TlsServerHandshaker::ResumptionAttempted() const { return ticket_received_; } bool TlsServerHandshaker::EarlyDataAttempted() const { QUIC_BUG_IF(quic_tls_early_data_attempted_too_early, !select_cert_status_.has_value()) << "EarlyDataAttempted must be called after EarlySelectCertCallback is " "started"; return early_data_attempted_; } int TlsServerHandshaker::NumServerConfigUpdateMessagesSent() const { return 0; } const CachedNetworkParameters* TlsServerHandshaker::PreviousCachedNetworkParams() const { return last_received_cached_network_params_.get(); } void TlsServerHandshaker::SetPreviousCachedNetworkParams( CachedNetworkParameters cached_network_params) { last_received_cached_network_params_ = std::make_unique<CachedNetworkParameters>(cached_network_params); } void TlsServerHandshaker::OnPacketDecrypted(EncryptionLevel level) { if (level == ENCRYPTION_HANDSHAKE && state_ < HANDSHAKE_PROCESSED) { state_ = HANDSHAKE_PROCESSED; handshaker_delegate()->DiscardOldEncryptionKey(ENCRYPTION_INITIAL); handshaker_delegate()->DiscardOldDecryptionKey(ENCRYPTION_INITIAL); } } void TlsServerHandshaker::OnHandshakeDoneReceived() { QUICHE_DCHECK(false); } void TlsServerHandshaker::OnNewTokenReceived(absl::string_view ) { QUICHE_DCHECK(false); } std::string TlsServerHandshaker::GetAddressToken( const CachedNetworkParameters* cached_network_params) const { SourceAddressTokens empty_previous_tokens; const QuicConnection* connection = session()->connection(); return crypto_config_->NewSourceAddressToken( crypto_config_->source_address_token_boxer(), empty_previous_tokens, connection->effective_peer_address().host(), connection->random_generator(), connection->clock()->WallNow(), cached_network_params); } bool TlsServerHandshaker::ValidateAddressToken(absl::string_view token) const { SourceAddressTokens tokens; HandshakeFailureReason reason = crypto_config_->ParseSourceAddressToken( crypto_config_->source_address_token_boxer(), token, tokens); if (reason != HANDSHAKE_OK) { QUIC_DLOG(WARNING) << "Failed to parse source address token: " << CryptoUtils::HandshakeFailureReasonToString(reason); return false; } auto cached_network_params = std::make_unique<CachedNetworkParameters>(); reason = crypto_config_->ValidateSourceAddressTokens( tokens, session()->connection()->effective_peer_address().host(), session()->connection()->clock()->WallNow(), cached_network_params.get()); if (reason != HANDSHAKE_OK) { QUIC_DLOG(WARNING) << "Failed to validate source address token: " << CryptoUtils::HandshakeFailureReasonToString(reason); return false; } last_received_cached_network_params_ = std::move(cached_network_params); return true; } bool TlsServerHandshaker::ShouldSendExpectCTHeader() const { return false; } bool TlsServerHandshaker::DidCertMatchSni() const { return cert_matched_sni_; } const ProofSource::Details* TlsServerHandshaker::ProofSourceDetails() const { return proof_source_details_.get(); } bool TlsServerHandshaker::ExportKeyingMaterial(absl::string_view label, absl::string_view context, size_t result_len, std::string* result) { return ExportKeyingMaterialForLabel(label, context, result_len, result); } void TlsServerHandshaker::OnConnectionClosed( const QuicConnectionCloseFrame& frame, ConnectionCloseSource source) { TlsHandshaker::OnConnectionClosed(frame.quic_error_code, source); } ssl_early_data_reason_t TlsServerHandshaker::EarlyDataReason() const { return TlsHandshaker::EarlyDataReason(); } bool TlsServerHandshaker::encryption_established() const { return encryption_established_; } bool TlsServerHandshaker::one_rtt_keys_available() const { return state_ == HANDSHAKE_CONFIRMED; } const QuicCryptoNegotiatedParameters& TlsServerHandshaker::crypto_negotiated_params() const { return *crypto_negotiated_params_; } CryptoMessageParser* TlsServerHandshaker::crypto_message_parser() { return TlsHandshaker::crypto_message_parser(); } HandshakeState TlsServerHandshaker::GetHandshakeState() const { return state_; } void TlsServerHandshaker::SetServerApplicationStateForResumption( std::unique_ptr<ApplicationState> state) { application_state_ = std::move(state); } size_t TlsServerHandshaker::BufferSizeLimitForLevel( EncryptionLevel level) const { return TlsHandshaker::BufferSizeLimitForLevel(level); } std::unique_ptr<QuicDecrypter> TlsServerHandshaker::AdvanceKeysAndCreateCurrentOneRttDecrypter() { return TlsHandshaker::AdvanceKeysAndCreateCurrentOneRttDecrypter(); } std::unique_ptr<QuicEncrypter> TlsServerHandshaker::CreateCurrentOneRttEncrypter() { return TlsHandshaker::CreateCurrentOneRttEncrypter(); } void TlsServerHandshaker::OverrideQuicConfigDefaults(QuicConfig* ) {} void TlsServerHandshaker::AdvanceHandshakeFromCallback() { QuicConnection::ScopedPacketFlusher flusher(session()->connection()); AdvanceHandshake(); if (!is_connection_closed()) { handshaker_delegate()->OnHandshakeCallbackDone(); } } bool TlsServerHandshaker::ProcessTransportParameters( const SSL_CLIENT_HELLO* client_hello, std::string* error_details) { TransportParameters client_params; const uint8_t* client_params_bytes; size_t params_bytes_len; uint16_t extension_type = TLSEXT_TYPE_quic_transport_parameters_standard; if (session()->version().UsesLegacyTlsExtension()) { extension_type = TLSEXT_TYPE_quic_transport_parameters_legacy; } if (!SSL_early_callback_ctx_extension_get(client_hello, extension_type, &client_params_bytes, &params_bytes_len)) { params_bytes_len = 0; } if (params_bytes_len == 0) { *error_details = "Client's transport parameters are missing"; return false; } std::string parse_error_details; if (!ParseTransportParameters(session()->connection()->version(), Perspective::IS_CLIENT, client_params_bytes, params_bytes_len, &client_params, &parse_error_details)) { QUICHE_DCHECK(!parse_error_details.empty()); *error_details = "Unable to parse client's transport parameters: " + parse_error_details; return false; } session()->connection()->OnTransportParametersReceived(client_params); if (client_params.legacy_version_information.has_value() && CryptoUtils::ValidateClientHelloVersion( client_params.legacy_version_information->version, session()->connection()->version(), session()->supported_versions(), error_details) != QUIC_NO_ERROR) { return false; } if (client_params.version_information.has_value() && !CryptoUtils::ValidateChosenVersion( client_params.version_information->chosen_version, session()->version(), error_details)) { QUICHE_DCHECK(!error_details->empty()); return false; } if (handshaker_delegate()->ProcessTransportParameters( client_params, false, error_details) != QUIC_NO_ERROR) { return false; } if (!ProcessAdditionalTransportParameters(client_params)) { *error_details = "Failed to process additional transport parameters"; return false; } return true; } TlsServerHandshaker::SetTransportParametersResult TlsServerHandshaker::SetTransportParameters() { SetTransportParametersResult result; QUICHE_DCHECK(!result.success); server_params_.perspective = Perspective::IS_SERVER; server_params_.legacy_version_information = TransportParameters::LegacyVersionInformation(); server_params_.legacy_version_information->supported_versions = CreateQuicVersionLabelVector(session()->supported_versions()); server_params_.legacy_version_information->version = CreateQuicVersionLabel(session()->connection()->version()); server_params_.version_information = TransportParameters::VersionInformation(); server_params_.version_information->chosen_version = CreateQuicVersionLabel(session()->version()); server_params_.version_information->other_versions = CreateQuicVersionLabelVector(session()->supported_versions()); if (!handshaker_delegate()->FillTransportParameters(&server_params_)) { return result; } session()->connection()->OnTransportParametersSent(server_params_); { std::vector<uint8_t> server_params_bytes; if (!SerializeTransportParameters(server_params_, &server_params_bytes) || SSL_set_quic_transport_params(ssl(), server_params_bytes.data(), server_params_bytes.size()) != 1) { return result; } result.quic_transport_params = std::move(server_params_bytes); } if (application_state_) { std::vector<uint8_t> early_data_context; if (!SerializeTransportParametersForTicket( server_params_, *application_state_, &early_data_context)) { QUIC_BUG(quic_bug_10341_4) << "Failed to serialize Transport Parameters for ticket."; result.early_data_context = std::vector<uint8_t>(); return result; } SSL_set_quic_early_data_context(ssl(), early_data_context.data(), early_data_context.size()); result.early_data_context = std::move(early_data_context); application_state_.reset(nullptr); } result.success = true; return result; } bool TlsServerHandshaker::TransportParametersMatch( absl::Span<const uint8_t> serialized_params) const { TransportParameters params; std::string error_details; bool parse_ok = ParseTransportParameters( session()->version(), Perspective::IS_SERVER, serialized_params.data(), serialized_params.size(), &params, &error_details); if (!parse_ok) { return false; } DegreaseTransportParameters(params); return params == server_params_; } void TlsServerHandshaker::SetWriteSecret( EncryptionLevel level, const SSL_CIPHER* cipher, absl::Span<const uint8_t> write_secret) { if (is_connection_closed()) { return; } if (level == ENCRYPTION_FORWARD_SECURE) { encryption_established_ = true; const SSL_CIPHER* ssl_cipher = SSL_get_current_cipher(ssl()); if (ssl_cipher) { crypto_negotiated_params_->cipher_suite = SSL_CIPHER_get_protocol_id(ssl_cipher); } crypto_negotiated_params_->key_exchange_group = SSL_get_curve_id(ssl()); crypto_negotiated_params_->encrypted_client_hello = SSL_ech_accepted(ssl()); } TlsHandshaker::SetWriteSecret(level, cipher, write_secret); } std::string TlsServerHandshaker::GetAcceptChValueForHostname( const std::string& ) const { return {}; } bool TlsServerHandshaker::UseAlpsNewCodepoint() const { if (!select_cert_status_.has_value()) { QUIC_BUG(quic_tls_check_alps_new_codepoint_too_early) << "UseAlpsNewCodepoint must be called after " "EarlySelectCertCallback is started"; return false; } return alps_new_codepoint_received_; } void TlsServerHandshaker::FinishHandshake() { QUICHE_DCHECK(!SSL_in_early_data(ssl())); if (!valid_alpn_received_) { QUIC_DLOG(ERROR) << "Server: handshake finished without receiving a known ALPN"; CloseConnection(QUIC_HANDSHAKE_FAILED, "Server did not receive a known ALPN"); return; } ssl_early_data_reason_t reason_code = EarlyDataReason(); QUIC_DLOG(INFO) << "Server: handshake finished. Early data reason " << reason_code << " (" << CryptoUtils::EarlyDataReasonToString(reason_code) << ")"; state_ = HANDSHAKE_CONFIRMED; handshaker_delegate()->OnTlsHandshakeComplete(); handshaker_delegate()->DiscardOldEncryptionKey(ENCRYPTION_HANDSHAKE); handshaker_delegate()->DiscardOldDecryptionKey(ENCRYPTION_HANDSHAKE); } QuicAsyncStatus TlsServerHandshaker::VerifyCertChain( const std::vector<std::string>& , std::string* , std::unique_ptr<ProofVerifyDetails>* , uint8_t* , std::unique_ptr<ProofVerifierCallback> ) { QUIC_DVLOG(1) << "VerifyCertChain returning success"; return QUIC_SUCCESS; } void TlsServerHandshaker::OnProofVerifyDetailsAvailable( const ProofVerifyDetails& ) {} ssl_private_key_result_t TlsServerHandshaker::PrivateKeySign( uint8_t* out, size_t* out_len, size_t max_out, uint16_t sig_alg, absl::string_view in) { QUICHE_DCHECK_EQ(expected_ssl_error(), SSL_ERROR_WANT_READ); QuicAsyncStatus status = proof_source_handle_->ComputeSignature( session()->connection()->self_address(), session()->connection()->peer_address(), crypto_negotiated_params_->sni, sig_alg, in, max_out); if (status == QUIC_PENDING) { set_expected_ssl_error(SSL_ERROR_WANT_PRIVATE_KEY_OPERATION); if (async_op_timer_.has_value()) { QUIC_CODE_COUNT( quic_tls_server_computing_signature_while_another_op_pending); } async_op_timer_ = QuicTimeAccumulator(); async_op_timer_->Start(now()); } return PrivateKeyComplete(out, out_len, max_out); } ssl_private_key_result_t TlsServerHandshaker::PrivateKeyComplete( uint8_t* out, size_t* out_len, size_t max_out) { if (expected_ssl_error() == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) { return ssl_private_key_retry; } const bool success = HasValidSignature(max_out); QuicConnectionStats::TlsServerOperationStats compute_signature_stats; compute_signature_stats.success = success; if (async_op_timer_.has_value()) { async_op_timer_->Stop(now()); compute_signature_stats.async_latency = async_op_timer_->GetTotalElapsedTime(); async_op_timer_.reset(); RECORD_LATENCY_IN_US("tls_server_async_compute_signature_latency_us", compute_signature_stats.async_latency, "Async compute signature latency in microseconds"); } connection_stats().tls_server_compute_signature_stats = std::move(compute_signature_stats); if (!success) { return ssl_private_key_failure; } *out_len = cert_verify_sig_.size(); memcpy(out, cert_verify_sig_.data(), *out_len); cert_verify_sig_.clear(); cert_verify_sig_.shrink_to_fit(); return ssl_private_key_success; } void TlsServerHandshaker::OnComputeSignatureDone( bool ok, bool is_sync, std::string signature, std::unique_ptr<ProofSource::Details> details) { QUIC_DVLOG(1) << "OnComputeSignatureDone. ok:" << ok << ", is_sync:" << is_sync << ", len(signature):" << signature.size(); std::optional<QuicConnectionContextSwitcher> context_switcher; if (!is_sync) { context_switcher.emplace(connection_context()); } QUIC_TRACESTRING(absl::StrCat("TLS compute signature done. ok:", ok, ", len(signature):", signature.size())); if (ok) { cert_verify_sig_ = std::move(signature); proof_source_details_ = std::move(details); } const int last_expected_ssl_error = expected_ssl_error(); set_expected_ssl_error(SSL_ERROR_WANT_READ); if (!is_sync) { QUICHE_DCHECK_EQ(last_expected_ssl_error, SSL_ERROR_WANT_PRIVATE_KEY_OPERATION); AdvanceHandshakeFromCallback(); } } bool TlsServerHandshaker::HasValidSignature(size_t max_signature_size) const { return !cert_verify_sig_.empty() && cert_verify_sig_.size() <= max_signature_size; } size_t TlsServerHandshaker::SessionTicketMaxOverhead() { QUICHE_DCHECK(proof_source_->GetTicketCrypter()); return proof_source_->GetTicketCrypter()->MaxOverhead(); } int TlsServerHandshaker::SessionTicketSeal(uint8_t* out, size_t* out_len, size_t max_out_len, absl::string_view in) { QUICHE_DCHECK(proof_source_->GetTicketCrypter()); std::vector<uint8_t> ticket = proof_source_->GetTicketCrypter()->Encrypt(in, ticket_encryption_key_); if (GetQuicReloadableFlag( quic_send_placeholder_ticket_when_encrypt_ticket_fails) && ticket.empty()) { QUIC_CODE_COUNT(quic_tls_server_handshaker_send_placeholder_ticket); const absl::string_view kTicketFailurePlaceholder = "TICKET FAILURE"; const absl::string_view kTicketWithSizeLimit = kTicketFailurePlaceholder.substr(0, max_out_len); ticket.assign(kTicketWithSizeLimit.begin(), kTicketWithSizeLimit.end()); } if (max_out_len < ticket.size()) { QUIC_BUG(quic_bug_12423_2) << "TicketCrypter returned " << ticket.size() << " bytes of ciphertext, which is larger than its max overhead of " << max_out_len; return 0; } *out_len = ticket.size(); memcpy(out, ticket.data(), ticket.size()); QUIC_CODE_COUNT(quic_tls_server_handshaker_tickets_sealed); return 1; } ssl_ticket_aead_result_t TlsServerHandshaker::SessionTicketOpen( uint8_t* out, size_t* out_len, size_t max_out_len, absl::string_view in) { QUICHE_DCHECK(proof_source_->GetTicketCrypter()); if (ignore_ticket_open_) { QUIC_CODE_COUNT(quic_tls_server_handshaker_tickets_ignored_1); return ssl_ticket_aead_ignore_ticket; } if (!ticket_decryption_callback_) { ticket_decryption_callback_ = std::make_shared<DecryptCallback>(this); proof_source_->GetTicketCrypter()->Decrypt(in, ticket_decryption_callback_); if (ticket_decryption_callback_) { QUICHE_DCHECK(!ticket_decryption_callback_->IsDone()); set_expected_ssl_error(SSL_ERROR_PENDING_TICKET); if (async_op_timer_.has_value()) { QUIC_CODE_COUNT( quic_tls_server_decrypting_ticket_while_another_op_pending); } async_op_timer_ = QuicTimeAccumulator(); async_op_timer_->Start(now()); } } if (ticket_decryption_callback_ && !ticket_decryption_callback_->IsDone()) { return ssl_ticket_aead_retry; } ssl_ticket_aead_result_t result = FinalizeSessionTicketOpen(out, out_len, max_out_len); QuicConnectionStats::TlsServerOperationStats decrypt_ticket_stats; decrypt_ticket_stats.success = (result == ssl_ticket_aead_success); if (async_op_timer_.has_value()) { async_op_timer_->Stop(now()); decrypt_ticket_stats.async_latency = async_op_timer_->GetTotalElapsedTime(); async_op_timer_.reset(); RECORD_LATENCY_IN_US("tls_server_async_decrypt_ticket_latency_us", decrypt_ticket_stats.async_latency, "Async decrypt ticket latency in microseconds"); } connection_stats().tls_server_decrypt_ticket_stats = std::move(decrypt_ticket_stats); return result; } ssl_ticket_aead_result_t TlsServerHandshaker::FinalizeSessionTicketOpen( uint8_t* out, size_t* out_len, size_t max_out_len) { ticket_decryption_callback_ = nullptr; set_expected_ssl_error(SSL_ERROR_WANT_READ); if (decrypted_session_ticket_.empty()) { QUIC_DLOG(ERROR) << "Session ticket decryption failed; ignoring ticket"; QUIC_CODE_COUNT(quic_tls_server_handshaker_tickets_ignored_2); return ssl_ticket_aead_ignore_ticket; } if (max_out_len < decrypted_session_ticket_.size()) { return ssl_ticket_aead_error; } memcpy(out, decrypted_session_ticket_.data(), decrypted_session_ticket_.size()); *out_len = decrypted_session_ticket_.size(); QUIC_CODE_COUNT(quic_tls_server_handshaker_tickets_opened); return ssl_ticket_aead_success; } ssl_select_cert_result_t TlsServerHandshaker::EarlySelectCertCallback( const SSL_CLIENT_HELLO* client_hello) { if (select_cert_status_.has_value()) { QUIC_DVLOG(1) << "EarlySelectCertCallback called to continue handshake, " "returning directly. success:" << (*select_cert_status_ == QUIC_SUCCESS); return (*select_cert_status_ == QUIC_SUCCESS) ? ssl_select_cert_success : ssl_select_cert_error; } select_cert_status_ = QUIC_PENDING; proof_source_handle_ = MaybeCreateProofSourceHandle(); if (!pre_shared_key_.empty()) { QUIC_BUG(quic_bug_10341_6) << "QUIC server pre-shared keys not yet supported with TLS"; set_extra_error_details("select_cert_error: pre-shared keys not supported"); return ssl_select_cert_error; } { const uint8_t* unused_extension_bytes; size_t unused_extension_len; ticket_received_ = SSL_early_callback_ctx_extension_get( client_hello, TLSEXT_TYPE_pre_shared_key, &unused_extension_bytes, &unused_extension_len); early_data_attempted_ = SSL_early_callback_ctx_extension_get( client_hello, TLSEXT_TYPE_early_data, &unused_extension_bytes, &unused_extension_len); int use_alps_new_codepoint = 0; #if BORINGSSL_API_VERSION >= 27 if (GetQuicReloadableFlag(quic_gfe_allow_alps_new_codepoint)) { QUIC_RELOADABLE_FLAG_COUNT(quic_gfe_allow_alps_new_codepoint); alps_new_codepoint_received_ = SSL_early_callback_ctx_extension_get( client_hello, TLSEXT_TYPE_application_settings, &unused_extension_bytes, &unused_extension_len); if (alps_new_codepoint_received_) { QUIC_CODE_COUNT(quic_gfe_alps_use_new_codepoint); use_alps_new_codepoint = 1; } QUIC_DLOG(INFO) << "ALPS use new codepoint: " << use_alps_new_codepoint; SSL_set_alps_use_new_codepoint(ssl(), use_alps_new_codepoint); } #endif if (use_alps_new_codepoint == 0) { QUIC_CODE_COUNT(quic_gfe_alps_use_old_codepoint); } } const char* hostname = SSL_get_servername(ssl(), TLSEXT_NAMETYPE_host_name); if (hostname) { crypto_negotiated_params_->sni = QuicHostnameUtils::NormalizeHostname(hostname); if (!ValidateHostname(hostname)) { if (GetQuicReloadableFlag(quic_new_error_code_for_invalid_hostname)) { QUIC_RELOADABLE_FLAG_COUNT(quic_new_error_code_for_invalid_hostname); CloseConnection(QUIC_HANDSHAKE_FAILED_INVALID_HOSTNAME, "invalid hostname"); } else { set_extra_error_details("select_cert_error: invalid hostname"); } return ssl_select_cert_error; } if (hostname != crypto_negotiated_params_->sni) { QUIC_CODE_COUNT(quic_tls_server_hostname_diff); QUIC_LOG_EVERY_N_SEC(WARNING, 300) << "Raw and normalized hostnames differ, but both are valid SNIs. " "raw hostname:" << hostname << ", normalized:" << crypto_negotiated_params_->sni; } else { QUIC_CODE_COUNT(quic_tls_server_hostname_same); } } else { QUIC_LOG(INFO) << "No hostname indicated in SNI"; } std::string error_details; if (!ProcessTransportParameters(client_hello, &error_details)) { CloseConnection(QUIC_HANDSHAKE_FAILED, error_details); return ssl_select_cert_error; } OverrideQuicConfigDefaults(session()->config()); session()->OnConfigNegotiated(); auto set_transport_params_result = SetTransportParameters(); if (!set_transport_params_result.success) { set_extra_error_details("select_cert_error: set tp failure"); return ssl_select_cert_error; } bssl::UniquePtr<uint8_t> ssl_capabilities; size_t ssl_capabilities_len = 0; absl::string_view ssl_capabilities_view; if (CryptoUtils::GetSSLCapabilities(ssl(), &ssl_capabilities, &ssl_capabilities_len)) { ssl_capabilities_view = absl::string_view(reinterpret_cast<const char*>(ssl_capabilities.get()), ssl_capabilities_len); } SetApplicationSettingsResult alps_result = SetApplicationSettings(AlpnForVersion(session()->version())); if (!alps_result.success) { set_extra_error_details("select_cert_error: set alps failure"); return ssl_select_cert_error; } if (!session()->connection()->connected()) { select_cert_status_ = QUIC_FAILURE; return ssl_select_cert_error; } can_disable_resumption_ = false; const QuicAsyncStatus status = proof_source_handle_->SelectCertificate( session()->connection()->self_address().Normalized(), session()->connection()->peer_address().Normalized(), session()->connection()->GetOriginalDestinationConnectionId(), ssl_capabilities_view, crypto_negotiated_params_->sni, absl::string_view( reinterpret_cast<const char*>(client_hello->client_hello), client_hello->client_hello_len), AlpnForVersion(session()->version()), std::move(alps_result.alps_buffer), set_transport_params_result.quic_transport_params, set_transport_params_result.early_data_context, tls_connection_.ssl_config()); QUICHE_DCHECK_EQ(status, *select_cert_status()); if (status == QUIC_PENDING) { set_expected_ssl_error(SSL_ERROR_PENDING_CERTIFICATE); if (async_op_timer_.has_value()) { QUIC_CODE_COUNT(quic_tls_server_selecting_cert_while_another_op_pending); } async_op_timer_ = QuicTimeAccumulator(); async_op_timer_->Start(now()); return ssl_select_cert_retry; } if (status == QUIC_FAILURE) { set_extra_error_details("select_cert_error: proof_source_handle failure"); return ssl_select_cert_error; } return ssl_select_cert_success; } void TlsServerHandshaker::OnSelectCertificateDone( bool ok, bool is_sync, SSLConfig ssl_config, absl::string_view ticket_encryption_key, bool cert_matched_sni) { QUIC_DVLOG(1) << "OnSelectCertificateDone. ok:" << ok << ", is_sync:" << is_sync << ", len(ticket_encryption_key):" << ticket_encryption_key.size(); std::optional<QuicConnectionContextSwitcher> context_switcher; if (!is_sync) { context_switcher.emplace(connection_context()); } QUIC_TRACESTRING(absl::StrCat( "TLS select certificate done: ok:", ok, ", len(ticket_encryption_key):", ticket_encryption_key.size())); ticket_encryption_key_ = std::string(ticket_encryption_key); select_cert_status_ = QUIC_FAILURE; cert_matched_sni_ = cert_matched_sni; const QuicDelayedSSLConfig& delayed_ssl_config = absl::visit( [](const auto& config) { return config.delayed_ssl_config; }, ssl_config); if (delayed_ssl_config.quic_transport_parameters.has_value()) { if (TransportParametersMatch( absl::MakeSpan(*delayed_ssl_config.quic_transport_parameters))) { if (SSL_set_quic_transport_params( ssl(), delayed_ssl_config.quic_transport_parameters->data(), delayed_ssl_config.quic_transport_parameters->size()) != 1) { QUIC_DVLOG(1) << "SSL_set_quic_transport_params override failed"; } } else { QUIC_DVLOG(1) << "QUIC transport parameters mismatch with ProofSourceHandle"; } } if (delayed_ssl_config.client_cert_mode.has_value()) { tls_connection_.SetClientCertMode(*delayed_ssl_config.client_cert_mode); QUIC_DVLOG(1) << "client_cert_mode after cert selection: " << client_cert_mode(); } if (ok) { if (auto* local_config = absl::get_if<LocalSSLConfig>(&ssl_config); local_config != nullptr) { if (local_config->chain && !local_config->chain->certs.empty()) { tls_connection_.SetCertChain( local_config->chain->ToCryptoBuffers().value); select_cert_status_ = QUIC_SUCCESS; } else { QUIC_DLOG(ERROR) << "No certs provided for host '" << crypto_negotiated_params_->sni << "', server_address:" << session()->connection()->self_address() << ", client_address:" << session()->connection()->peer_address(); } } else if (auto* hints_config = absl::get_if<HintsSSLConfig>(&ssl_config); hints_config != nullptr) { if (hints_config->configure_ssl) { if (const absl::Status status = tls_connection_.ConfigureSSL( std::move(hints_config->configure_ssl)); !status.ok()) { QUIC_CODE_COUNT(quic_tls_server_set_handshake_hints_failed); QUIC_DVLOG(1) << "SSL_set_handshake_hints failed: " << status; } select_cert_status_ = QUIC_SUCCESS; } } else { QUIC_DLOG(FATAL) << "Neither branch hit"; } } QuicConnectionStats::TlsServerOperationStats select_cert_stats; select_cert_stats.success = (select_cert_status_ == QUIC_SUCCESS); if (!select_cert_stats.success) { set_extra_error_details( "select_cert_error: proof_source_handle async failure"); } QUICHE_DCHECK_NE(is_sync, async_op_timer_.has_value()); if (async_op_timer_.has_value()) { async_op_timer_->Stop(now()); select_cert_stats.async_latency = async_op_timer_->GetTotalElapsedTime(); async_op_timer_.reset(); RECORD_LATENCY_IN_US("tls_server_async_select_cert_latency_us", select_cert_stats.async_latency, "Async select cert latency in microseconds"); } connection_stats().tls_server_select_cert_stats = std::move(select_cert_stats); const int last_expected_ssl_error = expected_ssl_error(); set_expected_ssl_error(SSL_ERROR_WANT_READ); if (!is_sync) { QUICHE_DCHECK_EQ(last_expected_ssl_error, SSL_ERROR_PENDING_CERTIFICATE); AdvanceHandshakeFromCallback(); } } bool TlsServerHandshaker::WillNotCallComputeSignature() const { return SSL_can_release_private_key(ssl()); } bool TlsServerHandshaker::ValidateHostname(const std::string& hostname) const { if (!QuicHostnameUtils::IsValidSNI(hostname)) { QUIC_DLOG(ERROR) << "Invalid SNI provided: \"" << hostname << "\""; return false; } return true; } int TlsServerHandshaker::TlsExtServernameCallback(int* ) { return SSL_TLSEXT_ERR_OK; } int TlsServerHandshaker::SelectAlpn(const uint8_t** out, uint8_t* out_len, const uint8_t* in, unsigned in_len) { *out_len = 0; *out = nullptr; if (in_len == 0) { QUIC_DLOG(ERROR) << "No ALPN provided by client"; return SSL_TLSEXT_ERR_NOACK; } CBS all_alpns; CBS_init(&all_alpns, in, in_len); std::vector<absl::string_view> alpns; while (CBS_len(&all_alpns) > 0) { CBS alpn; if (!CBS_get_u8_length_prefixed(&all_alpns, &alpn)) { QUIC_DLOG(ERROR) << "Failed to parse ALPN length"; return SSL_TLSEXT_ERR_NOACK; } const size_t alpn_length = CBS_len(&alpn); if (alpn_length == 0) { QUIC_DLOG(ERROR) << "Received invalid zero-length ALPN"; return SSL_TLSEXT_ERR_NOACK; } alpns.emplace_back(reinterpret_cast<const char*>(CBS_data(&alpn)), alpn_length); } auto selected_alpn = session()->SelectAlpn(alpns); if (selected_alpn == alpns.end()) { QUIC_DLOG(ERROR) << "No known ALPN provided by client"; return SSL_TLSEXT_ERR_NOACK; } session()->OnAlpnSelected(*selected_alpn); valid_alpn_received_ = true; *out_len = selected_alpn->size(); *out = reinterpret_cast<const uint8_t*>(selected_alpn->data()); return SSL_TLSEXT_ERR_OK; } TlsServerHandshaker::SetApplicationSettingsResult TlsServerHandshaker::SetApplicationSettings(absl::string_view alpn) { TlsServerHandshaker::SetApplicationSettingsResult result; const std::string& hostname = crypto_negotiated_params_->sni; std::string accept_ch_value = GetAcceptChValueForHostname(hostname); std::string origin = absl::StrCat("https: uint16_t port = session()->self_address().port(); if (port != kDefaultPort) { QUIC_CODE_COUNT(quic_server_alps_non_default_port); absl::StrAppend(&origin, ":", port); } if (!accept_ch_value.empty()) { AcceptChFrame frame{{{std::move(origin), std::move(accept_ch_value)}}}; result.alps_buffer = HttpEncoder::SerializeAcceptChFrame(frame); } const std::string& alps = result.alps_buffer; if (SSL_add_application_settings( ssl(), reinterpret_cast<const uint8_t*>(alpn.data()), alpn.size(), reinterpret_cast<const uint8_t*>(alps.data()), alps.size()) != 1) { QUIC_DLOG(ERROR) << "Failed to enable ALPS"; result.success = false; } else { result.success = true; } return result; } SSL* TlsServerHandshaker::GetSsl() const { return ssl(); } bool TlsServerHandshaker::IsCryptoFrameExpectedForEncryptionLevel( EncryptionLevel level) const { return level != ENCRYPTION_ZERO_RTT; } EncryptionLevel TlsServerHandshaker::GetEncryptionLevelToSendCryptoDataOfSpace( PacketNumberSpace space) const { switch (space) { case INITIAL_DATA: return ENCRYPTION_INITIAL; case HANDSHAKE_DATA: return ENCRYPTION_HANDSHAKE; case APPLICATION_DATA: return ENCRYPTION_FORWARD_SECURE; default: QUICHE_DCHECK(false); return NUM_ENCRYPTION_LEVELS; } } }
#include "quiche/quic/core/tls_server_handshaker.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/certificate_util.h" #include "quiche/quic/core/crypto/client_proof_source.h" #include "quiche/quic/core/crypto/proof_source.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_crypto_client_stream.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/core/tls_client_handshaker.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/quic/test_tools/failing_proof_source.h" #include "quiche/quic/test_tools/fake_proof_source.h" #include "quiche/quic/test_tools/fake_proof_source_handle.h" #include "quiche/quic/test_tools/quic_config_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simple_session_cache.h" #include "quiche/quic/test_tools/test_certificates.h" #include "quiche/quic/test_tools/test_ticket_crypter.h" namespace quic { class QuicConnection; class QuicStream; } using testing::_; using testing::HasSubstr; using testing::NiceMock; using testing::Return; namespace quic { namespace test { namespace { const char kServerHostname[] = "test.example.com"; const uint16_t kServerPort = 443; struct TestParams { ParsedQuicVersion version; bool disable_resumption; }; std::string PrintToString(const TestParams& p) { return absl::StrCat( ParsedQuicVersionToString(p.version), "_", (p.disable_resumption ? "ResumptionDisabled" : "ResumptionEnabled")); } std::vector<TestParams> GetTestParams() { std::vector<TestParams> params; for (const auto& version : AllSupportedVersionsWithTls()) { for (bool disable_resumption : {false, true}) { params.push_back(TestParams{version, disable_resumption}); } } return params; } class TestTlsServerHandshaker : public TlsServerHandshaker { public: static constexpr TransportParameters::TransportParameterId kFailHandshakeParam{0xFFEACA}; TestTlsServerHandshaker(QuicSession* session, const QuicCryptoServerConfig* crypto_config) : TlsServerHandshaker(session, crypto_config), proof_source_(crypto_config->proof_source()) { ON_CALL(*this, MaybeCreateProofSourceHandle()) .WillByDefault(testing::Invoke( this, &TestTlsServerHandshaker::RealMaybeCreateProofSourceHandle)); ON_CALL(*this, OverrideQuicConfigDefaults(_)) .WillByDefault(testing::Invoke( this, &TestTlsServerHandshaker::RealOverrideQuicConfigDefaults)); } MOCK_METHOD(std::unique_ptr<ProofSourceHandle>, MaybeCreateProofSourceHandle, (), (override)); MOCK_METHOD(void, OverrideQuicConfigDefaults, (QuicConfig * config), (override)); void SetupProofSourceHandle( FakeProofSourceHandle::Action select_cert_action, FakeProofSourceHandle::Action compute_signature_action, QuicDelayedSSLConfig dealyed_ssl_config = QuicDelayedSSLConfig()) { EXPECT_CALL(*this, MaybeCreateProofSourceHandle()) .WillOnce( testing::Invoke([this, select_cert_action, compute_signature_action, dealyed_ssl_config]() { auto handle = std::make_unique<FakeProofSourceHandle>( proof_source_, this, select_cert_action, compute_signature_action, dealyed_ssl_config); fake_proof_source_handle_ = handle.get(); return handle; })); } FakeProofSourceHandle* fake_proof_source_handle() { return fake_proof_source_handle_; } bool received_client_cert() const { return received_client_cert_; } using TlsServerHandshaker::AdvanceHandshake; using TlsServerHandshaker::expected_ssl_error; protected: QuicAsyncStatus VerifyCertChain( const std::vector<std::string>& certs, std::string* error_details, std::unique_ptr<ProofVerifyDetails>* details, uint8_t* out_alert, std::unique_ptr<ProofVerifierCallback> callback) override { received_client_cert_ = true; return TlsServerHandshaker::VerifyCertChain(certs, error_details, details, out_alert, std::move(callback)); } bool ProcessAdditionalTransportParameters( const TransportParameters& params) override { return !params.custom_parameters.contains(kFailHandshakeParam); } private: std::unique_ptr<ProofSourceHandle> RealMaybeCreateProofSourceHandle() { return TlsServerHandshaker::MaybeCreateProofSourceHandle(); } void RealOverrideQuicConfigDefaults(QuicConfig* config) { return TlsServerHandshaker::OverrideQuicConfigDefaults(config); } FakeProofSourceHandle* fake_proof_source_handle_ = nullptr; ProofSource* proof_source_ = nullptr; bool received_client_cert_ = false; }; class TlsServerHandshakerTestSession : public TestQuicSpdyServerSession { public: using TestQuicSpdyServerSession::TestQuicSpdyServerSession; std::unique_ptr<QuicCryptoServerStreamBase> CreateQuicCryptoServerStream( const QuicCryptoServerConfig* crypto_config, QuicCompressedCertsCache* ) override { if (connection()->version().handshake_protocol == PROTOCOL_TLS1_3) { return std::make_unique<NiceMock<TestTlsServerHandshaker>>(this, crypto_config); } QUICHE_CHECK(false) << "Unsupported handshake protocol: " << connection()->version().handshake_protocol; return nullptr; } }; class TlsServerHandshakerTest : public QuicTestWithParam<TestParams> { public: TlsServerHandshakerTest() : server_compressed_certs_cache_( QuicCompressedCertsCache::kQuicCompressedCertsCacheSize), server_id_(kServerHostname, kServerPort), supported_versions_({GetParam().version}) { SetQuicFlag(quic_disable_server_tls_resumption, GetParam().disable_resumption); client_crypto_config_ = std::make_unique<QuicCryptoClientConfig>( crypto_test_utils::ProofVerifierForTesting(), std::make_unique<test::SimpleSessionCache>()); InitializeServerConfig(); InitializeServer(); InitializeFakeClient(); } ~TlsServerHandshakerTest() override { server_session_.reset(); client_session_.reset(); helpers_.clear(); alarm_factories_.clear(); } void InitializeServerConfig() { auto ticket_crypter = std::make_unique<TestTicketCrypter>(); ticket_crypter_ = ticket_crypter.get(); auto proof_source = std::make_unique<FakeProofSource>(); proof_source_ = proof_source.get(); proof_source_->SetTicketCrypter(std::move(ticket_crypter)); server_crypto_config_ = std::make_unique<QuicCryptoServerConfig>( QuicCryptoServerConfig::TESTING, QuicRandom::GetInstance(), std::move(proof_source), KeyExchangeSource::Default()); } void InitializeServerConfigWithFailingProofSource() { server_crypto_config_ = std::make_unique<QuicCryptoServerConfig>( QuicCryptoServerConfig::TESTING, QuicRandom::GetInstance(), std::make_unique<FailingProofSource>(), KeyExchangeSource::Default()); } void CreateTlsServerHandshakerTestSession(MockQuicConnectionHelper* helper, MockAlarmFactory* alarm_factory) { server_connection_ = new PacketSavingConnection( helper, alarm_factory, Perspective::IS_SERVER, ParsedVersionOfIndex(supported_versions_, 0)); TlsServerHandshakerTestSession* server_session = new TlsServerHandshakerTestSession( server_connection_, DefaultQuicConfig(), supported_versions_, server_crypto_config_.get(), &server_compressed_certs_cache_); server_session->set_client_cert_mode(initial_client_cert_mode_); server_session->Initialize(); server_connection_->AdvanceTime(QuicTime::Delta::FromSeconds(100000)); QUICHE_CHECK(server_session); server_session_.reset(server_session); } void InitializeServerWithFakeProofSourceHandle() { helpers_.push_back(std::make_unique<NiceMock<MockQuicConnectionHelper>>()); alarm_factories_.push_back(std::make_unique<MockAlarmFactory>()); CreateTlsServerHandshakerTestSession(helpers_.back().get(), alarm_factories_.back().get()); server_handshaker_ = static_cast<NiceMock<TestTlsServerHandshaker>*>( server_session_->GetMutableCryptoStream()); EXPECT_CALL(*server_session_->helper(), CanAcceptClientHello(_, _, _, _, _)) .Times(testing::AnyNumber()); EXPECT_CALL(*server_session_, SelectAlpn(_)) .WillRepeatedly([this](const std::vector<absl::string_view>& alpns) { return std::find( alpns.cbegin(), alpns.cend(), AlpnForVersion(server_session_->connection()->version())); }); crypto_test_utils::SetupCryptoServerConfigForTest( server_connection_->clock(), server_connection_->random_generator(), server_crypto_config_.get()); } void InitializeServer() { TestQuicSpdyServerSession* server_session = nullptr; helpers_.push_back(std::make_unique<NiceMock<MockQuicConnectionHelper>>()); alarm_factories_.push_back(std::make_unique<MockAlarmFactory>()); CreateServerSessionForTest( server_id_, QuicTime::Delta::FromSeconds(100000), supported_versions_, helpers_.back().get(), alarm_factories_.back().get(), server_crypto_config_.get(), &server_compressed_certs_cache_, &server_connection_, &server_session); QUICHE_CHECK(server_session); server_session_.reset(server_session); server_handshaker_ = nullptr; EXPECT_CALL(*server_session_->helper(), CanAcceptClientHello(_, _, _, _, _)) .Times(testing::AnyNumber()); EXPECT_CALL(*server_session_, SelectAlpn(_)) .WillRepeatedly([this](const std::vector<absl::string_view>& alpns) { return std::find( alpns.cbegin(), alpns.cend(), AlpnForVersion(server_session_->connection()->version())); }); crypto_test_utils::SetupCryptoServerConfigForTest( server_connection_->clock(), server_connection_->random_generator(), server_crypto_config_.get()); } QuicCryptoServerStreamBase* server_stream() { return server_session_->GetMutableCryptoStream(); } QuicCryptoClientStream* client_stream() { return client_session_->GetMutableCryptoStream(); } void InitializeFakeClient() { TestQuicSpdyClientSession* client_session = nullptr; helpers_.push_back(std::make_unique<NiceMock<MockQuicConnectionHelper>>()); alarm_factories_.push_back(std::make_unique<MockAlarmFactory>()); CreateClientSessionForTest( server_id_, QuicTime::Delta::FromSeconds(100000), supported_versions_, helpers_.back().get(), alarm_factories_.back().get(), client_crypto_config_.get(), &client_connection_, &client_session); const std::string default_alpn = AlpnForVersion(client_connection_->version()); ON_CALL(*client_session, GetAlpnsToOffer()) .WillByDefault(Return(std::vector<std::string>({default_alpn}))); QUICHE_CHECK(client_session); client_session_.reset(client_session); moved_messages_counts_ = {0, 0}; } void CompleteCryptoHandshake() { while (!client_stream()->one_rtt_keys_available() || !server_stream()->one_rtt_keys_available()) { auto previous_moved_messages_counts = moved_messages_counts_; AdvanceHandshakeWithFakeClient(); ASSERT_NE(previous_moved_messages_counts, moved_messages_counts_); } } void AdvanceHandshakeWithFakeClient() { QUICHE_CHECK(server_connection_); QUICHE_CHECK(client_session_ != nullptr); EXPECT_CALL(*client_session_, OnProofValid(_)).Times(testing::AnyNumber()); EXPECT_CALL(*client_session_, OnProofVerifyDetailsAvailable(_)) .Times(testing::AnyNumber()); EXPECT_CALL(*client_connection_, OnCanWrite()).Times(testing::AnyNumber()); EXPECT_CALL(*server_connection_, OnCanWrite()).Times(testing::AnyNumber()); if (moved_messages_counts_.first == 0) { client_stream()->CryptoConnect(); } moved_messages_counts_ = crypto_test_utils::AdvanceHandshake( client_connection_, client_stream(), moved_messages_counts_.first, server_connection_, server_stream(), moved_messages_counts_.second); } void ExpectHandshakeSuccessful() { EXPECT_TRUE(client_stream()->one_rtt_keys_available()); EXPECT_TRUE(client_stream()->encryption_established()); EXPECT_TRUE(server_stream()->one_rtt_keys_available()); EXPECT_TRUE(server_stream()->encryption_established()); EXPECT_EQ(HANDSHAKE_COMPLETE, client_stream()->GetHandshakeState()); EXPECT_EQ(HANDSHAKE_CONFIRMED, server_stream()->GetHandshakeState()); const auto& client_crypto_params = client_stream()->crypto_negotiated_params(); const auto& server_crypto_params = server_stream()->crypto_negotiated_params(); EXPECT_NE(0, client_crypto_params.cipher_suite); EXPECT_NE(0, client_crypto_params.key_exchange_group); EXPECT_NE(0, client_crypto_params.peer_signature_algorithm); EXPECT_EQ(client_crypto_params.cipher_suite, server_crypto_params.cipher_suite); EXPECT_EQ(client_crypto_params.key_exchange_group, server_crypto_params.key_exchange_group); EXPECT_EQ(0, server_crypto_params.peer_signature_algorithm); } FakeProofSourceHandle::SelectCertArgs last_select_cert_args() const { QUICHE_CHECK(server_handshaker_ && server_handshaker_->fake_proof_source_handle()); QUICHE_CHECK(!server_handshaker_->fake_proof_source_handle() ->all_select_cert_args() .empty()); return server_handshaker_->fake_proof_source_handle() ->all_select_cert_args() .back(); } FakeProofSourceHandle::ComputeSignatureArgs last_compute_signature_args() const { QUICHE_CHECK(server_handshaker_ && server_handshaker_->fake_proof_source_handle()); QUICHE_CHECK(!server_handshaker_->fake_proof_source_handle() ->all_compute_signature_args() .empty()); return server_handshaker_->fake_proof_source_handle() ->all_compute_signature_args() .back(); } protected: bool SetupClientCert() { auto client_proof_source = std::make_unique<DefaultClientProofSource>(); CertificatePrivateKey client_cert_key( MakeKeyPairForSelfSignedCertificate()); CertificateOptions options; options.subject = "CN=subject"; options.serial_number = 0x12345678; options.validity_start = {2020, 1, 1, 0, 0, 0}; options.validity_end = {2049, 12, 31, 0, 0, 0}; std::string der_cert = CreateSelfSignedCertificate(*client_cert_key.private_key(), options); quiche::QuicheReferenceCountedPointer<ClientProofSource::Chain> client_cert_chain(new ClientProofSource::Chain({der_cert})); if (!client_proof_source->AddCertAndKey({"*"}, client_cert_chain, std::move(client_cert_key))) { return false; } client_crypto_config_->set_proof_source(std::move(client_proof_source)); return true; } std::vector<std::unique_ptr<MockQuicConnectionHelper>> helpers_; std::vector<std::unique_ptr<MockAlarmFactory>> alarm_factories_; PacketSavingConnection* server_connection_; std::unique_ptr<TestQuicSpdyServerSession> server_session_; NiceMock<TestTlsServerHandshaker>* server_handshaker_ = nullptr; TestTicketCrypter* ticket_crypter_; FakeProofSource* proof_source_; std::unique_ptr<QuicCryptoServerConfig> server_crypto_config_; QuicCompressedCertsCache server_compressed_certs_cache_; QuicServerId server_id_; ClientCertMode initial_client_cert_mode_ = ClientCertMode::kNone; PacketSavingConnection* client_connection_; std::unique_ptr<QuicCryptoClientConfig> client_crypto_config_; std::unique_ptr<TestQuicSpdyClientSession> client_session_; crypto_test_utils::FakeClientOptions client_options_; std::pair<size_t, size_t> moved_messages_counts_ = {0, 0}; ParsedQuicVersionVector supported_versions_; }; INSTANTIATE_TEST_SUITE_P(TlsServerHandshakerTests, TlsServerHandshakerTest, ::testing::ValuesIn(GetTestParams()), ::testing::PrintToStringParamName()); TEST_P(TlsServerHandshakerTest, NotInitiallyConected) { EXPECT_FALSE(server_stream()->encryption_established()); EXPECT_FALSE(server_stream()->one_rtt_keys_available()); } TEST_P(TlsServerHandshakerTest, ConnectedAfterTlsHandshake) { CompleteCryptoHandshake(); EXPECT_EQ(PROTOCOL_TLS1_3, server_stream()->handshake_protocol()); ExpectHandshakeSuccessful(); } TEST_P(TlsServerHandshakerTest, HandshakeWithAsyncSelectCertSuccess) { InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); EXPECT_CALL(*client_connection_, CloseConnection(_, _, _)).Times(0); EXPECT_CALL(*server_connection_, CloseConnection(_, _, _)).Times(0); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); } TEST_P(TlsServerHandshakerTest, HandshakeWithAsyncSelectCertFailure) { InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::FAIL_ASYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); EXPECT_EQ(moved_messages_counts_.second, 0u); EXPECT_EQ(server_handshaker_->extra_error_details(), "select_cert_error: proof_source_handle async failure"); } TEST_P(TlsServerHandshakerTest, HandshakeWithAsyncSelectCertAndSignature) { InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action:: DELEGATE_ASYNC); EXPECT_CALL(*client_connection_, CloseConnection(_, _, _)).Times(0); EXPECT_CALL(*server_connection_, CloseConnection(_, _, _)).Times(0); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); EXPECT_EQ(server_handshaker_->expected_ssl_error(), SSL_ERROR_PENDING_CERTIFICATE); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); EXPECT_EQ(server_handshaker_->expected_ssl_error(), SSL_ERROR_WANT_PRIVATE_KEY_OPERATION); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); } TEST_P(TlsServerHandshakerTest, HandshakeWithAsyncSignature) { EXPECT_CALL(*client_connection_, CloseConnection(_, _, _)).Times(0); EXPECT_CALL(*server_connection_, CloseConnection(_, _, _)).Times(0); proof_source_->Activate(); AdvanceHandshakeWithFakeClient(); ASSERT_EQ(proof_source_->NumPendingCallbacks(), 1); proof_source_->InvokePendingCallback(0); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); } TEST_P(TlsServerHandshakerTest, CancelPendingSelectCert) { InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); EXPECT_CALL(*client_connection_, CloseConnection(_, _, _)).Times(0); EXPECT_CALL(*server_connection_, CloseConnection(_, _, _)).Times(0); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->CancelOutstandingCallbacks(); ASSERT_FALSE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); } TEST_P(TlsServerHandshakerTest, CancelPendingSignature) { EXPECT_CALL(*client_connection_, CloseConnection(_, _, _)).Times(0); EXPECT_CALL(*server_connection_, CloseConnection(_, _, _)).Times(0); proof_source_->Activate(); AdvanceHandshakeWithFakeClient(); ASSERT_EQ(proof_source_->NumPendingCallbacks(), 1); server_session_ = nullptr; proof_source_->InvokePendingCallback(0); } TEST_P(TlsServerHandshakerTest, ExtractSNI) { CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_EQ(server_stream()->crypto_negotiated_params().sni, "test.example.com"); } TEST_P(TlsServerHandshakerTest, ServerConnectionIdPassedToSelectCert) { InitializeServerWithFakeProofSourceHandle(); server_session_->set_early_data_enabled(false); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_EQ(last_select_cert_args().original_connection_id, TestConnectionId()); } TEST_P(TlsServerHandshakerTest, HostnameForCertSelectionAndComputeSignature) { server_id_ = QuicServerId("tEsT.EXAMPLE.CoM", kServerPort); InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_EQ(server_stream()->crypto_negotiated_params().sni, "test.example.com"); EXPECT_EQ(last_select_cert_args().hostname, "test.example.com"); EXPECT_EQ(last_compute_signature_args().hostname, "test.example.com"); } TEST_P(TlsServerHandshakerTest, SSLConfigForCertSelection) { InitializeServerWithFakeProofSourceHandle(); server_session_->set_early_data_enabled(false); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(last_select_cert_args().ssl_config.early_data_enabled); } TEST_P(TlsServerHandshakerTest, ConnectionClosedOnTlsError) { EXPECT_CALL(*server_connection_, CloseConnection(QUIC_HANDSHAKE_FAILED, _, _, _)); char bogus_handshake_message[] = { 1, 0, 0, 0, }; QuicConnection::ScopedPacketFlusher flusher(server_connection_); server_stream()->crypto_message_parser()->ProcessInput( absl::string_view(bogus_handshake_message, ABSL_ARRAYSIZE(bogus_handshake_message)), ENCRYPTION_INITIAL); EXPECT_FALSE(server_stream()->one_rtt_keys_available()); } TEST_P(TlsServerHandshakerTest, ClientSendingBadALPN) { const std::string kTestBadClientAlpn = "bad-client-alpn"; EXPECT_CALL(*client_session_, GetAlpnsToOffer()) .WillOnce(Return(std::vector<std::string>({kTestBadClientAlpn}))); EXPECT_CALL( *server_connection_, CloseConnection( QUIC_HANDSHAKE_FAILED, static_cast<QuicIetfTransportErrorCodes>(CRYPTO_ERROR_FIRST + 120), HasSubstr("TLS handshake failure (ENCRYPTION_INITIAL) 120: " "no application protocol"), _)); AdvanceHandshakeWithFakeClient(); EXPECT_FALSE(client_stream()->one_rtt_keys_available()); EXPECT_FALSE(client_stream()->encryption_established()); EXPECT_FALSE(server_stream()->one_rtt_keys_available()); EXPECT_FALSE(server_stream()->encryption_established()); } TEST_P(TlsServerHandshakerTest, CustomALPNNegotiation) { EXPECT_CALL(*client_connection_, CloseConnection(_, _, _)).Times(0); EXPECT_CALL(*server_connection_, CloseConnection(_, _, _)).Times(0); const std::string kTestAlpn = "A Custom ALPN Value"; const std::vector<std::string> kTestAlpns( {"foo", "bar", kTestAlpn, "something else"}); EXPECT_CALL(*client_session_, GetAlpnsToOffer()) .WillRepeatedly(Return(kTestAlpns)); EXPECT_CALL(*server_session_, SelectAlpn(_)) .WillOnce( [kTestAlpn, kTestAlpns](const std::vector<absl::string_view>& alpns) { EXPECT_THAT(alpns, testing::ElementsAreArray(kTestAlpns)); return std::find(alpns.cbegin(), alpns.cend(), kTestAlpn); }); EXPECT_CALL(*client_session_, OnAlpnSelected(absl::string_view(kTestAlpn))); EXPECT_CALL(*server_session_, OnAlpnSelected(absl::string_view(kTestAlpn))); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); } TEST_P(TlsServerHandshakerTest, RejectInvalidSNI) { SetQuicFlag(quic_client_allow_invalid_sni_for_test, true); server_id_ = QuicServerId("invalid!.example.com", kServerPort); InitializeFakeClient(); AdvanceHandshakeWithFakeClient(); EXPECT_FALSE(server_stream()->encryption_established()); EXPECT_FALSE(server_stream()->one_rtt_keys_available()); } TEST_P(TlsServerHandshakerTest, Resumption) { InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(client_stream()->IsResumption()); EXPECT_FALSE(server_stream()->IsResumption()); EXPECT_FALSE(server_stream()->ResumptionAttempted()); InitializeServer(); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_NE(client_stream()->IsResumption(), GetParam().disable_resumption); EXPECT_NE(server_stream()->IsResumption(), GetParam().disable_resumption); EXPECT_NE(server_stream()->ResumptionAttempted(), GetParam().disable_resumption); } TEST_P(TlsServerHandshakerTest, ResumptionWithAsyncDecryptCallback) { InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); ticket_crypter_->SetRunCallbacksAsync(true); InitializeServer(); InitializeFakeClient(); AdvanceHandshakeWithFakeClient(); if (GetParam().disable_resumption) { ASSERT_EQ(ticket_crypter_->NumPendingCallbacks(), 0u); return; } ASSERT_EQ(ticket_crypter_->NumPendingCallbacks(), 1u); ticket_crypter_->RunPendingCallback(0); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_TRUE(client_stream()->IsResumption()); EXPECT_TRUE(server_stream()->IsResumption()); EXPECT_TRUE(server_stream()->ResumptionAttempted()); } TEST_P(TlsServerHandshakerTest, ResumptionWithPlaceholderTicket) { InitializeFakeClient(); ticket_crypter_->set_fail_encrypt(true); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(client_stream()->IsResumption()); EXPECT_FALSE(server_stream()->IsResumption()); EXPECT_FALSE(server_stream()->ResumptionAttempted()); InitializeServer(); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(client_stream()->IsResumption()); EXPECT_FALSE(server_stream()->IsResumption()); EXPECT_NE(server_stream()->ResumptionAttempted(), GetParam().disable_resumption); } TEST_P(TlsServerHandshakerTest, AdvanceHandshakeDuringAsyncDecryptCallback) { if (GetParam().disable_resumption) { return; } InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); ticket_crypter_->SetRunCallbacksAsync(true); InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); InitializeFakeClient(); AdvanceHandshakeWithFakeClient(); ASSERT_EQ(ticket_crypter_->NumPendingCallbacks(), 1u); { QuicConnection::ScopedPacketFlusher flusher(server_connection_); server_handshaker_->AdvanceHandshake(); } server_session_ = nullptr; ticket_crypter_->RunPendingCallback(0); } TEST_P(TlsServerHandshakerTest, ResumptionWithFailingDecryptCallback) { if (GetParam().disable_resumption) { return; } InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); ticket_crypter_->set_fail_decrypt(true); InitializeServer(); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(client_stream()->IsResumption()); EXPECT_FALSE(server_stream()->IsResumption()); EXPECT_TRUE(server_stream()->ResumptionAttempted()); } TEST_P(TlsServerHandshakerTest, ResumptionWithFailingAsyncDecryptCallback) { if (GetParam().disable_resumption) { return; } InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); ticket_crypter_->set_fail_decrypt(true); ticket_crypter_->SetRunCallbacksAsync(true); InitializeServer(); InitializeFakeClient(); AdvanceHandshakeWithFakeClient(); ASSERT_EQ(ticket_crypter_->NumPendingCallbacks(), 1u); ticket_crypter_->RunPendingCallback(0); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(client_stream()->IsResumption()); EXPECT_FALSE(server_stream()->IsResumption()); EXPECT_TRUE(server_stream()->ResumptionAttempted()); } TEST_P(TlsServerHandshakerTest, HandshakeFailsWithFailingProofSource) { InitializeServerConfigWithFailingProofSource(); InitializeServer(); InitializeFakeClient(); AdvanceHandshakeWithFakeClient(); EXPECT_EQ(moved_messages_counts_.second, 0u); } TEST_P(TlsServerHandshakerTest, ZeroRttResumption) { std::vector<uint8_t> application_state = {0, 1, 2, 3}; server_stream()->SetServerApplicationStateForResumption( std::make_unique<ApplicationState>(application_state)); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(client_stream()->IsResumption()); EXPECT_FALSE(server_stream()->IsZeroRtt()); InitializeServer(); server_stream()->SetServerApplicationStateForResumption( std::make_unique<ApplicationState>(application_state)); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_NE(client_stream()->IsResumption(), GetParam().disable_resumption); EXPECT_NE(server_stream()->IsZeroRtt(), GetParam().disable_resumption); } TEST_P(TlsServerHandshakerTest, ZeroRttRejectOnApplicationStateChange) { std::vector<uint8_t> original_application_state = {1, 2}; std::vector<uint8_t> new_application_state = {3, 4}; server_stream()->SetServerApplicationStateForResumption( std::make_unique<ApplicationState>(original_application_state)); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(client_stream()->IsResumption()); EXPECT_FALSE(server_stream()->IsZeroRtt()); InitializeServer(); server_stream()->SetServerApplicationStateForResumption( std::make_unique<ApplicationState>(new_application_state)); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_NE(client_stream()->IsResumption(), GetParam().disable_resumption); EXPECT_FALSE(server_stream()->IsZeroRtt()); } TEST_P(TlsServerHandshakerTest, RequestClientCert) { ASSERT_TRUE(SetupClientCert()); InitializeFakeClient(); initial_client_cert_mode_ = ClientCertMode::kRequest; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_TRUE(server_handshaker_->received_client_cert()); } TEST_P(TlsServerHandshakerTest, SetInvalidServerTransportParamsByDelayedSslConfig) { ASSERT_TRUE(SetupClientCert()); InitializeFakeClient(); QuicDelayedSSLConfig delayed_ssl_config; delayed_ssl_config.quic_transport_parameters = {1, 2, 3}; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action::DELEGATE_SYNC, delayed_ssl_config); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(server_handshaker_->fake_proof_source_handle() ->all_compute_signature_args() .empty()); } TEST_P(TlsServerHandshakerTest, SetValidServerTransportParamsByDelayedSslConfig) { ParsedQuicVersion version = GetParam().version; TransportParameters server_params; std::string error_details; server_params.perspective = quic::Perspective::IS_SERVER; server_params.legacy_version_information = TransportParameters::LegacyVersionInformation(); server_params.legacy_version_information.value().supported_versions = quic::CreateQuicVersionLabelVector( quic::ParsedQuicVersionVector{version}); server_params.legacy_version_information.value().version = quic::CreateQuicVersionLabel(version); server_params.version_information = TransportParameters::VersionInformation(); server_params.version_information.value().chosen_version = quic::CreateQuicVersionLabel(version); server_params.version_information.value().other_versions = quic::CreateQuicVersionLabelVector( quic::ParsedQuicVersionVector{version}); ASSERT_TRUE(server_params.AreValid(&error_details)) << error_details; std::vector<uint8_t> server_params_bytes; ASSERT_TRUE( SerializeTransportParameters(server_params, &server_params_bytes)); ASSERT_TRUE(SetupClientCert()); InitializeFakeClient(); QuicDelayedSSLConfig delayed_ssl_config; delayed_ssl_config.quic_transport_parameters = server_params_bytes; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action::DELEGATE_SYNC, delayed_ssl_config); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(server_handshaker_->fake_proof_source_handle() ->all_compute_signature_args() .empty()); } TEST_P(TlsServerHandshakerTest, RequestClientCertByDelayedSslConfig) { ASSERT_TRUE(SetupClientCert()); InitializeFakeClient(); QuicDelayedSSLConfig delayed_ssl_config; delayed_ssl_config.client_cert_mode = ClientCertMode::kRequest; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action::DELEGATE_SYNC, delayed_ssl_config); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_TRUE(server_handshaker_->received_client_cert()); } TEST_P(TlsServerHandshakerTest, RequestClientCert_NoCert) { initial_client_cert_mode_ = ClientCertMode::kRequest; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_FALSE(server_handshaker_->received_client_cert()); } TEST_P(TlsServerHandshakerTest, RequestAndRequireClientCert) { ASSERT_TRUE(SetupClientCert()); InitializeFakeClient(); initial_client_cert_mode_ = ClientCertMode::kRequire; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_TRUE(server_handshaker_->received_client_cert()); } TEST_P(TlsServerHandshakerTest, RequestAndRequireClientCertByDelayedSslConfig) { ASSERT_TRUE(SetupClientCert()); InitializeFakeClient(); QuicDelayedSSLConfig delayed_ssl_config; delayed_ssl_config.client_cert_mode = ClientCertMode::kRequire; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action::DELEGATE_SYNC, delayed_ssl_config); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_TRUE(server_handshaker_->received_client_cert()); } TEST_P(TlsServerHandshakerTest, RequestAndRequireClientCert_NoCert) { initial_client_cert_mode_ = ClientCertMode::kRequire; InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); EXPECT_CALL(*server_connection_, CloseConnection(QUIC_TLS_CERTIFICATE_REQUIRED, _, _, _)); AdvanceHandshakeWithFakeClient(); AdvanceHandshakeWithFakeClient(); EXPECT_FALSE(server_handshaker_->received_client_cert()); } TEST_P(TlsServerHandshakerTest, CloseConnectionBeforeSelectCert) { InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action:: FAIL_SYNC_DO_NOT_CHECK_CLOSED, FakeProofSourceHandle::Action:: FAIL_SYNC_DO_NOT_CHECK_CLOSED); EXPECT_CALL(*server_handshaker_, OverrideQuicConfigDefaults(_)) .WillOnce(testing::Invoke([](QuicConfig* config) { QuicConfigPeer::SetReceivedMaxUnidirectionalStreams(config, 0); })); EXPECT_CALL(*server_connection_, CloseConnection(QUIC_ZERO_RTT_RESUMPTION_LIMIT_REDUCED, _, _)) .WillOnce(testing::Invoke( [this](QuicErrorCode error, const std::string& details, ConnectionCloseBehavior connection_close_behavior) { server_connection_->ReallyCloseConnection( error, details, connection_close_behavior); ASSERT_FALSE(server_connection_->connected()); })); AdvanceHandshakeWithFakeClient(); EXPECT_TRUE(server_handshaker_->fake_proof_source_handle() ->all_select_cert_args() .empty()); } TEST_P(TlsServerHandshakerTest, FailUponCustomTranportParam) { client_session_->config()->custom_transport_parameters_to_send().emplace( TestTlsServerHandshaker::kFailHandshakeParam, "Fail handshake upon seeing this."); InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); EXPECT_CALL( *server_connection_, CloseConnection(QUIC_HANDSHAKE_FAILED, "Failed to process additional transport parameters", _)); AdvanceHandshakeWithFakeClient(); } TEST_P(TlsServerHandshakerTest, SuccessWithCustomTranportParam) { client_session_->config()->custom_transport_parameters_to_send().emplace( TransportParameters::TransportParameterId{0xFFEADD}, "Continue upon seeing this."); InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_ASYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); EXPECT_CALL(*server_connection_, CloseConnection(_, _, _)).Times(0); AdvanceHandshakeWithFakeClient(); ASSERT_TRUE( server_handshaker_->fake_proof_source_handle()->HasPendingOperation()); server_handshaker_->fake_proof_source_handle()->CompletePendingOperation(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); } #if BORINGSSL_API_VERSION >= 22 TEST_P(TlsServerHandshakerTest, EnableKyber) { server_crypto_config_->set_preferred_groups( {SSL_GROUP_X25519_KYBER768_DRAFT00}); client_crypto_config_->set_preferred_groups( {SSL_GROUP_X25519_KYBER768_DRAFT00, SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_SECP384R1}); InitializeServer(); InitializeFakeClient(); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_EQ(PROTOCOL_TLS1_3, server_stream()->handshake_protocol()); EXPECT_EQ(SSL_GROUP_X25519_KYBER768_DRAFT00, SSL_get_group_id(server_stream()->GetSsl())); } #endif #if BORINGSSL_API_VERSION >= 27 TEST_P(TlsServerHandshakerTest, AlpsUseNewCodepoint) { const struct { bool client_use_alps_new_codepoint; bool server_allow_alps_new_codepoint; } tests[] = { {true, true}, {false, true}, {false, false}, {true, true}, }; for (size_t i = 0; i < ABSL_ARRAYSIZE(tests); i++) { SCOPED_TRACE(absl::StrCat("Test #", i)); const auto& test = tests[i]; client_crypto_config_->set_alps_use_new_codepoint( test.client_use_alps_new_codepoint); SetQuicReloadableFlag(quic_gfe_allow_alps_new_codepoint, test.server_allow_alps_new_codepoint); ASSERT_TRUE(SetupClientCert()); InitializeFakeClient(); InitializeServerWithFakeProofSourceHandle(); server_handshaker_->SetupProofSourceHandle( FakeProofSourceHandle::Action::DELEGATE_SYNC, FakeProofSourceHandle::Action:: DELEGATE_SYNC); AdvanceHandshakeWithFakeClient(); EXPECT_EQ(test.client_use_alps_new_codepoint, server_handshaker_->UseAlpsNewCodepoint()); CompleteCryptoHandshake(); ExpectHandshakeSuccessful(); EXPECT_EQ(PROTOCOL_TLS1_3, server_stream()->handshake_protocol()); } } #endif } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/tls_server_handshaker.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/tls_server_handshaker_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
df1d4917-d2e6-47fd-912a-265947ba8239
cpp
google/leveldb
env_posix
util/env_posix.cc
util/env_posix_test.cc
#include <dirent.h> #include <fcntl.h> #include <sys/mman.h> #ifndef __Fuchsia__ #include <sys/resource.h> #endif #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <unistd.h> #include <atomic> #include <cerrno> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <limits> #include <queue> #include <set> #include <string> #include <thread> #include <type_traits> #include <utility> #include "leveldb/env.h" #include "leveldb/slice.h" #include "leveldb/status.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/env_posix_test_helper.h" #include "util/posix_logger.h" namespace leveldb { namespace { int g_open_read_only_file_limit = -1; constexpr const int kDefaultMmapLimit = (sizeof(void*) >= 8) ? 1000 : 0; int g_mmap_limit = kDefaultMmapLimit; #if defined(HAVE_O_CLOEXEC) constexpr const int kOpenBaseFlags = O_CLOEXEC; #else constexpr const int kOpenBaseFlags = 0; #endif constexpr const size_t kWritableFileBufferSize = 65536; Status PosixError(const std::string& context, int error_number) { if (error_number == ENOENT) { return Status::NotFound(context, std::strerror(error_number)); } else { return Status::IOError(context, std::strerror(error_number)); } } class Limiter { public: Limiter(int max_acquires) : #if !defined(NDEBUG) max_acquires_(max_acquires), #endif acquires_allowed_(max_acquires) { assert(max_acquires >= 0); } Limiter(const Limiter&) = delete; Limiter operator=(const Limiter&) = delete; bool Acquire() { int old_acquires_allowed = acquires_allowed_.fetch_sub(1, std::memory_order_relaxed); if (old_acquires_allowed > 0) return true; int pre_increment_acquires_allowed = acquires_allowed_.fetch_add(1, std::memory_order_relaxed); (void)pre_increment_acquires_allowed; assert(pre_increment_acquires_allowed < max_acquires_); return false; } void Release() { int old_acquires_allowed = acquires_allowed_.fetch_add(1, std::memory_order_relaxed); (void)old_acquires_allowed; assert(old_acquires_allowed < max_acquires_); } private: #if !defined(NDEBUG) const int max_acquires_; #endif std::atomic<int> acquires_allowed_; }; class PosixSequentialFile final : public SequentialFile { public: PosixSequentialFile(std::string filename, int fd) : fd_(fd), filename_(std::move(filename)) {} ~PosixSequentialFile() override { close(fd_); } Status Read(size_t n, Slice* result, char* scratch) override { Status status; while (true) { ::ssize_t read_size = ::read(fd_, scratch, n); if (read_size < 0) { if (errno == EINTR) { continue; } status = PosixError(filename_, errno); break; } *result = Slice(scratch, read_size); break; } return status; } Status Skip(uint64_t n) override { if (::lseek(fd_, n, SEEK_CUR) == static_cast<off_t>(-1)) { return PosixError(filename_, errno); } return Status::OK(); } private: const int fd_; const std::string filename_; }; class PosixRandomAccessFile final : public RandomAccessFile { public: PosixRandomAccessFile(std::string filename, int fd, Limiter* fd_limiter) : has_permanent_fd_(fd_limiter->Acquire()), fd_(has_permanent_fd_ ? fd : -1), fd_limiter_(fd_limiter), filename_(std::move(filename)) { if (!has_permanent_fd_) { assert(fd_ == -1); ::close(fd); } } ~PosixRandomAccessFile() override { if (has_permanent_fd_) { assert(fd_ != -1); ::close(fd_); fd_limiter_->Release(); } } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { int fd = fd_; if (!has_permanent_fd_) { fd = ::open(filename_.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { return PosixError(filename_, errno); } } assert(fd != -1); Status status; ssize_t read_size = ::pread(fd, scratch, n, static_cast<off_t>(offset)); *result = Slice(scratch, (read_size < 0) ? 0 : read_size); if (read_size < 0) { status = PosixError(filename_, errno); } if (!has_permanent_fd_) { assert(fd != fd_); ::close(fd); } return status; } private: const bool has_permanent_fd_; const int fd_; Limiter* const fd_limiter_; const std::string filename_; }; class PosixMmapReadableFile final : public RandomAccessFile { public: PosixMmapReadableFile(std::string filename, char* mmap_base, size_t length, Limiter* mmap_limiter) : mmap_base_(mmap_base), length_(length), mmap_limiter_(mmap_limiter), filename_(std::move(filename)) {} ~PosixMmapReadableFile() override { ::munmap(static_cast<void*>(mmap_base_), length_); mmap_limiter_->Release(); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { if (offset + n > length_) { *result = Slice(); return PosixError(filename_, EINVAL); } *result = Slice(mmap_base_ + offset, n); return Status::OK(); } private: char* const mmap_base_; const size_t length_; Limiter* const mmap_limiter_; const std::string filename_; }; class PosixWritableFile final : public WritableFile { public: PosixWritableFile(std::string filename, int fd) : pos_(0), fd_(fd), is_manifest_(IsManifest(filename)), filename_(std::move(filename)), dirname_(Dirname(filename_)) {} ~PosixWritableFile() override { if (fd_ >= 0) { Close(); } } Status Append(const Slice& data) override { size_t write_size = data.size(); const char* write_data = data.data(); size_t copy_size = std::min(write_size, kWritableFileBufferSize - pos_); std::memcpy(buf_ + pos_, write_data, copy_size); write_data += copy_size; write_size -= copy_size; pos_ += copy_size; if (write_size == 0) { return Status::OK(); } Status status = FlushBuffer(); if (!status.ok()) { return status; } if (write_size < kWritableFileBufferSize) { std::memcpy(buf_, write_data, write_size); pos_ = write_size; return Status::OK(); } return WriteUnbuffered(write_data, write_size); } Status Close() override { Status status = FlushBuffer(); const int close_result = ::close(fd_); if (close_result < 0 && status.ok()) { status = PosixError(filename_, errno); } fd_ = -1; return status; } Status Flush() override { return FlushBuffer(); } Status Sync() override { Status status = SyncDirIfManifest(); if (!status.ok()) { return status; } status = FlushBuffer(); if (!status.ok()) { return status; } return SyncFd(fd_, filename_); } private: Status FlushBuffer() { Status status = WriteUnbuffered(buf_, pos_); pos_ = 0; return status; } Status WriteUnbuffered(const char* data, size_t size) { while (size > 0) { ssize_t write_result = ::write(fd_, data, size); if (write_result < 0) { if (errno == EINTR) { continue; } return PosixError(filename_, errno); } data += write_result; size -= write_result; } return Status::OK(); } Status SyncDirIfManifest() { Status status; if (!is_manifest_) { return status; } int fd = ::open(dirname_.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { status = PosixError(dirname_, errno); } else { status = SyncFd(fd, dirname_); ::close(fd); } return status; } static Status SyncFd(int fd, const std::string& fd_path) { #if HAVE_FULLFSYNC if (::fcntl(fd, F_FULLFSYNC) == 0) { return Status::OK(); } #endif #if HAVE_FDATASYNC bool sync_success = ::fdatasync(fd) == 0; #else bool sync_success = ::fsync(fd) == 0; #endif if (sync_success) { return Status::OK(); } return PosixError(fd_path, errno); } static std::string Dirname(const std::string& filename) { std::string::size_type separator_pos = filename.rfind('/'); if (separator_pos == std::string::npos) { return std::string("."); } assert(filename.find('/', separator_pos + 1) == std::string::npos); return filename.substr(0, separator_pos); } static Slice Basename(const std::string& filename) { std::string::size_type separator_pos = filename.rfind('/'); if (separator_pos == std::string::npos) { return Slice(filename); } assert(filename.find('/', separator_pos + 1) == std::string::npos); return Slice(filename.data() + separator_pos + 1, filename.length() - separator_pos - 1); } static bool IsManifest(const std::string& filename) { return Basename(filename).starts_with("MANIFEST"); } char buf_[kWritableFileBufferSize]; size_t pos_; int fd_; const bool is_manifest_; const std::string filename_; const std::string dirname_; }; int LockOrUnlock(int fd, bool lock) { errno = 0; struct ::flock file_lock_info; std::memset(&file_lock_info, 0, sizeof(file_lock_info)); file_lock_info.l_type = (lock ? F_WRLCK : F_UNLCK); file_lock_info.l_whence = SEEK_SET; file_lock_info.l_start = 0; file_lock_info.l_len = 0; return ::fcntl(fd, F_SETLK, &file_lock_info); } class PosixFileLock : public FileLock { public: PosixFileLock(int fd, std::string filename) : fd_(fd), filename_(std::move(filename)) {} int fd() const { return fd_; } const std::string& filename() const { return filename_; } private: const int fd_; const std::string filename_; }; class PosixLockTable { public: bool Insert(const std::string& fname) LOCKS_EXCLUDED(mu_) { mu_.Lock(); bool succeeded = locked_files_.insert(fname).second; mu_.Unlock(); return succeeded; } void Remove(const std::string& fname) LOCKS_EXCLUDED(mu_) { mu_.Lock(); locked_files_.erase(fname); mu_.Unlock(); } private: port::Mutex mu_; std::set<std::string> locked_files_ GUARDED_BY(mu_); }; class PosixEnv : public Env { public: PosixEnv(); ~PosixEnv() override { static const char msg[] = "PosixEnv singleton destroyed. Unsupported behavior!\n"; std::fwrite(msg, 1, sizeof(msg), stderr); std::abort(); } Status NewSequentialFile(const std::string& filename, SequentialFile** result) override { int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixSequentialFile(filename, fd); return Status::OK(); } Status NewRandomAccessFile(const std::string& filename, RandomAccessFile** result) override { *result = nullptr; int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { return PosixError(filename, errno); } if (!mmap_limiter_.Acquire()) { *result = new PosixRandomAccessFile(filename, fd, &fd_limiter_); return Status::OK(); } uint64_t file_size; Status status = GetFileSize(filename, &file_size); if (status.ok()) { void* mmap_base = ::mmap(nullptr, file_size, PROT_READ, MAP_SHARED, fd, 0); if (mmap_base != MAP_FAILED) { *result = new PosixMmapReadableFile(filename, reinterpret_cast<char*>(mmap_base), file_size, &mmap_limiter_); } else { status = PosixError(filename, errno); } } ::close(fd); if (!status.ok()) { mmap_limiter_.Release(); } return status; } Status NewWritableFile(const std::string& filename, WritableFile** result) override { int fd = ::open(filename.c_str(), O_TRUNC | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixWritableFile(filename, fd); return Status::OK(); } Status NewAppendableFile(const std::string& filename, WritableFile** result) override { int fd = ::open(filename.c_str(), O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixWritableFile(filename, fd); return Status::OK(); } bool FileExists(const std::string& filename) override { return ::access(filename.c_str(), F_OK) == 0; } Status GetChildren(const std::string& directory_path, std::vector<std::string>* result) override { result->clear(); ::DIR* dir = ::opendir(directory_path.c_str()); if (dir == nullptr) { return PosixError(directory_path, errno); } struct ::dirent* entry; while ((entry = ::readdir(dir)) != nullptr) { result->emplace_back(entry->d_name); } ::closedir(dir); return Status::OK(); } Status RemoveFile(const std::string& filename) override { if (::unlink(filename.c_str()) != 0) { return PosixError(filename, errno); } return Status::OK(); } Status CreateDir(const std::string& dirname) override { if (::mkdir(dirname.c_str(), 0755) != 0) { return PosixError(dirname, errno); } return Status::OK(); } Status RemoveDir(const std::string& dirname) override { if (::rmdir(dirname.c_str()) != 0) { return PosixError(dirname, errno); } return Status::OK(); } Status GetFileSize(const std::string& filename, uint64_t* size) override { struct ::stat file_stat; if (::stat(filename.c_str(), &file_stat) != 0) { *size = 0; return PosixError(filename, errno); } *size = file_stat.st_size; return Status::OK(); } Status RenameFile(const std::string& from, const std::string& to) override { if (std::rename(from.c_str(), to.c_str()) != 0) { return PosixError(from, errno); } return Status::OK(); } Status LockFile(const std::string& filename, FileLock** lock) override { *lock = nullptr; int fd = ::open(filename.c_str(), O_RDWR | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { return PosixError(filename, errno); } if (!locks_.Insert(filename)) { ::close(fd); return Status::IOError("lock " + filename, "already held by process"); } if (LockOrUnlock(fd, true) == -1) { int lock_errno = errno; ::close(fd); locks_.Remove(filename); return PosixError("lock " + filename, lock_errno); } *lock = new PosixFileLock(fd, filename); return Status::OK(); } Status UnlockFile(FileLock* lock) override { PosixFileLock* posix_file_lock = static_cast<PosixFileLock*>(lock); if (LockOrUnlock(posix_file_lock->fd(), false) == -1) { return PosixError("unlock " + posix_file_lock->filename(), errno); } locks_.Remove(posix_file_lock->filename()); ::close(posix_file_lock->fd()); delete posix_file_lock; return Status::OK(); } void Schedule(void (*background_work_function)(void* background_work_arg), void* background_work_arg) override; void StartThread(void (*thread_main)(void* thread_main_arg), void* thread_main_arg) override { std::thread new_thread(thread_main, thread_main_arg); new_thread.detach(); } Status GetTestDirectory(std::string* result) override { const char* env = std::getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; std::snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", static_cast<int>(::geteuid())); *result = buf; } CreateDir(*result); return Status::OK(); } Status NewLogger(const std::string& filename, Logger** result) override { int fd = ::open(filename.c_str(), O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } std::FILE* fp = ::fdopen(fd, "w"); if (fp == nullptr) { ::close(fd); *result = nullptr; return PosixError(filename, errno); } else { *result = new PosixLogger(fp); return Status::OK(); } } uint64_t NowMicros() override { static constexpr uint64_t kUsecondsPerSecond = 1000000; struct ::timeval tv; ::gettimeofday(&tv, nullptr); return static_cast<uint64_t>(tv.tv_sec) * kUsecondsPerSecond + tv.tv_usec; } void SleepForMicroseconds(int micros) override { std::this_thread::sleep_for(std::chrono::microseconds(micros)); } private: void BackgroundThreadMain(); static void BackgroundThreadEntryPoint(PosixEnv* env) { env->BackgroundThreadMain(); } struct BackgroundWorkItem { explicit BackgroundWorkItem(void (*function)(void* arg), void* arg) : function(function), arg(arg) {} void (*const function)(void*); void* const arg; }; port::Mutex background_work_mutex_; port::CondVar background_work_cv_ GUARDED_BY(background_work_mutex_); bool started_background_thread_ GUARDED_BY(background_work_mutex_); std::queue<BackgroundWorkItem> background_work_queue_ GUARDED_BY(background_work_mutex_); PosixLockTable locks_; Limiter mmap_limiter_; Limiter fd_limiter_; }; int MaxMmaps() { return g_mmap_limit; } int MaxOpenFiles() { if (g_open_read_only_file_limit >= 0) { return g_open_read_only_file_limit; } #ifdef __Fuchsia__ g_open_read_only_file_limit = 50; #else struct ::rlimit rlim; if (::getrlimit(RLIMIT_NOFILE, &rlim)) { g_open_read_only_file_limit = 50; } else if (rlim.rlim_cur == RLIM_INFINITY) { g_open_read_only_file_limit = std::numeric_limits<int>::max(); } else { g_open_read_only_file_limit = rlim.rlim_cur / 5; } #endif return g_open_read_only_file_limit; } } PosixEnv::PosixEnv() : background_work_cv_(&background_work_mutex_), started_background_thread_(false), mmap_limiter_(MaxMmaps()), fd_limiter_(MaxOpenFiles()) {} void PosixEnv::Schedule( void (*background_work_function)(void* background_work_arg), void* background_work_arg) { background_work_mutex_.Lock(); if (!started_background_thread_) { started_background_thread_ = true; std::thread background_thread(PosixEnv::BackgroundThreadEntryPoint, this); background_thread.detach(); } if (background_work_queue_.empty()) { background_work_cv_.Signal(); } background_work_queue_.emplace(background_work_function, background_work_arg); background_work_mutex_.Unlock(); } void PosixEnv::BackgroundThreadMain() { while (true) { background_work_mutex_.Lock(); while (background_work_queue_.empty()) { background_work_cv_.Wait(); } assert(!background_work_queue_.empty()); auto background_work_function = background_work_queue_.front().function; void* background_work_arg = background_work_queue_.front().arg; background_work_queue_.pop(); background_work_mutex_.Unlock(); background_work_function(background_work_arg); } } namespace { template <typename EnvType> class SingletonEnv { public: SingletonEnv() { #if !defined(NDEBUG) env_initialized_.store(true, std::memory_order_relaxed); #endif static_assert(sizeof(env_storage_) >= sizeof(EnvType), "env_storage_ will not fit the Env"); static_assert(alignof(decltype(env_storage_)) >= alignof(EnvType), "env_storage_ does not meet the Env's alignment needs"); new (&env_storage_) EnvType(); } ~SingletonEnv() = default; SingletonEnv(const SingletonEnv&) = delete; SingletonEnv& operator=(const SingletonEnv&) = delete; Env* env() { return reinterpret_cast<Env*>(&env_storage_); } static void AssertEnvNotInitialized() { #if !defined(NDEBUG) assert(!env_initialized_.load(std::memory_order_relaxed)); #endif } private: typename std::aligned_storage<sizeof(EnvType), alignof(EnvType)>::type env_storage_; #if !defined(NDEBUG) static std::atomic<bool> env_initialized_; #endif }; #if !defined(NDEBUG) template <typename EnvType> std::atomic<bool> SingletonEnv<EnvType>::env_initialized_; #endif using PosixDefaultEnv = SingletonEnv<PosixEnv>; } void EnvPosixTestHelper::SetReadOnlyFDLimit(int limit) { PosixDefaultEnv::AssertEnvNotInitialized(); g_open_read_only_file_limit = limit; } void EnvPosixTestHelper::SetReadOnlyMMapLimit(int limit) { PosixDefaultEnv::AssertEnvNotInitialized(); g_mmap_limit = limit; } Env* Env::Default() { static PosixDefaultEnv env_container; return env_container.env(); } }
#include <sys/resource.h> #include <sys/wait.h> #include <unistd.h> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <unordered_set> #include <vector> #include "gtest/gtest.h" #include "leveldb/env.h" #include "port/port.h" #include "util/env_posix_test_helper.h" #include "util/testutil.h" #if HAVE_O_CLOEXEC namespace { constexpr int kTextCloseOnExecHelperExecFailedCode = 61; constexpr int kTextCloseOnExecHelperDup2FailedCode = 62; constexpr int kTextCloseOnExecHelperFoundOpenFdCode = 63; std::vector<char>* GetArgvZero() { static std::vector<char> program_name; return &program_name; } static const char kTestCloseOnExecSwitch[] = "--test-close-on-exec-helper"; int TestCloseOnExecHelperMain(char* pid_arg) { int fd = std::atoi(pid_arg); if (::dup2(fd, fd) == fd) { std::fprintf(stderr, "Unexpected open fd %d\n", fd); return kTextCloseOnExecHelperFoundOpenFdCode; } if (errno != EBADF) { std::fprintf(stderr, "Unexpected errno after calling dup2 on fd %d: %s\n", fd, std::strerror(errno)); return kTextCloseOnExecHelperDup2FailedCode; } return 0; } void GetMaxFileDescriptor(int* result_fd) { ::rlimit fd_rlimit; ASSERT_EQ(0, ::getrlimit(RLIMIT_NOFILE, &fd_rlimit)); *result_fd = fd_rlimit.rlim_cur; } void GetOpenFileDescriptors(std::unordered_set<int>* open_fds) { int max_fd = 0; GetMaxFileDescriptor(&max_fd); for (int fd = 0; fd < max_fd; ++fd) { if (::dup2(fd, fd) != fd) { ASSERT_EQ(EBADF, errno) << "dup2() should set errno to EBADF on closed file descriptors"; continue; } open_fds->insert(fd); } } void GetNewlyOpenedFileDescriptor( const std::unordered_set<int>& baseline_open_fds, int* result_fd) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); for (int fd : baseline_open_fds) { ASSERT_EQ(1, open_fds.count(fd)) << "Previously opened file descriptor was closed during test setup"; open_fds.erase(fd); } ASSERT_EQ(1, open_fds.size()) << "Expected exactly one newly opened file descriptor during test setup"; *result_fd = *open_fds.begin(); } void CheckCloseOnExecDoesNotLeakFDs( const std::unordered_set<int>& baseline_open_fds) { char switch_buffer[sizeof(kTestCloseOnExecSwitch)]; std::memcpy(switch_buffer, kTestCloseOnExecSwitch, sizeof(kTestCloseOnExecSwitch)); int probed_fd; GetNewlyOpenedFileDescriptor(baseline_open_fds, &probed_fd); std::string fd_string = std::to_string(probed_fd); std::vector<char> fd_buffer(fd_string.begin(), fd_string.end()); fd_buffer.emplace_back('\0'); char* child_argv[] = {GetArgvZero()->data(), switch_buffer, fd_buffer.data(), nullptr}; constexpr int kForkInChildProcessReturnValue = 0; int child_pid = fork(); if (child_pid == kForkInChildProcessReturnValue) { ::execv(child_argv[0], child_argv); std::fprintf(stderr, "Error spawning child process: %s\n", strerror(errno)); std::exit(kTextCloseOnExecHelperExecFailedCode); } int child_status = 0; ASSERT_EQ(child_pid, ::waitpid(child_pid, &child_status, 0)); ASSERT_TRUE(WIFEXITED(child_status)) << "The helper process did not exit with an exit code"; ASSERT_EQ(0, WEXITSTATUS(child_status)) << "The helper process encountered an error"; } } #endif namespace leveldb { static const int kReadOnlyFileLimit = 4; static const int kMMapLimit = 4; class EnvPosixTest : public testing::Test { public: static void SetFileLimits(int read_only_file_limit, int mmap_limit) { EnvPosixTestHelper::SetReadOnlyFDLimit(read_only_file_limit); EnvPosixTestHelper::SetReadOnlyMMapLimit(mmap_limit); } EnvPosixTest() : env_(Env::Default()) {} Env* env_; }; TEST_F(EnvPosixTest, TestOpenOnRead) { std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string test_file = test_dir + "/open_on_read.txt"; FILE* f = std::fopen(test_file.c_str(), "we"); ASSERT_TRUE(f != nullptr); const char kFileData[] = "abcdefghijklmnopqrstuvwxyz"; fputs(kFileData, f); std::fclose(f); const int kNumFiles = kReadOnlyFileLimit + kMMapLimit + 5; leveldb::RandomAccessFile* files[kNumFiles] = {0}; for (int i = 0; i < kNumFiles; i++) { ASSERT_LEVELDB_OK(env_->NewRandomAccessFile(test_file, &files[i])); } char scratch; Slice read_result; for (int i = 0; i < kNumFiles; i++) { ASSERT_LEVELDB_OK(files[i]->Read(i, 1, &read_result, &scratch)); ASSERT_EQ(kFileData[i], read_result[0]); } for (int i = 0; i < kNumFiles; i++) { delete files[i]; } ASSERT_LEVELDB_OK(env_->RemoveFile(test_file)); } #if HAVE_O_CLOEXEC TEST_F(EnvPosixTest, TestCloseOnExecSequentialFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_sequential.txt"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::SequentialFile* file = nullptr; ASSERT_LEVELDB_OK(env_->NewSequentialFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_LEVELDB_OK(env_->RemoveFile(file_path)); } TEST_F(EnvPosixTest, TestCloseOnExecRandomAccessFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_random_access.txt"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::RandomAccessFile* mmapped_files[kMMapLimit]; for (int i = 0; i < kMMapLimit; i++) { ASSERT_LEVELDB_OK(env_->NewRandomAccessFile(file_path, &mmapped_files[i])); } leveldb::RandomAccessFile* file = nullptr; ASSERT_LEVELDB_OK(env_->NewRandomAccessFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; for (int i = 0; i < kMMapLimit; i++) { delete mmapped_files[i]; } ASSERT_LEVELDB_OK(env_->RemoveFile(file_path)); } TEST_F(EnvPosixTest, TestCloseOnExecWritableFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_writable.txt"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::WritableFile* file = nullptr; ASSERT_LEVELDB_OK(env_->NewWritableFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_LEVELDB_OK(env_->RemoveFile(file_path)); } TEST_F(EnvPosixTest, TestCloseOnExecAppendableFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_appendable.txt"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::WritableFile* file = nullptr; ASSERT_LEVELDB_OK(env_->NewAppendableFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_LEVELDB_OK(env_->RemoveFile(file_path)); } TEST_F(EnvPosixTest, TestCloseOnExecLockFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_lock.txt"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::FileLock* lock = nullptr; ASSERT_LEVELDB_OK(env_->LockFile(file_path, &lock)); CheckCloseOnExecDoesNotLeakFDs(open_fds); ASSERT_LEVELDB_OK(env_->UnlockFile(lock)); ASSERT_LEVELDB_OK(env_->RemoveFile(file_path)); } TEST_F(EnvPosixTest, TestCloseOnExecLogger) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_logger.txt"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::Logger* file = nullptr; ASSERT_LEVELDB_OK(env_->NewLogger(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_LEVELDB_OK(env_->RemoveFile(file_path)); } #endif } int main(int argc, char** argv) { #if HAVE_O_CLOEXEC for (int i = 1; i < argc; ++i) { if (!std::strcmp(argv[i], kTestCloseOnExecSwitch)) { return TestCloseOnExecHelperMain(argv[i + 1]); } } GetArgvZero()->assign(argv[0], argv[0] + std::strlen(argv[0]) + 1); #endif leveldb::EnvPosixTest::SetFileLimits(leveldb::kReadOnlyFileLimit, leveldb::kMMapLimit); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/env_posix.cc
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/env_posix_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
5306fe2a-a64a-4862-978a-1a7bd74402f1
cpp
tensorflow/tensorflow
gcs_filesystem
tensorflow/c/experimental/filesystem/plugins/gcs/gcs_filesystem.cc
tensorflow/c/experimental/filesystem/plugins/gcs/gcs_filesystem_test.cc
#include "tensorflow/c/experimental/filesystem/plugins/gcs/gcs_filesystem.h" #include <stdlib.h> #include <string.h> #include <variant> #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/types/variant.h" #include "google/cloud/storage/client.h" #include "tensorflow/c/env.h" #include "tensorflow/c/experimental/filesystem/plugins/gcs/gcs_helper.h" #include "tensorflow/c/logging.h" #include "tensorflow/c/tf_status.h" namespace gcs = google::cloud::storage; constexpr char kBlockSize[] = "GCS_READ_CACHE_BLOCK_SIZE_MB"; constexpr size_t kDefaultBlockSize = 64 * 1024 * 1024; constexpr char kMaxCacheSize[] = "GCS_READ_CACHE_MAX_SIZE_MB"; constexpr size_t kDefaultMaxCacheSize = 0; constexpr char kMaxStaleness[] = "GCS_READ_CACHE_MAX_STALENESS"; constexpr uint64_t kDefaultMaxStaleness = 0; constexpr char kStatCacheMaxAge[] = "GCS_STAT_CACHE_MAX_AGE"; constexpr uint64_t kStatCacheDefaultMaxAge = 5; constexpr char kStatCacheMaxEntries[] = "GCS_STAT_CACHE_MAX_ENTRIES"; constexpr size_t kStatCacheDefaultMaxEntries = 1024; constexpr char kAppendMode[] = "GCS_APPEND_MODE"; constexpr char kComposeAppend[] = "compose"; static inline void TF_SetStatusFromGCSStatus( const google::cloud::Status& gcs_status, TF_Status* status) { TF_SetStatus(status, static_cast<TF_Code>(gcs_status.code()), gcs_status.message().c_str()); } static void* plugin_memory_allocate(size_t size) { return calloc(1, size); } static void plugin_memory_free(void* ptr) { free(ptr); } void ParseGCSPath(const std::string& fname, bool object_empty_ok, std::string* bucket, std::string* object, TF_Status* status) { size_t scheme_end = fname.find(": if (fname.substr(0, scheme_end + 1) != "gs: TF_SetStatus(status, TF_INVALID_ARGUMENT, "GCS path doesn't start with 'gs: return; } size_t bucket_end = fname.find('/', scheme_end + 1); if (bucket_end == std::string::npos) { TF_SetStatus(status, TF_INVALID_ARGUMENT, "GCS path doesn't contain a bucket name."); return; } *bucket = fname.substr(scheme_end + 1, bucket_end - scheme_end - 1); *object = fname.substr(bucket_end + 1); if (object->empty() && !object_empty_ok) { TF_SetStatus(status, TF_INVALID_ARGUMENT, "GCS path doesn't contain an object name."); } } static void MaybeAppendSlash(std::string* name) { if (name->empty()) *name = "/"; else if (name->back() != '/') name->push_back('/'); } static int64_t LoadBufferFromGCS(const std::string& path, size_t offset, size_t buffer_size, char* buffer, tf_gcs_filesystem::GCSFile* gcs_file, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return -1; auto stream = gcs_file->gcs_client.ReadObject( bucket, object, gcs::ReadRange(offset, offset + buffer_size)); TF_SetStatusFromGCSStatus(stream.status(), status); if ((TF_GetCode(status) != TF_OK) && (TF_GetCode(status) != TF_OUT_OF_RANGE)) { return -1; } int64_t read; auto content_length = stream.headers().find("content-length"); if (content_length == stream.headers().end()) { read = 0; } else if (!absl::SimpleAtoi(content_length->second, &read)) { TF_SetStatus(status, TF_UNKNOWN, "Could not get content-length header"); return -1; } TF_SetStatus(status, TF_OK, ""); TF_VLog(1, "Successful read of %s @ %u of size: %u", path.c_str(), offset, read); stream.read(buffer, read); read = stream.gcount(); if (read < buffer_size) { tf_gcs_filesystem::GcsFileStat stat; if (gcs_file->stat_cache->Lookup(path, &stat)) { if (offset + read < stat.base.length) { TF_SetStatus(status, TF_INTERNAL, absl::StrCat("File contents are inconsistent for file: ", path, " @ ", offset) .c_str()); } TF_VLog(2, "Successful integrity check for: %s @ %u", path.c_str(), offset); } } return read; } namespace tf_random_access_file { using ReadFn = std::function<int64_t(const std::string& path, uint64_t offset, size_t n, char* buffer, TF_Status* status)>; typedef struct GCSFile { const std::string path; const bool is_cache_enable; const uint64_t buffer_size; ReadFn read_fn; absl::Mutex buffer_mutex; uint64_t buffer_start ABSL_GUARDED_BY(buffer_mutex); bool buffer_end_is_past_eof ABSL_GUARDED_BY(buffer_mutex); std::string buffer ABSL_GUARDED_BY(buffer_mutex); GCSFile(std::string path, bool is_cache_enable, uint64_t buffer_size, ReadFn read_fn) : path(path), is_cache_enable(is_cache_enable), buffer_size(buffer_size), read_fn(std::move(read_fn)), buffer_mutex(), buffer_start(0), buffer_end_is_past_eof(false), buffer() {} } GCSFile; void Cleanup(TF_RandomAccessFile* file) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); delete gcs_file; } int64_t Read(const TF_RandomAccessFile* file, uint64_t offset, size_t n, char* buffer, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); if (gcs_file->is_cache_enable || n > gcs_file->buffer_size) { return gcs_file->read_fn(gcs_file->path, offset, n, buffer, status); } else { absl::MutexLock l(&gcs_file->buffer_mutex); size_t buffer_end = gcs_file->buffer_start + gcs_file->buffer.size(); size_t copy_size = 0; if (offset < buffer_end && gcs_file->buffer_start) { copy_size = (std::min)(n, static_cast<size_t>(buffer_end - offset)); memcpy(buffer, gcs_file->buffer.data() + (offset - gcs_file->buffer_start), copy_size); } bool consumed_buffer_to_eof = offset + copy_size >= buffer_end && gcs_file->buffer_end_is_past_eof; if (copy_size < n && !consumed_buffer_to_eof) { gcs_file->buffer_start = offset + copy_size; gcs_file->buffer.resize(gcs_file->buffer_size); auto read_fill_buffer = gcs_file->read_fn( gcs_file->path, gcs_file->buffer_start, gcs_file->buffer_size, &(gcs_file->buffer[0]), status); gcs_file->buffer_end_is_past_eof = (TF_GetCode(status) == TF_OUT_OF_RANGE); if (read_fill_buffer >= 0) gcs_file->buffer.resize(read_fill_buffer); if (TF_GetCode(status) != TF_OK && TF_GetCode(status) != TF_OUT_OF_RANGE) { gcs_file->buffer.resize(0); return -1; } size_t remaining_copy = (std::min)(n - copy_size, gcs_file->buffer.size()); memcpy(buffer + copy_size, gcs_file->buffer.data(), remaining_copy); copy_size += remaining_copy; } if (copy_size < n) { gcs_file->buffer_end_is_past_eof = false; TF_SetStatus(status, TF_OUT_OF_RANGE, "Read less bytes than requested"); return copy_size; } TF_SetStatus(status, TF_OK, ""); return copy_size; } } } namespace tf_writable_file { typedef struct GCSFile { const std::string bucket; const std::string object; gcs::Client* gcs_client; TempFile outfile; bool sync_need; int64_t offset; } GCSFile; static void SyncImpl(const std::string& bucket, const std::string& object, int64_t* offset, TempFile* outfile, gcs::Client* gcs_client, TF_Status* status) { outfile->flush(); if (*offset == -1 || *offset == 0) { auto metadata = gcs_client->UploadFile(outfile->getName(), bucket, object, gcs::Fields("size")); if (!metadata) { TF_SetStatusFromGCSStatus(metadata.status(), status); return; } if (*offset == 0) { if (!outfile->truncate()) { TF_SetStatus(status, TF_INTERNAL, "Could not truncate internal temporary file."); return; } *offset = static_cast<int64_t>(metadata->size()); } outfile->clear(); outfile->seekp(0, std::ios::end); TF_SetStatus(status, TF_OK, ""); } else { std::string temporary_object = gcs::CreateRandomPrefixName("tf_writable_file_gcs"); auto metadata = gcs_client->UploadFile(outfile->getName(), bucket, temporary_object, gcs::Fields("")); if (!metadata) { TF_SetStatusFromGCSStatus(metadata.status(), status); return; } TF_VLog(3, "AppendObject: gs: temporary_object.c_str(), bucket.c_str(), object.c_str()); const std::vector<gcs::ComposeSourceObject> source_objects = { {object, {}, {}}, {temporary_object, {}, {}}}; metadata = gcs_client->ComposeObject(bucket, source_objects, object, gcs::Fields("size")); if (!metadata) { TF_SetStatusFromGCSStatus(metadata.status(), status); return; } auto delete_status = gcs_client->DeleteObject(bucket, temporary_object); if (!delete_status.ok()) { TF_SetStatusFromGCSStatus(delete_status, status); return; } if (!outfile->truncate()) { TF_SetStatus(status, TF_INTERNAL, "Could not truncate internal temporary file."); return; } *offset = static_cast<int64_t>(metadata->size()); TF_SetStatus(status, TF_OK, ""); } } void Cleanup(TF_WritableFile* file) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); delete gcs_file; } void Append(const TF_WritableFile* file, const char* buffer, size_t n, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); if (!gcs_file->outfile.is_open()) { TF_SetStatus(status, TF_FAILED_PRECONDITION, "The internal temporary file is not writable."); return; } TF_VLog(3, "Append: gs: gcs_file->object.c_str(), n); gcs_file->sync_need = true; gcs_file->outfile.write(buffer, n); if (!gcs_file->outfile) TF_SetStatus(status, TF_INTERNAL, "Could not append to the internal temporary file."); else TF_SetStatus(status, TF_OK, ""); } int64_t Tell(const TF_WritableFile* file, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); int64_t position = int64_t(gcs_file->outfile.tellp()); if (position == -1) TF_SetStatus(status, TF_INTERNAL, "tellp on the internal temporary file failed"); else TF_SetStatus(status, TF_OK, ""); return position == -1 ? -1 : position + (gcs_file->offset == -1 ? 0 : gcs_file->offset); } void Flush(const TF_WritableFile* file, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); if (gcs_file->sync_need) { TF_VLog(3, "Flush started: gs: gcs_file->object.c_str()); if (!gcs_file->outfile) { TF_SetStatus(status, TF_INTERNAL, "Could not append to the internal temporary file."); return; } SyncImpl(gcs_file->bucket, gcs_file->object, &gcs_file->offset, &gcs_file->outfile, gcs_file->gcs_client, status); TF_VLog(3, "Flush finished: gs: gcs_file->object.c_str()); if (TF_GetCode(status) != TF_OK) return; gcs_file->sync_need = false; } else { TF_SetStatus(status, TF_OK, ""); } } void Sync(const TF_WritableFile* file, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); TF_VLog(3, "Sync: gs: gcs_file->object.c_str()); Flush(file, status); } void Close(const TF_WritableFile* file, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(file->plugin_file); TF_VLog(3, "Close: gs: gcs_file->object.c_str()); if (gcs_file->sync_need) { Flush(file, status); } gcs_file->outfile.close(); } } namespace tf_read_only_memory_region { typedef struct GCSMemoryRegion { const void* const address; const uint64_t length; } GCSMemoryRegion; void Cleanup(TF_ReadOnlyMemoryRegion* region) { auto r = static_cast<GCSMemoryRegion*>(region->plugin_memory_region); plugin_memory_free(const_cast<void*>(r->address)); delete r; } const void* Data(const TF_ReadOnlyMemoryRegion* region) { auto r = static_cast<GCSMemoryRegion*>(region->plugin_memory_region); return r->address; } uint64_t Length(const TF_ReadOnlyMemoryRegion* region) { auto r = static_cast<GCSMemoryRegion*>(region->plugin_memory_region); return r->length; } } namespace tf_gcs_filesystem { GCSFile::GCSFile(google::cloud::storage::Client&& gcs_client) : gcs_client(gcs_client), block_cache_lock() { const char* append_mode = std::getenv(kAppendMode); compose = (append_mode != nullptr) && (!strcmp(kAppendMode, append_mode)); uint64_t value; block_size = kDefaultBlockSize; size_t max_bytes = kDefaultMaxCacheSize; uint64_t max_staleness = kDefaultMaxStaleness; const char* block_size_env = std::getenv(kBlockSize); if (block_size_env && absl::SimpleAtoi(block_size_env, &value)) { block_size = value * 1024 * 1024; } const char* max_bytes_env = std::getenv(kMaxCacheSize); if (max_bytes_env && absl::SimpleAtoi(max_bytes_env, &value)) { max_bytes = static_cast<size_t>(value * 1024 * 1024); } const char* max_staleness_env = std::getenv(kMaxStaleness); if (max_staleness_env && absl::SimpleAtoi(max_staleness_env, &value)) { max_staleness = value; } TF_VLog(1, "GCS cache max size = %u ; block size = %u ; max staleness = %u", max_bytes, block_size, max_staleness); file_block_cache = std::make_unique<RamFileBlockCache>( block_size, max_bytes, max_staleness, [this](const std::string& filename, size_t offset, size_t buffer_size, char* buffer, TF_Status* status) { return LoadBufferFromGCS(filename, offset, buffer_size, buffer, this, status); }); uint64_t stat_cache_max_age = kStatCacheDefaultMaxAge; size_t stat_cache_max_entries = kStatCacheDefaultMaxEntries; const char* stat_cache_max_age_env = std::getenv(kStatCacheMaxAge); if (stat_cache_max_age_env && absl::SimpleAtoi(stat_cache_max_age_env, &value)) { stat_cache_max_age = value; } const char* stat_cache_max_entries_env = std::getenv(kStatCacheMaxEntries); if (stat_cache_max_entries_env && absl::SimpleAtoi(stat_cache_max_entries_env, &value)) { stat_cache_max_entries = static_cast<size_t>(value); } stat_cache = std::make_unique<ExpiringLRUCache<GcsFileStat>>( stat_cache_max_age, stat_cache_max_entries); } GCSFile::GCSFile(google::cloud::storage::Client&& gcs_client, bool compose, uint64_t block_size, size_t max_bytes, uint64_t max_staleness, uint64_t stat_cache_max_age, size_t stat_cache_max_entries) : gcs_client(gcs_client), compose(compose), block_cache_lock(), block_size(block_size) { file_block_cache = std::make_unique<RamFileBlockCache>( block_size, max_bytes, max_staleness, [this](const std::string& filename, size_t offset, size_t buffer_size, char* buffer, TF_Status* status) { return LoadBufferFromGCS(filename, offset, buffer_size, buffer, this, status); }); stat_cache = std::make_unique<ExpiringLRUCache<GcsFileStat>>( stat_cache_max_age, stat_cache_max_entries); } void InitTest(TF_Filesystem* filesystem, bool compose, uint64_t block_size, size_t max_bytes, uint64_t max_staleness, uint64_t stat_cache_max_age, size_t stat_cache_max_entries, TF_Status* status) { google::cloud::StatusOr<gcs::Client> client = gcs::Client::CreateDefaultClient(); if (!client) { TF_SetStatusFromGCSStatus(client.status(), status); return; } filesystem->plugin_filesystem = new GCSFile(std::move(client.value()), compose, block_size, max_bytes, max_staleness, stat_cache_max_age, stat_cache_max_entries); TF_SetStatus(status, TF_OK, ""); } void Init(TF_Filesystem* filesystem, TF_Status* status) { google::cloud::StatusOr<gcs::Client> client = gcs::Client::CreateDefaultClient(); if (!client) { TF_SetStatusFromGCSStatus(client.status(), status); return; } filesystem->plugin_filesystem = new GCSFile(std::move(client.value())); TF_SetStatus(status, TF_OK, ""); } void Cleanup(TF_Filesystem* filesystem) { auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); delete gcs_file; } static void UncachedStatForObject(const std::string& bucket, const std::string& object, GcsFileStat* stat, gcs::Client* gcs_client, TF_Status* status) { auto metadata = gcs_client->GetObjectMetadata( bucket, object, gcs::Fields("generation,size,timeStorageClassUpdated")); if (!metadata) return TF_SetStatusFromGCSStatus(metadata.status(), status); stat->generation_number = metadata->generation(); stat->base.length = metadata->size(); stat->base.mtime_nsec = metadata->time_storage_class_updated().time_since_epoch().count(); stat->base.is_directory = object.back() == '/'; TF_VLog(1, "Stat of: gs: bucket.c_str(), object.c_str(), stat->base.length, stat->generation_number, stat->base.mtime_nsec); return TF_SetStatus(status, TF_OK, ""); } void NewRandomAccessFile(const TF_Filesystem* filesystem, const char* path, TF_RandomAccessFile* file, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); bool is_cache_enabled; { absl::MutexLock l(&gcs_file->block_cache_lock); is_cache_enabled = gcs_file->file_block_cache->IsCacheEnabled(); } auto read_fn = [gcs_file, is_cache_enabled, bucket, object]( const std::string& path, uint64_t offset, size_t n, char* buffer, TF_Status* status) -> int64_t { int64_t read = 0; if (is_cache_enabled) { absl::ReaderMutexLock l(&gcs_file->block_cache_lock); GcsFileStat stat; gcs_file->stat_cache->LookupOrCompute( path, &stat, [gcs_file, bucket, object](const std::string& path, GcsFileStat* stat, TF_Status* status) { UncachedStatForObject(bucket, object, stat, &gcs_file->gcs_client, status); }, status); if (TF_GetCode(status) != TF_OK) return -1; if (!gcs_file->file_block_cache->ValidateAndUpdateFileSignature( path, stat.generation_number)) { TF_VLog( 1, "File signature has been changed. Refreshing the cache. Path: %s", path.c_str()); } read = gcs_file->file_block_cache->Read(path, offset, n, buffer, status); } else { read = LoadBufferFromGCS(path, offset, n, buffer, gcs_file, status); } if (TF_GetCode(status) != TF_OK) return -1; if (read < n) TF_SetStatus(status, TF_OUT_OF_RANGE, "Read less bytes than requested"); else TF_SetStatus(status, TF_OK, ""); return read; }; file->plugin_file = new tf_random_access_file::GCSFile( std::move(path), is_cache_enabled, gcs_file->block_size, read_fn); TF_SetStatus(status, TF_OK, ""); } void NewWritableFile(const TF_Filesystem* filesystem, const char* path, TF_WritableFile* file, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); char* temp_file_name = TF_GetTempFileName(""); file->plugin_file = new tf_writable_file::GCSFile( {std::move(bucket), std::move(object), &gcs_file->gcs_client, TempFile(temp_file_name, std::ios::binary | std::ios::out), true, (gcs_file->compose ? 0 : -1)}); free(temp_file_name); TF_VLog(3, "GcsWritableFile: %s", path); TF_SetStatus(status, TF_OK, ""); } void NewAppendableFile(const TF_Filesystem* filesystem, const char* path, TF_WritableFile* file, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); char* temp_file_name_c_str = TF_GetTempFileName(""); std::string temp_file_name(temp_file_name_c_str); free(temp_file_name_c_str); if (!gcs_file->compose) { auto gcs_status = gcs_file->gcs_client.DownloadToFile(bucket, object, temp_file_name); TF_SetStatusFromGCSStatus(gcs_status, status); auto status_code = TF_GetCode(status); if (status_code != TF_OK && status_code != TF_NOT_FOUND) return; bool sync_need = (status_code == TF_NOT_FOUND); file->plugin_file = new tf_writable_file::GCSFile( {std::move(bucket), std::move(object), &gcs_file->gcs_client, TempFile(temp_file_name, std::ios::binary | std::ios::app), sync_need, -1}); } else { auto metadata = gcs_file->gcs_client.GetObjectMetadata(bucket, object, gcs::Fields("size")); TF_SetStatusFromGCSStatus(metadata.status(), status); if (TF_GetCode(status) == TF_OK) { file->plugin_file = new tf_writable_file::GCSFile( {std::move(bucket), std::move(object), &gcs_file->gcs_client, TempFile(temp_file_name, std::ios::binary | std::ios::trunc), false, static_cast<int64_t>(metadata->size())}); } else if (TF_GetCode(status) == TF_NOT_FOUND) { file->plugin_file = new tf_writable_file::GCSFile( {std::move(bucket), std::move(object), &gcs_file->gcs_client, TempFile(temp_file_name, std::ios::binary | std::ios::trunc), true, 0}); } else { return; } } TF_VLog(3, "GcsWritableFile: %s with existing file %s", path, temp_file_name.c_str()); TF_SetStatus(status, TF_OK, ""); } void NewReadOnlyMemoryRegionFromFile(const TF_Filesystem* filesystem, const char* path, TF_ReadOnlyMemoryRegion* region, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); auto metadata = gcs_file->gcs_client.GetObjectMetadata(bucket, object, gcs::Fields("size")); if (!metadata) { TF_SetStatusFromGCSStatus(metadata.status(), status); return; } TF_RandomAccessFile reader; NewRandomAccessFile(filesystem, path, &reader, status); if (TF_GetCode(status) != TF_OK) return; char* buffer = static_cast<char*>(plugin_memory_allocate(metadata->size())); int64_t read = tf_random_access_file::Read(&reader, 0, metadata->size(), buffer, status); tf_random_access_file::Cleanup(&reader); if (TF_GetCode(status) != TF_OK) return; if (read > 0 && buffer) { region->plugin_memory_region = new tf_read_only_memory_region::GCSMemoryRegion( {buffer, static_cast<uint64_t>(read)}); TF_SetStatus(status, TF_OK, ""); } else if (read == 0) { TF_SetStatus(status, TF_INVALID_ARGUMENT, "File is empty"); } } static void StatForObject(GCSFile* gcs_file, const std::string& path, const std::string& bucket, const std::string& object, GcsFileStat* stat, TF_Status* status) { if (object.empty()) return TF_SetStatus( status, TF_INVALID_ARGUMENT, absl::StrCat("'object' must be a non-empty string. (File: ", path, ")") .c_str()); TF_SetStatus(status, TF_OK, ""); gcs_file->stat_cache->LookupOrCompute( path, stat, [gcs_file, bucket, object](const std::string& path, GcsFileStat* stat, TF_Status* status) { UncachedStatForObject(bucket, object, stat, &gcs_file->gcs_client, status); }, status); } static bool ObjectExists(GCSFile* gcs_file, const std::string& path, const std::string& bucket, const std::string& object, TF_Status* status) { GcsFileStat stat; StatForObject(gcs_file, path, bucket, object, &stat, status); if (TF_GetCode(status) != TF_OK && TF_GetCode(status) != TF_NOT_FOUND) return false; if (TF_GetCode(status) == TF_NOT_FOUND) { TF_SetStatus(status, TF_OK, ""); return false; } return !stat.base.is_directory; } static bool BucketExists(GCSFile* gcs_file, const std::string& bucket, TF_Status* status) { auto metadata = gcs_file->gcs_client.GetBucketMetadata(bucket, gcs::Fields("")); TF_SetStatusFromGCSStatus(metadata.status(), status); if (TF_GetCode(status) != TF_OK && TF_GetCode(status) != TF_NOT_FOUND) return false; if (TF_GetCode(status) == TF_NOT_FOUND) { TF_SetStatus(status, TF_OK, ""); return false; } return true; } static std::vector<std::string> GetChildrenBounded( GCSFile* gcs_file, std::string dir, uint64_t max_results, bool recursive, bool include_self_directory_marker, TF_Status* status) { std::string bucket, prefix; MaybeAppendSlash(&dir); ParseGCSPath(dir, true, &bucket, &prefix, status); std::vector<std::string> result; uint64_t count = 0; std::string delimiter = recursive ? "" : "/"; for (auto&& item : gcs_file->gcs_client.ListObjectsAndPrefixes( bucket, gcs::Prefix(prefix), gcs::Delimiter(delimiter), gcs::Fields("items(name),prefixes"))) { if (count == max_results) { TF_SetStatus(status, TF_OK, ""); return result; } if (!item) { TF_SetStatusFromGCSStatus(item.status(), status); return result; } auto value = *std::move(item); std::string children = std::holds_alternative<std::string>(value) ? std::get<std::string>(value) : std::get<gcs::ObjectMetadata>(value).name(); auto pos = children.find(prefix); if (pos != 0) { TF_SetStatus(status, TF_INTERNAL, absl::StrCat("Unexpected response: the returned file name ", children, " doesn't match the prefix ", prefix) .c_str()); return result; } children.erase(0, prefix.length()); if (!children.empty() || include_self_directory_marker) { result.emplace_back(children); } ++count; } return result; } static bool FolderExists(GCSFile* gcs_file, std::string dir, TF_Status* status) { ExpiringLRUCache<GcsFileStat>::ComputeFunc compute_func = [gcs_file](const std::string& dir, GcsFileStat* stat, TF_Status* status) { auto children = GetChildrenBounded(gcs_file, dir, 1, true, true, status); if (TF_GetCode(status) != TF_OK) return; if (!children.empty()) { stat->base = {0, 0, true}; return TF_SetStatus(status, TF_OK, ""); } else { return TF_SetStatus(status, TF_INVALID_ARGUMENT, "Not a directory!"); } }; GcsFileStat stat; MaybeAppendSlash(&dir); gcs_file->stat_cache->LookupOrCompute(dir, &stat, compute_func, status); if (TF_GetCode(status) != TF_OK && TF_GetCode(status) != TF_INVALID_ARGUMENT) return false; if (TF_GetCode(status) == TF_INVALID_ARGUMENT) { TF_SetStatus(status, TF_OK, ""); return false; } return true; } static void ClearFileCaches(GCSFile* gcs_file, const std::string& path) { absl::ReaderMutexLock l(&gcs_file->block_cache_lock); gcs_file->file_block_cache->RemoveFile(path); gcs_file->stat_cache->Delete(path); } void PathExists(const TF_Filesystem* filesystem, const char* path, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, true, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); if (object.empty()) { bool result = BucketExists(gcs_file, bucket, status); if (result) return TF_SetStatus(status, TF_OK, ""); } GcsFileStat stat; StatForObject(gcs_file, path, bucket, object, &stat, status); if (TF_GetCode(status) != TF_NOT_FOUND) return; bool result = FolderExists(gcs_file, path, status); if (TF_GetCode(status) != TF_OK || (TF_GetCode(status) == TF_OK && result)) return; return TF_SetStatus( status, TF_NOT_FOUND, absl::StrCat("The path ", path, " does not exist.").c_str()); } void CreateDir(const TF_Filesystem* filesystem, const char* path, TF_Status* status) { std::string dir = path; MaybeAppendSlash(&dir); TF_VLog(3, "CreateDir: creating directory with path: %s and " "path_with_slash: %s", path, dir.c_str()); std::string bucket, object; ParseGCSPath(dir, true, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); if (object.empty()) { bool is_directory = BucketExists(gcs_file, bucket, status); if (TF_GetCode(status) != TF_OK) return; if (!is_directory) TF_SetStatus(status, TF_NOT_FOUND, absl::StrCat("The specified bucket ", dir, " was not found.") .c_str()); return; } PathExists(filesystem, dir.c_str(), status); if (TF_GetCode(status) == TF_OK) { TF_VLog(3, "CreateDir: directory already exists, not uploading %s", path); return TF_SetStatus(status, TF_ALREADY_EXISTS, path); } auto metadata = gcs_file->gcs_client.InsertObject( bucket, object, "", gcs::IfGenerationMatch(0), gcs::Fields("")); TF_SetStatusFromGCSStatus(metadata.status(), status); if (TF_GetCode(status) == TF_FAILED_PRECONDITION) TF_SetStatus(status, TF_ALREADY_EXISTS, path); } void DeleteFile(const TF_Filesystem* filesystem, const char* path, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); auto gcs_status = gcs_file->gcs_client.DeleteObject(bucket, object); TF_SetStatusFromGCSStatus(gcs_status, status); if (TF_GetCode(status) == TF_OK) ClearFileCaches(gcs_file, path); } void DeleteDir(const TF_Filesystem* filesystem, const char* path, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); auto childrens = GetChildrenBounded(gcs_file, path, 2, true, true, status); if (TF_GetCode(status) != TF_OK) return; if (childrens.size() > 1 || (childrens.size() == 1 && !childrens[0].empty())) return TF_SetStatus(status, TF_FAILED_PRECONDITION, "Cannot delete a non-empty directory."); if (childrens.size() == 1 && childrens[0].empty()) { std::string dir = path; MaybeAppendSlash(&dir); DeleteFile(filesystem, dir.c_str(), status); return; } TF_SetStatus(status, TF_OK, ""); } void CopyFile(const TF_Filesystem* filesystem, const char* src, const char* dst, TF_Status* status) { std::string bucket_src, object_src; ParseGCSPath(src, false, &bucket_src, &object_src, status); if (TF_GetCode(status) != TF_OK) return; std::string bucket_dst, object_dst; ParseGCSPath(dst, false, &bucket_dst, &object_dst, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); auto metadata = gcs_file->gcs_client.RewriteObjectBlocking( bucket_src, object_src, bucket_dst, object_dst, gcs::Fields("done,rewriteToken")); TF_SetStatusFromGCSStatus(metadata.status(), status); } bool IsDirectory(const TF_Filesystem* filesystem, const char* path, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, true, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return false; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); if (object.empty()) { bool result = BucketExists(gcs_file, bucket, status); if (TF_GetCode(status) != TF_OK) return false; if (!result) TF_SetStatus( status, TF_NOT_FOUND, absl::StrCat("The specified bucket gs: .c_str()); return result; } bool is_folder = FolderExists(gcs_file, path, status); if (TF_GetCode(status) != TF_OK) return false; if (is_folder) return true; bool is_object = ObjectExists(gcs_file, path, bucket, object, status); if (TF_GetCode(status) != TF_OK) return false; if (is_object) { TF_SetStatus( status, TF_FAILED_PRECONDITION, absl::StrCat("The specified path ", path, " is not a directory.") .c_str()); return false; } TF_SetStatus(status, TF_NOT_FOUND, absl::StrCat("The path ", path, " does not exist.").c_str()); return false; } static void RenameObject(const TF_Filesystem* filesystem, const std::string& src, const std::string& dst, TF_Status* status) { TF_VLog(3, "RenameObject: started %s to %s", src.c_str(), dst.c_str()); std::string bucket_src, object_src; ParseGCSPath(src, false, &bucket_src, &object_src, status); if (TF_GetCode(status) != TF_OK) return; std::string bucket_dst, object_dst; ParseGCSPath(dst, false, &bucket_dst, &object_dst, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); auto metadata = gcs_file->gcs_client.RewriteObjectBlocking( bucket_src, object_src, bucket_dst, object_dst, gcs::Fields("done,rewriteToken")); TF_SetStatusFromGCSStatus(metadata.status(), status); if (TF_GetCode(status) != TF_OK) return; TF_VLog(3, "RenameObject: finished %s to %s", src.c_str(), dst.c_str()); ClearFileCaches(gcs_file, dst); DeleteFile(filesystem, src.c_str(), status); } void RenameFile(const TF_Filesystem* filesystem, const char* src, const char* dst, TF_Status* status) { if (!IsDirectory(filesystem, src, status)) { if (TF_GetCode(status) == TF_FAILED_PRECONDITION) { TF_SetStatus(status, TF_OK, ""); RenameObject(filesystem, src, dst, status); } return; } auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); std::vector<std::string> childrens = GetChildrenBounded(gcs_file, src, UINT64_MAX, true, true, status); if (TF_GetCode(status) != TF_OK) return; std::string src_dir = src; std::string dst_dir = dst; MaybeAppendSlash(&src_dir); MaybeAppendSlash(&dst_dir); for (const std::string& children : childrens) { RenameObject(filesystem, src_dir + children, dst_dir + children, status); if (TF_GetCode(status) != TF_OK) return; } TF_SetStatus(status, TF_OK, ""); } void DeleteRecursively(const TF_Filesystem* filesystem, const char* path, uint64_t* undeleted_files, uint64_t* undeleted_dirs, TF_Status* status) { if (!undeleted_files || !undeleted_dirs) return TF_SetStatus( status, TF_INTERNAL, "'undeleted_files' and 'undeleted_dirs' cannot be nullptr."); *undeleted_files = 0; *undeleted_dirs = 0; if (!IsDirectory(filesystem, path, status)) { *undeleted_dirs = 1; return; } auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); std::vector<std::string> childrens = GetChildrenBounded(gcs_file, path, UINT64_MAX, true, true, status); if (TF_GetCode(status) != TF_OK) return; std::string dir = path; MaybeAppendSlash(&dir); for (const std::string& children : childrens) { const std::string& full_path = dir + children; DeleteFile(filesystem, full_path.c_str(), status); if (TF_GetCode(status) != TF_OK) { if (IsDirectory(filesystem, full_path.c_str(), status)) (*undeleted_dirs)++; else (*undeleted_files)++; } } } int GetChildren(const TF_Filesystem* filesystem, const char* path, char*** entries, TF_Status* status) { auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); std::vector<std::string> childrens = GetChildrenBounded(gcs_file, path, UINT64_MAX, false, false, status); if (TF_GetCode(status) != TF_OK) return -1; int num_entries = childrens.size(); *entries = static_cast<char**>( plugin_memory_allocate(num_entries * sizeof((*entries)[0]))); for (int i = 0; i < num_entries; i++) (*entries)[i] = strdup(childrens[i].c_str()); TF_SetStatus(status, TF_OK, ""); return num_entries; } void Stat(const TF_Filesystem* filesystem, const char* path, TF_FileStatistics* stats, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, true, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return; auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); if (object.empty()) { auto bucket_metadata = gcs_file->gcs_client.GetBucketMetadata(bucket, gcs::Fields("")); TF_SetStatusFromGCSStatus(bucket_metadata.status(), status); if (TF_GetCode(status) == TF_OK) { stats->is_directory = true; stats->length = 0; stats->mtime_nsec = 0; } return; } if (IsDirectory(filesystem, path, status)) { stats->is_directory = true; stats->length = 0; stats->mtime_nsec = 0; return TF_SetStatus(status, TF_OK, ""); } if (TF_GetCode(status) == TF_FAILED_PRECONDITION) { auto metadata = gcs_file->gcs_client.GetObjectMetadata( bucket, object, gcs::Fields("size,timeStorageClassUpdated")); if (metadata) { stats->is_directory = false; stats->length = metadata.value().size(); stats->mtime_nsec = metadata.value() .time_storage_class_updated() .time_since_epoch() .count(); } TF_SetStatusFromGCSStatus(metadata.status(), status); } } int64_t GetFileSize(const TF_Filesystem* filesystem, const char* path, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return -1; TF_FileStatistics stat; Stat(filesystem, path, &stat, status); return stat.length; } static char* TranslateName(const TF_Filesystem* filesystem, const char* uri) { return strdup(uri); } static void FlushCaches(const TF_Filesystem* filesystem) { auto gcs_file = static_cast<GCSFile*>(filesystem->plugin_filesystem); absl::ReaderMutexLock l(&gcs_file->block_cache_lock); gcs_file->file_block_cache->Flush(); gcs_file->stat_cache->Clear(); } } static void ProvideFilesystemSupportFor(TF_FilesystemPluginOps* ops, const char* uri) { TF_SetFilesystemVersionMetadata(ops); ops->scheme = strdup(uri); ops->random_access_file_ops = static_cast<TF_RandomAccessFileOps*>( plugin_memory_allocate(TF_RANDOM_ACCESS_FILE_OPS_SIZE)); ops->random_access_file_ops->cleanup = tf_random_access_file::Cleanup; ops->random_access_file_ops->read = tf_random_access_file::Read; ops->writable_file_ops = static_cast<TF_WritableFileOps*>( plugin_memory_allocate(TF_WRITABLE_FILE_OPS_SIZE)); ops->writable_file_ops->cleanup = tf_writable_file::Cleanup; ops->read_only_memory_region_ops = static_cast<TF_ReadOnlyMemoryRegionOps*>( plugin_memory_allocate(TF_READ_ONLY_MEMORY_REGION_OPS_SIZE)); ops->read_only_memory_region_ops->cleanup = tf_read_only_memory_region::Cleanup; ops->read_only_memory_region_ops->data = tf_read_only_memory_region::Data; ops->read_only_memory_region_ops->length = tf_read_only_memory_region::Length; ops->filesystem_ops = static_cast<TF_FilesystemOps*>( plugin_memory_allocate(TF_FILESYSTEM_OPS_SIZE)); ops->filesystem_ops->init = tf_gcs_filesystem::Init; ops->filesystem_ops->cleanup = tf_gcs_filesystem::Cleanup; ops->filesystem_ops->new_random_access_file = tf_gcs_filesystem::NewRandomAccessFile; ops->filesystem_ops->new_writable_file = tf_gcs_filesystem::NewWritableFile; ops->filesystem_ops->new_appendable_file = tf_gcs_filesystem::NewAppendableFile; ops->filesystem_ops->new_read_only_memory_region_from_file = tf_gcs_filesystem::NewReadOnlyMemoryRegionFromFile; ops->filesystem_ops->create_dir = tf_gcs_filesystem::CreateDir; ops->filesystem_ops->delete_file = tf_gcs_filesystem::DeleteFile; ops->filesystem_ops->delete_dir = tf_gcs_filesystem::DeleteDir; ops->filesystem_ops->delete_recursively = tf_gcs_filesystem::DeleteRecursively; ops->filesystem_ops->copy_file = tf_gcs_filesystem::CopyFile; ops->filesystem_ops->path_exists = tf_gcs_filesystem::PathExists; ops->filesystem_ops->is_directory = tf_gcs_filesystem::IsDirectory; ops->filesystem_ops->stat = tf_gcs_filesystem::Stat; ops->filesystem_ops->get_children = tf_gcs_filesystem::GetChildren; ops->filesystem_ops->translate_name = tf_gcs_filesystem::TranslateName; ops->filesystem_ops->flush_caches = tf_gcs_filesystem::FlushCaches; } void TF_InitPlugin(TF_FilesystemPluginInfo* info) { info->plugin_memory_allocate = plugin_memory_allocate; info->plugin_memory_free = plugin_memory_free; info->num_schemes = 1; info->ops = static_cast<TF_FilesystemPluginOps*>( plugin_memory_allocate(info->num_schemes * sizeof(info->ops[0]))); ProvideFilesystemSupportFor(&info->ops[0], "gs"); }
#include "tensorflow/c/experimental/filesystem/plugins/gcs/gcs_filesystem.h" #include <random> #include "absl/strings/string_view.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/stacktrace_handler.h" #include "tensorflow/core/platform/test.h" #define ASSERT_TF_OK(x) ASSERT_EQ(TF_OK, TF_GetCode(x)) << TF_Message(x) #define EXPECT_TF_OK(x) EXPECT_EQ(TF_OK, TF_GetCode(x)) << TF_Message(x) static const char* content = "abcdefghijklmnopqrstuvwxyz1234567890"; static const absl::string_view content_view = content; namespace gcs = google::cloud::storage; static std::string InitializeTmpDir() { const char* test_dir = getenv("GCS_TEST_TMPDIR"); if (test_dir != nullptr) { std::string bucket, object; TF_Status* status = TF_NewStatus(); ParseGCSPath(test_dir, true, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) { TF_DeleteStatus(status); return ""; } TF_DeleteStatus(status); std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> distribution; std::string rng_val = std::to_string(distribution(gen)); return tensorflow::io::JoinPath(std::string(test_dir), rng_val); } else { return ""; } } static std::string* GetTmpDir() { static std::string tmp_dir = InitializeTmpDir(); if (tmp_dir == "") return nullptr; else return &tmp_dir; } namespace tensorflow { namespace { class GCSFilesystemTest : public ::testing::Test { public: void SetUp() override { root_dir_ = io::JoinPath( *GetTmpDir(), ::testing::UnitTest::GetInstance()->current_test_info()->name()); status_ = TF_NewStatus(); filesystem_ = new TF_Filesystem; filesystem_->plugin_filesystem = nullptr; } void TearDown() override { TF_DeleteStatus(status_); if (filesystem_->plugin_filesystem != nullptr) tf_gcs_filesystem::Cleanup(filesystem_); delete filesystem_; } std::string GetURIForPath(absl::string_view path) { const std::string translated_name = tensorflow::io::JoinPath(root_dir_, path); return translated_name; } std::unique_ptr<TF_WritableFile, void (*)(TF_WritableFile* file)> GetWriter() { std::unique_ptr<TF_WritableFile, void (*)(TF_WritableFile * file)> writer( new TF_WritableFile, [](TF_WritableFile* file) { if (file != nullptr) { if (file->plugin_file != nullptr) tf_writable_file::Cleanup(file); delete file; } }); writer->plugin_file = nullptr; return writer; } std::unique_ptr<TF_RandomAccessFile, void (*)(TF_RandomAccessFile* file)> GetReader() { std::unique_ptr<TF_RandomAccessFile, void (*)(TF_RandomAccessFile * file)> reader(new TF_RandomAccessFile, [](TF_RandomAccessFile* file) { if (file != nullptr) { if (file->plugin_file != nullptr) tf_random_access_file::Cleanup(file); delete file; } }); reader->plugin_file = nullptr; return reader; } void WriteString(const std::string& path, const std::string& content) { auto writer = GetWriter(); tf_gcs_filesystem::NewWritableFile(filesystem_, path.c_str(), writer.get(), status_); if (TF_GetCode(status_) != TF_OK) return; tf_writable_file::Append(writer.get(), content.c_str(), content.length(), status_); if (TF_GetCode(status_) != TF_OK) return; tf_writable_file::Close(writer.get(), status_); if (TF_GetCode(status_) != TF_OK) return; } std::string ReadAll(const std::string& path) { auto reader = GetReader(); tf_gcs_filesystem::NewRandomAccessFile(filesystem_, path.c_str(), reader.get(), status_); if (TF_GetCode(status_) != TF_OK) return ""; auto file_size = tf_gcs_filesystem::GetFileSize(filesystem_, path.c_str(), status_); if (TF_GetCode(status_) != TF_OK) return ""; std::string content; content.resize(file_size); auto read = tf_random_access_file::Read(reader.get(), 0, file_size, &content[0], status_); if (TF_GetCode(status_) != TF_OK) return ""; if (read >= 0) content.resize(read); if (file_size != content.size()) TF_SetStatus( status_, TF_DATA_LOSS, std::string("expected " + std::to_string(file_size) + " got " + std::to_string(content.size()) + " bytes") .c_str()); return content; } protected: TF_Filesystem* filesystem_; TF_Status* status_; private: std::string root_dir_; }; ::testing::AssertionResult WriteToServer(const std::string& path, size_t offset, size_t length, gcs::Client* gcs_client, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return ::testing::AssertionFailure() << TF_Message(status); auto writer = gcs_client->WriteObject(bucket, object); writer.write(content + offset, length); writer.Close(); if (writer.metadata()) { return ::testing::AssertionSuccess(); } else { return ::testing::AssertionFailure() << writer.metadata().status().message(); } } ::testing::AssertionResult InsertObject(const std::string& path, const std::string& content, gcs::Client* gcs_client, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return ::testing::AssertionFailure() << TF_Message(status); auto metadata = gcs_client->InsertObject(bucket, object, content); if (metadata) return ::testing::AssertionSuccess(); else return ::testing::AssertionFailure() << metadata.status().message(); } ::testing::AssertionResult CompareSubString(int64_t offset, size_t length, absl::string_view result, size_t read) { if (length == read && content_view.substr(offset, length) == absl::string_view(result).substr(0, read)) return ::testing::AssertionSuccess(); else return ::testing::AssertionFailure() << "Result: " << absl::string_view(result).substr(0, read) << " Read: " << read; } ::testing::AssertionResult CompareWithServer(const std::string& path, size_t offset, size_t length, gcs::Client* gcs_client, TF_Status* status) { std::string bucket, object; ParseGCSPath(path, false, &bucket, &object, status); if (TF_GetCode(status) != TF_OK) return ::testing::AssertionFailure() << TF_Message(status); auto reader = gcs_client->ReadObject(bucket, object); if (!reader) { return ::testing::AssertionFailure() << reader.status().message(); } else { std::string content{std::istreambuf_iterator<char>{reader}, {}}; return CompareSubString(offset, length, content, content.length()); } } TEST_F(GCSFilesystemTest, ParseGCSPath) { std::string bucket, object; ParseGCSPath("gs: ASSERT_TF_OK(status_); ASSERT_EQ(bucket, "bucket"); ASSERT_EQ(object, "path/to/object"); ParseGCSPath("gs: ASSERT_TF_OK(status_); ASSERT_EQ(bucket, "bucket"); ParseGCSPath("bucket/path/to/object", false, &bucket, &object, status_); ASSERT_EQ(TF_GetCode(status_), TF_INVALID_ARGUMENT); ParseGCSPath("gs: ASSERT_EQ(TF_GetCode(status_), TF_INVALID_ARGUMENT); ParseGCSPath("gs: ASSERT_EQ(TF_GetCode(status_), TF_INVALID_ARGUMENT); } TEST_F(GCSFilesystemTest, RandomAccessFile) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_) << "Could not initialize filesystem. " << TF_Message(status_); std::string filepath = GetURIForPath("a_file"); TF_RandomAccessFile* file = new TF_RandomAccessFile; tf_gcs_filesystem::NewRandomAccessFile(filesystem_, filepath.c_str(), file, status_); ASSERT_TF_OK(status_); char* result = new char[content_view.length()]; int64_t read = tf_random_access_file::Read(file, 0, 1, result, status_); ASSERT_EQ(read, -1) << "Read: " << read; ASSERT_EQ(TF_GetCode(status_), TF_NOT_FOUND) << TF_Message(status_); TF_SetStatus(status_, TF_OK, ""); auto gcs_file = static_cast<tf_gcs_filesystem::GCSFile*>(filesystem_->plugin_filesystem); ASSERT_TRUE(WriteToServer(filepath, 0, content_view.length(), &gcs_file->gcs_client, status_)); read = tf_random_access_file::Read(file, 0, content_view.length(), result, status_); ASSERT_TF_OK(status_); ASSERT_TRUE(CompareSubString(0, content_view.length(), result, read)); read = tf_random_access_file::Read(file, 0, 4, result, status_); ASSERT_TF_OK(status_); ASSERT_TRUE(CompareSubString(0, 4, result, read)); read = tf_random_access_file::Read(file, content_view.length() - 2, 4, result, status_); ASSERT_EQ(TF_GetCode(status_), TF_OUT_OF_RANGE) << TF_Message(status_); ASSERT_TRUE(CompareSubString(content_view.length() - 2, 2, result, read)); delete[] result; tf_random_access_file::Cleanup(file); delete file; } TEST_F(GCSFilesystemTest, WritableFile) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_) << "Could not initialize filesystem. " << TF_Message(status_); std::string filepath = GetURIForPath("a_file"); TF_WritableFile* file = new TF_WritableFile; tf_gcs_filesystem::NewWritableFile(filesystem_, filepath.c_str(), file, status_); ASSERT_TF_OK(status_); tf_writable_file::Append(file, content, 4, status_); ASSERT_TF_OK(status_); auto length = tf_writable_file::Tell(file, status_); ASSERT_EQ(length, 4); ASSERT_TF_OK(status_); tf_writable_file::Flush(file, status_); ASSERT_TF_OK(status_); auto gcs_file = static_cast<tf_gcs_filesystem::GCSFile*>(filesystem_->plugin_filesystem); ASSERT_TRUE( CompareWithServer(filepath, 0, 4, &gcs_file->gcs_client, status_)); tf_writable_file::Append(file, content + 4, 4, status_); ASSERT_TF_OK(status_); length = tf_writable_file::Tell(file, status_); ASSERT_EQ(length, 8); ASSERT_TF_OK(status_); tf_writable_file::Flush(file, status_); ASSERT_TF_OK(status_); ASSERT_TRUE( CompareWithServer(filepath, 0, 8, &gcs_file->gcs_client, status_)); tf_writable_file::Close(file, status_); ASSERT_TF_OK(status_); tf_writable_file::Cleanup(file); gcs_file->compose = true; filepath = GetURIForPath("b_file"); tf_gcs_filesystem::NewWritableFile(filesystem_, filepath.c_str(), file, status_); ASSERT_TF_OK(status_); tf_writable_file::Append(file, content, 4, status_); ASSERT_TF_OK(status_); length = tf_writable_file::Tell(file, status_); ASSERT_EQ(length, 4); ASSERT_TF_OK(status_); tf_writable_file::Flush(file, status_); ASSERT_TF_OK(status_); ASSERT_TRUE( CompareWithServer(filepath, 0, 4, &gcs_file->gcs_client, status_)); tf_writable_file::Append(file, content + 4, 4, status_); ASSERT_TF_OK(status_); length = tf_writable_file::Tell(file, status_); ASSERT_EQ(length, 8); ASSERT_TF_OK(status_); tf_writable_file::Flush(file, status_); ASSERT_TF_OK(status_); ASSERT_TRUE( CompareWithServer(filepath, 0, 8, &gcs_file->gcs_client, status_)); tf_writable_file::Close(file, status_); ASSERT_TF_OK(status_); tf_writable_file::Cleanup(file); delete file; } TEST_F(GCSFilesystemTest, ReadOnlyMemoryRegion) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_) << "Could not initialize filesystem. " << TF_Message(status_); std::string path = GetURIForPath("a_file"); auto gcs_file = static_cast<tf_gcs_filesystem::GCSFile*>(filesystem_->plugin_filesystem); ASSERT_TRUE(WriteToServer(path, 0, 0, &gcs_file->gcs_client, status_)); TF_ReadOnlyMemoryRegion* region = new TF_ReadOnlyMemoryRegion; tf_gcs_filesystem::NewReadOnlyMemoryRegionFromFile(filesystem_, path.c_str(), region, status_); ASSERT_EQ(TF_GetCode(status_), TF_INVALID_ARGUMENT) << TF_Message(status_); TF_SetStatus(status_, TF_OK, ""); ASSERT_TRUE(WriteToServer(path, 0, content_view.length(), &gcs_file->gcs_client, status_)); tf_gcs_filesystem::NewReadOnlyMemoryRegionFromFile(filesystem_, path.c_str(), region, status_); ASSERT_TF_OK(status_); auto length = tf_read_only_memory_region::Length(region); ASSERT_EQ(length, content_view.length()); auto data = static_cast<const char*>(tf_read_only_memory_region::Data(region)); ASSERT_TRUE(CompareSubString(0, content_view.length(), data, length)); tf_read_only_memory_region::Cleanup(region); delete region; } TEST_F(GCSFilesystemTest, PathExists) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string path = GetURIForPath("PathExists"); tf_gcs_filesystem::PathExists(filesystem_, path.c_str(), status_); EXPECT_EQ(TF_NOT_FOUND, TF_GetCode(status_)) << TF_Message(status_); TF_SetStatus(status_, TF_OK, ""); WriteString(path, "test"); ASSERT_TF_OK(status_); tf_gcs_filesystem::PathExists(filesystem_, path.c_str(), status_); EXPECT_TF_OK(status_); } TEST_F(GCSFilesystemTest, GetChildren) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string base = GetURIForPath("GetChildren"); tf_gcs_filesystem::CreateDir(filesystem_, base.c_str(), status_); EXPECT_TF_OK(status_); const std::string file = io::JoinPath(base, "TestFile.csv"); WriteString(file, "test"); EXPECT_TF_OK(status_); const std::string subdir = io::JoinPath(base, "SubDir"); tf_gcs_filesystem::CreateDir(filesystem_, subdir.c_str(), status_); EXPECT_TF_OK(status_); const std::string subfile = io::JoinPath(subdir, "TestSubFile.csv"); WriteString(subfile, "test"); EXPECT_TF_OK(status_); char** entries; auto num_entries = tf_gcs_filesystem::GetChildren(filesystem_, base.c_str(), &entries, status_); EXPECT_TF_OK(status_); std::vector<std::string> childrens; for (int i = 0; i < num_entries; ++i) { childrens.push_back(entries[i]); } std::sort(childrens.begin(), childrens.end()); EXPECT_EQ(std::vector<string>({"SubDir/", "TestFile.csv"}), childrens); } TEST_F(GCSFilesystemTest, DeleteFile) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string path = GetURIForPath("DeleteFile"); WriteString(path, "test"); ASSERT_TF_OK(status_); tf_gcs_filesystem::DeleteFile(filesystem_, path.c_str(), status_); EXPECT_TF_OK(status_); tf_gcs_filesystem::PathExists(filesystem_, path.c_str(), status_); EXPECT_EQ(TF_GetCode(status_), TF_NOT_FOUND); } TEST_F(GCSFilesystemTest, CreateDir) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string dir = GetURIForPath("CreateDir"); tf_gcs_filesystem::CreateDir(filesystem_, dir.c_str(), status_); EXPECT_TF_OK(status_); TF_FileStatistics stat; tf_gcs_filesystem::Stat(filesystem_, dir.c_str(), &stat, status_); EXPECT_TF_OK(status_); EXPECT_TRUE(stat.is_directory); } TEST_F(GCSFilesystemTest, DeleteDir) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string dir = GetURIForPath("DeleteDir"); const std::string file = io::JoinPath(dir, "DeleteDirFile.csv"); WriteString(file, "test"); ASSERT_TF_OK(status_); tf_gcs_filesystem::DeleteDir(filesystem_, dir.c_str(), status_); EXPECT_EQ(TF_GetCode(status_), TF_FAILED_PRECONDITION); TF_SetStatus(status_, TF_OK, ""); tf_gcs_filesystem::DeleteFile(filesystem_, file.c_str(), status_); EXPECT_TF_OK(status_); tf_gcs_filesystem::DeleteDir(filesystem_, dir.c_str(), status_); EXPECT_TF_OK(status_); TF_FileStatistics stat; tf_gcs_filesystem::Stat(filesystem_, dir.c_str(), &stat, status_); EXPECT_EQ(TF_GetCode(status_), TF_NOT_FOUND) << TF_Message(status_); } TEST_F(GCSFilesystemTest, StatFile) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string path = GetURIForPath("StatFile"); WriteString(path, "test"); ASSERT_TF_OK(status_); TF_FileStatistics stat; tf_gcs_filesystem::Stat(filesystem_, path.c_str(), &stat, status_); EXPECT_TF_OK(status_); EXPECT_EQ(4, stat.length); EXPECT_FALSE(stat.is_directory); } TEST_F(GCSFilesystemTest, RenameFile) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string src = GetURIForPath("RenameFileSrc"); const std::string dst = GetURIForPath("RenameFileDst"); WriteString(src, "test"); ASSERT_TF_OK(status_); tf_gcs_filesystem::RenameFile(filesystem_, src.c_str(), dst.c_str(), status_); EXPECT_TF_OK(status_); auto result = ReadAll(dst); EXPECT_TF_OK(status_); EXPECT_EQ("test", result); } TEST_F(GCSFilesystemTest, RenameFileOverwrite) { tf_gcs_filesystem::Init(filesystem_, status_); ASSERT_TF_OK(status_); const std::string src = GetURIForPath("RenameFileOverwriteSrc"); const std::string dst = GetURIForPath("RenameFileOverwriteDst"); WriteString(src, "test_old"); ASSERT_TF_OK(status_); WriteString(dst, "test_new"); ASSERT_TF_OK(status_); tf_gcs_filesystem::PathExists(filesystem_, dst.c_str(), status_); EXPECT_TF_OK(status_); tf_gcs_filesystem::RenameFile(filesystem_, src.c_str(), dst.c_str(), status_); EXPECT_TF_OK(status_); auto result = ReadAll(dst); EXPECT_TF_OK(status_); EXPECT_EQ("test_old", result); } TEST_F(GCSFilesystemTest, NewRandomAccessFile_NoBlockCache) { tf_gcs_filesystem::InitTest(filesystem_, false, 0, 0, 0, 0, 0, status_); ASSERT_TF_OK(status_) << "Could not initialize filesystem. " << TF_Message(status_); std::string path = GetURIForPath("a_file"); auto gcs_file = static_cast<tf_gcs_filesystem::GCSFile*>(filesystem_->plugin_filesystem); ASSERT_TRUE(InsertObject(path, "0123456789", &gcs_file->gcs_client, status_)); TF_RandomAccessFile* file = new TF_RandomAccessFile; tf_gcs_filesystem::NewRandomAccessFile(filesystem_, path.c_str(), file, status_); ASSERT_TF_OK(status_); std::string result; result.resize(6); int64_t read = tf_random_access_file::Read(file, 0, 6, &result[0], status_); ASSERT_EQ(read, 6) << "Read: " << read << "\n"; ASSERT_TF_OK(status_); ASSERT_EQ(result, "012345") << "Result: " << result << "\n"; read = tf_random_access_file::Read(file, 6, 6, &result[0], status_); ASSERT_EQ(read, 4) << "Read: " << read << "\n"; ASSERT_EQ(TF_GetCode(status_), TF_OUT_OF_RANGE) << TF_Message(status_); result.resize(read); ASSERT_EQ(result, "6789") << "Result: " << result << "\n"; } TEST_F(GCSFilesystemTest, NewRandomAccessFile_Buffered) { tf_gcs_filesystem::InitTest(filesystem_, false, 10, 0, 0, 0, 0, status_); ASSERT_TF_OK(status_) << "Could not initialize filesystem. " << TF_Message(status_); std::string path = GetURIForPath("a_file"); auto gcs_file = static_cast<tf_gcs_filesystem::GCSFile*>(filesystem_->plugin_filesystem); ASSERT_TRUE(InsertObject(path, "0123456789", &gcs_file->gcs_client, status_)); TF_RandomAccessFile* file = new TF_RandomAccessFile; tf_gcs_filesystem::NewRandomAccessFile(filesystem_, path.c_str(), file, status_); ASSERT_TF_OK(status_); std::string result; result.resize(6); int64_t read = tf_random_access_file::Read(file, 0, 6, &result[0], status_); ASSERT_EQ(read, 6) << "Read: " << read << "\n"; ASSERT_TF_OK(status_); ASSERT_EQ(result, "012345") << "Result: " << result << "\n"; read = tf_random_access_file::Read(file, 6, 6, &result[0], status_); ASSERT_EQ(read, 4) << "Read: " << read << "\n"; ASSERT_EQ(TF_GetCode(status_), TF_OUT_OF_RANGE) << TF_Message(status_); result.resize(read); ASSERT_EQ(result, "6789") << "Result: " << result << "\n"; } TEST_F(GCSFilesystemTest, NewRandomAccessFile_Buffered_ReadAtEOF) { tf_gcs_filesystem::InitTest(filesystem_, false, 10, 0, 0, 0, 0, status_); ASSERT_TF_OK(status_) << "Could not initialize filesystem. " << TF_Message(status_); std::string path = GetURIForPath("a_file"); auto gcs_file = static_cast<tf_gcs_filesystem::GCSFile*>(filesystem_->plugin_filesystem); ASSERT_TRUE(InsertObject(path, "0123456789", &gcs_file->gcs_client, status_)); TF_RandomAccessFile* file = new TF_RandomAccessFile; tf_gcs_filesystem::NewRandomAccessFile(filesystem_, path.c_str(), file, status_); ASSERT_TF_OK(status_); std::string result; result.resize(10); int64_t read = tf_random_access_file::Read(file, 0, result.length(), &result[0], status_); ASSERT_EQ(read, 10) << "Read: " << read << "\n"; ASSERT_TF_OK(status_); ASSERT_EQ(result, "0123456789") << "Result: " << result << "\n"; read = tf_random_access_file::Read(file, result.length(), result.length(), &result[0], status_); ASSERT_EQ(read, 0) << "Read: " << read << "\n"; ASSERT_EQ(TF_GetCode(status_), TF_OUT_OF_RANGE) << TF_Message(status_); result.resize(read); ASSERT_EQ(result, "") << "Result: " << result << "\n"; } TEST_F(GCSFilesystemTest, NewRandomAccessFile_Buffered_CachedOutOfRange) { tf_gcs_filesystem::InitTest(filesystem_, false, 10, 0, 0, 0, 0, status_); ASSERT_TF_OK(status_) << "Could not initialize filesystem. " << TF_Message(status_); std::string path = GetURIForPath("a_file"); auto gcs_file = static_cast<tf_gcs_filesystem::GCSFile*>(filesystem_->plugin_filesystem); ASSERT_TRUE(InsertObject(path, "012345678", &gcs_file->gcs_client, status_)); TF_RandomAccessFile* file = new TF_RandomAccessFile; tf_gcs_filesystem::NewRandomAccessFile(filesystem_, path.c_str(), file, status_); ASSERT_TF_OK(status_); std::string result; result.resize(5); int64_t read = tf_random_access_file::Read(file, 0, result.length(), &result[0], status_); ASSERT_EQ(read, 5) << "Read: " << read << "\n"; ASSERT_TF_OK(status_); ASSERT_EQ(result, "01234") << "Result: " << result << "\n"; read = tf_random_access_file::Read(file, 4, result.length(), &result[0], status_); ASSERT_EQ(read, 5) << "Read: " << read << "\n"; ASSERT_TF_OK(status_); result.resize(read); ASSERT_EQ(result, "45678") << "Result: " << result << "\n"; read = tf_random_access_file::Read(file, 5, result.length(), &result[0], status_); ASSERT_EQ(read, 4) << "Read: " << read << "\n"; ASSERT_EQ(TF_GetCode(status_), TF_OUT_OF_RANGE) << TF_Message(status_); result.resize(read); ASSERT_EQ(result, "5678") << "Result: " << result << "\n"; } } } GTEST_API_ int main(int argc, char** argv) { tensorflow::testing::InstallStacktraceHandler(); if (!GetTmpDir()) { std::cerr << "Could not read GCS_TEST_TMPDIR env"; return -1; } ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/filesystem/plugins/gcs/gcs_filesystem.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/filesystem/plugins/gcs/gcs_filesystem_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5cab47d9-a1a6-4e16-bd6b-9e28cc39f160
cpp
tensorflow/tensorflow
list_element_shape
tensorflow/lite/kernels/variants/list_kernels/list_element_shape.cc
tensorflow/lite/kernels/variants/list_kernels/list_element_shape_test.cc
#include <cstdint> #include <cstring> #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" namespace tflite { namespace variants { namespace ops { namespace list_element_shape { namespace { using ::tflite::variants::TensorArray; constexpr int kListInput = 0; constexpr int kShapeOut = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); const TfLiteTensor* list_input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kListInput, &list_input)); TF_LITE_ENSURE(context, list_input->type == kTfLiteVariant); TfLiteTensor* shape_out; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kShapeOut, &shape_out)); TF_LITE_ENSURE_TYPES_EQ(context, shape_out->type, kTfLiteInt32); SetTensorToDynamic(shape_out); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* list_input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kListInput, &list_input)); const TensorArray* const list = reinterpret_cast<const TensorArray*>(list_input->data.data); const TfLiteIntArray& element_shape = *list->ElementShape(); TfLiteTensor* shape_out; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kShapeOut, &shape_out)); if (element_shape.size == 0) { context->ResizeTensor(context, shape_out, BuildTfLiteArray(0).release()); GetTensorData<int32_t>(shape_out)[0] = -1; } else if (element_shape.data[0] == 0) { context->ResizeTensor(context, shape_out, BuildTfLiteArray({0}).release()); } else { context->ResizeTensor(context, shape_out, BuildTfLiteArray({element_shape.size}).release()); memcpy(GetTensorData<int32_t>(shape_out), element_shape.data, element_shape.size * sizeof(int32_t)); } return kTfLiteOk; } } } TfLiteRegistration* Register_LIST_ELEMENT_SHAPE() { static TfLiteRegistration r = {nullptr, nullptr, list_element_shape::Prepare, list_element_shape::Eval}; return &r; } } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace variants { namespace ops { namespace { using ::testing::ElementsAreArray; class ListElementShapeModel : public ListOpModel { public: ListElementShapeModel() { list_input_ = AddInput({TensorType_VARIANT, {}}); shape_output_ = AddOutput({TensorType_INT32, {}}); SetCustomOp("ListElementShape", {}, Register_LIST_ELEMENT_SHAPE); BuildInterpreter({{}}); } const TfLiteTensor* GetOutputTensor(int index) { return interpreter_->tensor(index); } int list_input_; int shape_output_; }; TEST(ListElementShapeTest, MultiDimStaticShape) { ListElementShapeModel m; m.PopulateListTensor(0, {2, 2}, 10, kTfLiteInt32); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* const out = m.GetOutputTensor(m.shape_output_); ASSERT_THAT(out, DimsAre({2})); ASSERT_THAT(std::vector<int>(out->data.i32, out->data.i32 + 2), ElementsAreArray({2, 2})); } TEST(ListElementShapeTest, MultiDimWithDynamicDims) { ListElementShapeModel m; m.PopulateListTensor(0, {2, -1, 3}, 10, kTfLiteInt32); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* const out = m.GetOutputTensor(m.shape_output_); ASSERT_THAT(out, DimsAre({3})); ASSERT_THAT(std::vector<int>(out->data.i32, out->data.i32 + 3), ElementsAreArray({2, -1, 3})); } TEST(ListElementShapeTest, ScalarShape) { ListElementShapeModel m; m.PopulateListTensor(0, {0}, 10, kTfLiteInt32); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* const out = m.GetOutputTensor(m.shape_output_); ASSERT_THAT(out, DimsAre({0})); ASSERT_EQ(out->bytes, 0); } TEST(ListElementShapeTest, UnrankedShape) { ListElementShapeModel m; m.PopulateListTensor(0, {}, 10, kTfLiteInt32); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* const out = m.GetOutputTensor(m.shape_output_); ASSERT_THAT(out, DimsAre({})); ASSERT_EQ(out->bytes, sizeof(int)); ASSERT_EQ(out->data.i32[0], -1); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_element_shape.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_element_shape_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4546d4dd-31ac-484a-90ac-7d1093f72fb1
cpp
tensorflow/tensorflow
sdca_ops
tensorflow/core/ops/sdca_ops.cc
tensorflow/core/kernels/sdca_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::InferenceContext; using shape_inference::ShapeHandle; static Status ApplySdcaOptimizerShapeFn(InferenceContext* c) { std::vector<ShapeHandle> sparse_handles; if (c->input("sparse_weights", &sparse_handles).ok()) { TF_RETURN_IF_ERROR( c->set_output("out_delta_sparse_weights", sparse_handles)); } std::vector<ShapeHandle> dense_handles; if (c->input("dense_weights", &dense_handles).ok()) { TF_RETURN_IF_ERROR(c->set_output("out_delta_dense_weights", dense_handles)); } return c->set_output( "out_example_state_data", {c->Matrix(InferenceContext::kUnknownDim, c->MakeDim(4))}); } REGISTER_OP("SdcaOptimizer") .Attr( "loss_type: {'logistic_loss', 'squared_loss', 'hinge_loss'," "'smooth_hinge_loss', 'poisson_loss'}") .Attr("adaptative : bool=false") .Attr("num_sparse_features: int >= 0") .Attr("num_sparse_features_with_values: int >= 0") .Attr("num_dense_features: int >= 0") .Attr("l1: float") .Attr("l2: float") .Attr("num_loss_partitions: int >= 1") .Attr("num_inner_iterations: int >= 1") .Input("sparse_example_indices: num_sparse_features * int64") .Input("sparse_feature_indices: num_sparse_features * int64") .Input("sparse_feature_values: num_sparse_features_with_values * float") .Input("dense_features: num_dense_features * float") .Input("example_weights: float") .Input("example_labels: float") .Input("sparse_indices: num_sparse_features * int64") .Input("sparse_weights: num_sparse_features * float") .Input("dense_weights: num_dense_features * float") .Input("example_state_data: float") .Output("out_example_state_data: float") .Output("out_delta_sparse_weights: num_sparse_features * float") .Output("out_delta_dense_weights: num_dense_features * float") .SetShapeFn(ApplySdcaOptimizerShapeFn); REGISTER_OP("SdcaOptimizerV2") .Attr( "loss_type: {'logistic_loss', 'squared_loss', 'hinge_loss'," "'smooth_hinge_loss', 'poisson_loss'}") .Attr("adaptive : bool=false") .Attr("num_sparse_features: int >= 0") .Attr("num_sparse_features_with_values: int >= 0") .Attr("num_dense_features: int >= 0") .Attr("l1: float") .Attr("l2: float") .Attr("num_loss_partitions: int >= 1") .Attr("num_inner_iterations: int >= 1") .Input("sparse_example_indices: num_sparse_features * int64") .Input("sparse_feature_indices: num_sparse_features * int64") .Input("sparse_feature_values: num_sparse_features_with_values * float") .Input("dense_features: num_dense_features * float") .Input("example_weights: float") .Input("example_labels: float") .Input("sparse_indices: num_sparse_features * int64") .Input("sparse_weights: num_sparse_features * float") .Input("dense_weights: num_dense_features * float") .Input("example_state_data: float") .Output("out_example_state_data: float") .Output("out_delta_sparse_weights: num_sparse_features * float") .Output("out_delta_dense_weights: num_dense_features * float") .SetShapeFn(ApplySdcaOptimizerShapeFn); REGISTER_OP("SdcaShrinkL1") .Attr("num_features: int >= 0") .Attr("l1: float") .Attr("l2: float") .Input("weights: Ref(num_features * float)") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("SdcaFprint") .Input("input: string") .Output("output: int64") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); ShapeHandle output_shape; TF_RETURN_IF_ERROR(c->Concatenate(handle, c->Vector(2), &output_shape)); c->set_output(0, output_shape); return absl::OkStatus(); }); }
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { const SessionOptions* GetSingleThreadedOptions() { static const SessionOptions* const kSessionOptions = []() { SessionOptions* const result = new SessionOptions(); result->config.set_intra_op_parallelism_threads(1); result->config.set_inter_op_parallelism_threads(1); result->config.add_session_inter_op_thread_pool()->set_num_threads(1); return result; }(); return kSessionOptions; } const SessionOptions* GetMultiThreadedOptions() { static const SessionOptions* const kSessionOptions = []() { SessionOptions* const result = new SessionOptions(); result->config.set_intra_op_parallelism_threads(0); result->config.set_inter_op_parallelism_threads(0); result->config.add_session_inter_op_thread_pool()->set_num_threads( 0); return result; }(); return kSessionOptions; } Node* Var(Graph* const g, const int n) { return test::graph::Var(g, DT_FLOAT, TensorShape({n})); } std::vector<Node*> VarVector(Graph* const g, const int nodes, const int node_size) { std::vector<Node*> result; result.reserve(nodes); for (int i = 0; i < nodes; ++i) { result.push_back(Var(g, node_size)); } return result; } Node* Zeros(Graph* const g, const TensorShape& shape) { Tensor data(DT_FLOAT, shape); data.flat<float>().setZero(); return test::graph::Constant(g, data); } Node* Zeros(Graph* const g, const int n) { return Zeros(g, TensorShape({n})); } Node* Ones(Graph* const g, const int n) { Tensor data(DT_FLOAT, TensorShape({n})); test::FillFn<float>(&data, [](const int i) { return 1.0f; }); return test::graph::Constant(g, data); } Node* SparseIndices(Graph* const g, const int sparse_features_per_group) { Tensor data(DT_INT64, TensorShape({sparse_features_per_group})); test::FillFn<int64_t>(&data, [&](const int i) { return i; }); return test::graph::Constant(g, data); } Node* SparseExampleIndices(Graph* const g, const int sparse_features_per_group, const int num_examples) { const int x_size = num_examples * 4; Tensor data(DT_INT64, TensorShape({x_size})); test::FillFn<int64_t>(&data, [&](const int i) { return i / 4; }); return test::graph::Constant(g, data); } Node* SparseFeatureIndices(Graph* const g, const int sparse_features_per_group, const int num_examples) { const int x_size = num_examples * 4; Tensor data(DT_INT64, TensorShape({x_size})); test::FillFn<int64_t>( &data, [&](const int i) { return i % sparse_features_per_group; }); return test::graph::Constant(g, data); } Node* RandomZeroOrOne(Graph* const g, const int n) { Tensor data(DT_FLOAT, TensorShape({n})); test::FillFn<float>(&data, [](const int i) { return (random::New64() % 2) == 0 ? 0.0f : 1.0f; }); return test::graph::Constant(g, data); } Node* RandomZeroOrOneMatrix(Graph* const g, const int n, int d) { Tensor data(DT_FLOAT, TensorShape({n, d})); test::FillFn<float>(&data, [](const int i) { return (random::New64() % 2) == 0 ? 0.0f : 1.0f; }); return test::graph::Constant(g, data); } void GetGraphs(const int32_t num_examples, const int32_t num_sparse_feature_groups, const int32_t sparse_features_per_group, const int32_t num_dense_feature_groups, const int32_t dense_features_per_group, Graph** const init_g, Graph** train_g) { { Graph* g = new Graph(OpRegistry::Global()); std::vector<Node*> sparse_weight_nodes = VarVector(g, num_sparse_feature_groups, sparse_features_per_group); std::vector<Node*> dense_weight_nodes = VarVector(g, num_dense_feature_groups, dense_features_per_group); Node* const multi_zero = Zeros(g, sparse_features_per_group); for (Node* n : sparse_weight_nodes) { test::graph::Assign(g, n, multi_zero); } Node* const zero = Zeros(g, dense_features_per_group); for (Node* n : dense_weight_nodes) { test::graph::Assign(g, n, zero); } *init_g = g; } { Graph* g = new Graph(OpRegistry::Global()); std::vector<Node*> sparse_weight_nodes = VarVector(g, num_sparse_feature_groups, sparse_features_per_group); std::vector<Node*> dense_weight_nodes = VarVector(g, num_dense_feature_groups, dense_features_per_group); std::vector<NodeBuilder::NodeOut> sparse_indices; std::vector<NodeBuilder::NodeOut> sparse_weights; for (Node* n : sparse_weight_nodes) { sparse_indices.push_back( NodeBuilder::NodeOut(SparseIndices(g, sparse_features_per_group))); sparse_weights.push_back(NodeBuilder::NodeOut(n)); } std::vector<NodeBuilder::NodeOut> dense_weights; dense_weights.reserve(dense_weight_nodes.size()); for (Node* n : dense_weight_nodes) { dense_weights.push_back(NodeBuilder::NodeOut(n)); } std::vector<NodeBuilder::NodeOut> sparse_example_indices; std::vector<NodeBuilder::NodeOut> sparse_feature_indices; std::vector<NodeBuilder::NodeOut> sparse_values; sparse_example_indices.reserve(num_sparse_feature_groups); for (int i = 0; i < num_sparse_feature_groups; ++i) { sparse_example_indices.push_back(NodeBuilder::NodeOut( SparseExampleIndices(g, sparse_features_per_group, num_examples))); } sparse_feature_indices.reserve(num_sparse_feature_groups); for (int i = 0; i < num_sparse_feature_groups; ++i) { sparse_feature_indices.push_back(NodeBuilder::NodeOut( SparseFeatureIndices(g, sparse_features_per_group, num_examples))); } sparse_values.reserve(num_sparse_feature_groups); for (int i = 0; i < num_sparse_feature_groups; ++i) { sparse_values.push_back( NodeBuilder::NodeOut(RandomZeroOrOne(g, num_examples * 4))); } std::vector<NodeBuilder::NodeOut> dense_features; dense_features.reserve(num_dense_feature_groups); for (int i = 0; i < num_dense_feature_groups; ++i) { dense_features.push_back(NodeBuilder::NodeOut( RandomZeroOrOneMatrix(g, num_examples, dense_features_per_group))); } Node* const weights = Ones(g, num_examples); Node* const labels = RandomZeroOrOne(g, num_examples); Node* const example_state_data = Zeros(g, TensorShape({num_examples, 4})); Node* sdca = nullptr; TF_CHECK_OK( NodeBuilder(g->NewName("sdca"), "SdcaOptimizer") .Attr("loss_type", "logistic_loss") .Attr("num_sparse_features", num_sparse_feature_groups) .Attr("num_sparse_features_with_values", num_sparse_feature_groups) .Attr("num_dense_features", num_dense_feature_groups) .Attr("l1", 0.0) .Attr("l2", 1.0) .Attr("num_loss_partitions", 1) .Attr("num_inner_iterations", 2) .Input(sparse_example_indices) .Input(sparse_feature_indices) .Input(sparse_values) .Input(dense_features) .Input(weights) .Input(labels) .Input(sparse_indices) .Input(sparse_weights) .Input(dense_weights) .Input(example_state_data) .Finalize(g, &sdca)); *train_g = g; } } void BM_SDCA(::testing::benchmark::State& state) { const int num_examples = state.range(0); Graph* init = nullptr; Graph* train = nullptr; GetGraphs(num_examples, 20 , 5 , 1 , 20 , &init, &train); test::Benchmark("cpu", train, GetSingleThreadedOptions(), init, nullptr, "", false) .Run(state); } void BM_SDCA_LARGE_DENSE(::testing::benchmark::State& state) { const int num_examples = state.range(0); Graph* init = nullptr; Graph* train = nullptr; GetGraphs(num_examples, 0 , 0 , 5 , 200000 , &init, &train); test::Benchmark("cpu", train, GetSingleThreadedOptions(), init, nullptr, "", false) .Run(state); } void BM_SDCA_LARGE_SPARSE(::testing::benchmark::State& state) { const int num_examples = state.range(0); Graph* init = nullptr; Graph* train = nullptr; GetGraphs(num_examples, 65 , 1e6 , 0 , 0 , &init, &train); test::Benchmark("cpu", train, GetMultiThreadedOptions(), init, nullptr, "", false) .Run(state); } } BENCHMARK(BM_SDCA)->Arg(128)->Arg(256)->Arg(512)->Arg(1024); BENCHMARK(BM_SDCA_LARGE_DENSE)->Arg(128)->Arg(256)->Arg(512)->Arg(1024); BENCHMARK(BM_SDCA_LARGE_SPARSE)->Arg(128)->Arg(256)->Arg(512)->Arg(1024); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/sdca_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sdca_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e0ef1394-ad72-454a-8904-8a48b9b75687
cpp
abseil/abseil-cpp
algorithm
absl/algorithm/algorithm.h
absl/algorithm/algorithm_test.cc
#ifndef ABSL_ALGORITHM_ALGORITHM_H_ #define ABSL_ALGORITHM_ALGORITHM_H_ #include <algorithm> #include <iterator> #include <type_traits> #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN using std::equal; using std::rotate; template <typename InputIterator, typename EqualityComparable> ABSL_INTERNAL_CONSTEXPR_SINCE_CXX20 bool linear_search( InputIterator first, InputIterator last, const EqualityComparable& value) { return std::find(first, last, value) != last; } ABSL_NAMESPACE_END } #endif
#include "absl/algorithm/algorithm.h" #include <array> #include <vector> #include "gtest/gtest.h" #include "absl/base/config.h" namespace { class LinearSearchTest : public testing::Test { protected: LinearSearchTest() : container_{1, 2, 3} {} static bool Is3(int n) { return n == 3; } static bool Is4(int n) { return n == 4; } std::vector<int> container_; }; TEST_F(LinearSearchTest, linear_search) { EXPECT_TRUE(absl::linear_search(container_.begin(), container_.end(), 3)); EXPECT_FALSE(absl::linear_search(container_.begin(), container_.end(), 4)); } TEST_F(LinearSearchTest, linear_searchConst) { const std::vector<int> *const const_container = &container_; EXPECT_TRUE( absl::linear_search(const_container->begin(), const_container->end(), 3)); EXPECT_FALSE( absl::linear_search(const_container->begin(), const_container->end(), 4)); } #if defined(ABSL_INTERNAL_CPLUSPLUS_LANG) && \ ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L TEST_F(LinearSearchTest, Constexpr) { static constexpr std::array<int, 3> kArray = {1, 2, 3}; static_assert(absl::linear_search(kArray.begin(), kArray.end(), 3)); static_assert(!absl::linear_search(kArray.begin(), kArray.end(), 4)); } #endif }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/algorithm/algorithm.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/algorithm/algorithm_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
7cf7d152-112a-442f-9cb2-370feb836587
cpp
tensorflow/tensorflow
gather_expander
third_party/xla/xla/service/gather_expander.cc
third_party/xla/xla/service/gather_expander_test.cc
#include "xla/service/gather_expander.h" #include <utility> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/while_util.h" #include "xla/util.h" namespace xla { namespace { absl::StatusOr<HloInstruction*> TransposeIndexVectorDimToLast( HloInstruction* start_indices, int64_t index_vector_dim) { const Shape& start_indices_shape = start_indices->shape(); if (start_indices_shape.dimensions_size() == index_vector_dim) { return start_indices; } if (index_vector_dim == (start_indices_shape.dimensions_size() - 1)) { return start_indices; } std::vector<int64_t> permutation; permutation.reserve(start_indices_shape.dimensions_size()); for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != index_vector_dim) { permutation.push_back(i); } } permutation.push_back(index_vector_dim); return MakeTransposeHlo(start_indices, permutation); } absl::StatusOr<HloInstruction*> CanonicalizeGatherIndices( HloInstruction* start_indices, int64_t index_vector_dim) { TF_ASSIGN_OR_RETURN( HloInstruction * transposed_start_indices, TransposeIndexVectorDimToLast(start_indices, index_vector_dim)); bool indices_are_scalar = index_vector_dim == start_indices->shape().dimensions_size(); const int64_t index_dims_in_start_indices = indices_are_scalar ? 0 : 1; const Shape& shape = transposed_start_indices->shape(); if (shape.dimensions_size() == index_dims_in_start_indices) { return PrependDegenerateDims(transposed_start_indices, 1); } else { return CollapseFirstNDims( transposed_start_indices, shape.dimensions_size() - index_dims_in_start_indices); } } absl::StatusOr<HloInstruction*> AdjustBatchDimsInAccumulator( const Shape& start_indices_shape, HloInstruction* accumulator, int64_t index_vector_dim) { std::vector<int64_t> batch_dim_bounds; batch_dim_bounds.reserve(start_indices_shape.dimensions_size()); for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != index_vector_dim) { batch_dim_bounds.push_back(start_indices_shape.dimensions(i)); } } if (batch_dim_bounds.empty()) { return ElideDegenerateDims(accumulator, {0}); } return ExpandFirstDimIntoNDims(accumulator, batch_dim_bounds); } absl::StatusOr<HloInstruction*> ExpandIndexVectorIntoOperandSpace( HloInstruction* index_vector, const GatherDimensionNumbers& dim_numbers, int64_t operand_rank) { HloComputation* computation = index_vector->parent(); const Shape& index_shape = index_vector->shape(); if (operand_rank == 0) { return computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {0}))); } HloInstruction* zero = computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {1}))); std::vector<HloInstruction*> expanded_index_components; for (int i = 0; i < operand_rank; i++) { int64_t index_vector_dim_index = FindIndex(dim_numbers.start_index_map(), i); if (index_vector_dim_index != dim_numbers.start_index_map_size()) { TF_ASSIGN_OR_RETURN( HloInstruction * component_to_concat, MakeSliceHlo(index_vector, {index_vector_dim_index}, {index_vector_dim_index + 1}, {1})); expanded_index_components.push_back(component_to_concat); } else { expanded_index_components.push_back(zero); } } return MakeConcatHlo(expanded_index_components, 0); } absl::StatusOr<std::vector<HloInstruction*>> GatherLoopBody( const HloInstruction& gather, HloInstruction* induction_var, const std::vector<HloInstruction*>& incoming_loop_state) { const GatherDimensionNumbers& dim_numbers = gather.gather_dimension_numbers(); CHECK_EQ(incoming_loop_state.size(), 3); HloInstruction* const operand = incoming_loop_state[0]; HloInstruction* const start_indices = incoming_loop_state[1]; HloInstruction* const output_accumulator = incoming_loop_state[2]; bool has_scalar_indices = start_indices->shape().dimensions_size() == 1; CHECK_EQ(has_scalar_indices, dim_numbers.index_vector_dim() == gather.operand(1)->shape().dimensions_size()); HloInstruction* induction_var_as_vector = MakeBroadcastHlo(induction_var, {}, {1}); HloInstruction* index_vector; if (has_scalar_indices) { TF_ASSIGN_OR_RETURN( index_vector, MakeDynamicSliceHlo(start_indices, induction_var_as_vector, {1})); } else { TF_ASSIGN_OR_RETURN( HloInstruction * index_into_start_indices, PadVectorWithZeros(induction_var_as_vector, 0, 1)); int64_t index_vector_size = start_indices->shape().dimensions(1); TF_ASSIGN_OR_RETURN( HloInstruction * index_vector_2d, MakeDynamicSliceHlo(start_indices, index_into_start_indices, {1, index_vector_size})); TF_ASSIGN_OR_RETURN(index_vector, ElideDegenerateDims(index_vector_2d, {0})); } TF_ASSIGN_OR_RETURN( HloInstruction * gathered_slice_start, ExpandIndexVectorIntoOperandSpace(index_vector, dim_numbers, operand->shape().dimensions_size())); TF_ASSIGN_OR_RETURN(HloInstruction * gathered_slice, MakeDynamicSliceHlo(operand, gathered_slice_start, gather.gather_slice_sizes())); TF_ASSIGN_OR_RETURN( HloInstruction* const gathered_slice_with_dims_collapsed, ElideDegenerateDims(gathered_slice, dim_numbers.collapsed_slice_dims())); TF_ASSIGN_OR_RETURN( HloInstruction* const gathered_slice_for_update, PrependDegenerateDims(gathered_slice_with_dims_collapsed, 1)); TF_ASSIGN_OR_RETURN( HloInstruction* const index_vector_into_accumulator, PadVectorWithZeros( induction_var_as_vector, 0, gathered_slice_with_dims_collapsed->shape().dimensions_size())); TF_ASSIGN_OR_RETURN( HloInstruction* const updated_accumulator, MakeDynamicUpdateSliceHlo(output_accumulator, gathered_slice_for_update, index_vector_into_accumulator)); return absl::StatusOr<std::vector<HloInstruction*>>{ {operand, start_indices, updated_accumulator}}; } HloInstruction* CreateGatherLoopAccumulatorInitValue( HloComputation* computation, PrimitiveType element_type, absl::Span<const int64_t> slice_sizes, int64_t gather_loop_trip_count, const GatherDimensionNumbers& dim_numbers) { std::vector<int64_t> accumulator_state_shape_dims; accumulator_state_shape_dims.reserve(1 + slice_sizes.size()); accumulator_state_shape_dims.push_back(gather_loop_trip_count); for (int64_t i = 0; i < slice_sizes.size(); i++) { if (!absl::c_binary_search(dim_numbers.collapsed_slice_dims(), i)) { accumulator_state_shape_dims.push_back(slice_sizes[i]); } } return BroadcastZeros(computation, element_type, accumulator_state_shape_dims); } absl::StatusOr<HloInstruction*> PermuteBatchAndOffsetDims( HloInstruction* accumulator, absl::Span<const int64_t> offset_dims, int64_t output_rank) { std::vector<int64_t> permutation; permutation.reserve(output_rank); int64_t batch_idx_counter = 0; int64_t offset_idx_counter = output_rank - offset_dims.size(); for (int64_t i = 0; i < output_rank; i++) { bool is_offset_dim = absl::c_binary_search(offset_dims, i); if (is_offset_dim) { permutation.push_back(offset_idx_counter++); } else { permutation.push_back(batch_idx_counter++); } } return MakeTransposeHlo(accumulator, permutation); } int64_t GatherLoopTripCount(HloInstruction* gather_instr) { HloInstruction* start_indices = gather_instr->mutable_operand(1); const Shape& start_indices_shape = start_indices->shape(); const GatherDimensionNumbers& dim_numbers = gather_instr->gather_dimension_numbers(); int64_t trip_count = 1; for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != dim_numbers.index_vector_dim()) { trip_count *= start_indices_shape.dimensions(i); } } return trip_count; } int64_t GatherIsBroadcast(HloInstruction* gather_instr) { return absl::c_equal(gather_instr->gather_slice_sizes(), gather_instr->operand(0)->shape().dimensions()); } } absl::StatusOr<HloInstruction*> GatherExpander::ExpandInstruction( HloInstruction* gather_instr) { CHECK(!ShapeUtil::IsZeroElementArray(gather_instr->shape())); if (GatherIsBroadcast(gather_instr)) { if (ShapeUtil::IsZeroElementArray(gather_instr->operand(0)->shape())) { return MakeScalarLike(gather_instr, 0); } Shape broadcast_operand_shape = ShapeUtil::DeleteDimensions( gather_instr->gather_dimension_numbers().collapsed_slice_dims(), gather_instr->operand(0)->shape()); TF_ASSIGN_OR_RETURN(HloInstruction * broadcast_operand, MakeReshapeHlo(broadcast_operand_shape, gather_instr->mutable_operand(0))); gather_instr->SetupDerivedInstruction(broadcast_operand); HloInstruction* broadcast = MakeBroadcastHlo(broadcast_operand, gather_instr->gather_dimension_numbers().offset_dims(), gather_instr->shape()); gather_instr->SetupDerivedInstruction(broadcast); return broadcast; } HloComputation* computation = gather_instr->parent(); HloInstruction* operand = gather_instr->mutable_operand(0); HloInstruction* start_indices = gather_instr->mutable_operand(1); const Shape& output_shape = gather_instr->shape(); int64_t output_rank = output_shape.dimensions_size(); const GatherDimensionNumbers& dim_numbers = gather_instr->gather_dimension_numbers(); int64_t gather_loop_trip_count = GatherLoopTripCount(gather_instr); if (!IsInt32(gather_loop_trip_count)) { return Unimplemented( "Gather operations with more than 2147483647 gather indices are not " "supported. This error occurred for %s.", gather_instr->ToString()); } TF_ASSIGN_OR_RETURN( HloInstruction * canonical_start_indices, CanonicalizeGatherIndices(start_indices, dim_numbers.index_vector_dim())); CHECK_EQ(gather_loop_trip_count, canonical_start_indices->shape().dimensions(0)); HloInstruction* accumulator_init = CreateGatherLoopAccumulatorInitValue( computation, output_shape.element_type(), gather_instr->gather_slice_sizes(), gather_loop_trip_count, gather_instr->gather_dimension_numbers()); absl::StatusOr<std::vector<HloInstruction*>> gather_loop_result_or_error = WhileUtil::MakeCountedLoop( computation, gather_loop_trip_count, {operand, canonical_start_indices, accumulator_init}, [&](HloInstruction* indvar, const std::vector<HloInstruction*>& loop_state) { return GatherLoopBody(*gather_instr, indvar, loop_state); }, gather_instr->metadata()); TF_ASSIGN_OR_RETURN(std::vector<HloInstruction*> gather_loop_result, gather_loop_result_or_error); HloInstruction* accumulator_result = gather_loop_result.back(); TF_ASSIGN_OR_RETURN( HloInstruction* const accumulator_with_batch_dims_decanonicalized, AdjustBatchDimsInAccumulator(start_indices->shape(), accumulator_result, dim_numbers.index_vector_dim())); return PermuteBatchAndOffsetDims(accumulator_with_batch_dims_decanonicalized, dim_numbers.offset_dims(), output_rank); } bool GatherExpander::InstructionMatchesPattern(HloInstruction* inst) { return inst->opcode() == HloOpcode::kGather && !ShapeUtil::IsZeroElementArray(inst->shape()) && (mode_ == kEliminateAllGathers || GatherLoopTripCount(inst) == 1 || absl::c_equal(inst->gather_slice_sizes(), inst->operand(0)->shape().dimensions())); } }
#include "xla/service/gather_expander.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace { using GatherExpanderTest = HloTestBase; TEST_F(GatherExpanderTest, ErrorStatusOnTooManyIndices) { const std::string hlo_text = R"( HloModule TensorFlowGatherMultipleBatchDims ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2147483647,5] parameter(1) ROOT gather = s32[2147483647,3,5] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); absl::Status status = GatherExpander{GatherExpander::kEliminateAllGathers} .Run(module.get()) .status(); EXPECT_EQ(status.code(), tsl::error::UNIMPLEMENTED); ASSERT_THAT( status.message(), ::testing::HasSubstr("Gather operations with more than 2147483647 gather " "indices are not supported.")); } TEST_F(GatherExpanderTest, AvoidDegenerateDims) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( bool changed, GatherExpander{GatherExpander::kEliminateAllGathers}.Run(module.get())); ASSERT_TRUE(changed); HloInstruction* while_instr = nullptr; for (auto* instr : module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; while_instr = instr; } } ASSERT_NE(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; const Shape& while_shape = while_instr->shape(); ASSERT_TRUE(while_shape.IsTuple()); ASSERT_EQ(ShapeUtil::TupleElementCount(while_shape), 4); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {3, 3}), ShapeUtil::GetTupleElementShape(while_shape, 1))); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {2}), ShapeUtil::GetTupleElementShape(while_shape, 2))); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {2, 3}), ShapeUtil::GetTupleElementShape(while_shape, 3))); } TEST_F(GatherExpanderTest, CheckOpMetadata) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); OpMetadata metadata; metadata.set_op_name("Gather"); module->entry_computation()->root_instruction()->set_metadata(metadata); TF_ASSERT_OK_AND_ASSIGN( bool changed, GatherExpander{GatherExpander::kEliminateAllGathers}.Run(module.get())); ASSERT_TRUE(changed); HloInstruction* while_instr = nullptr; for (auto* instr : module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; while_instr = instr; } } ASSERT_NE(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; EXPECT_EQ(while_instr->metadata().op_name(), "Gather"); } TEST_F(GatherExpanderTest, EliminateSimpleGathersSkipsNontrivialGather) { const std::string hlo_text = R"( HloModule TensorFlowGatherV1 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[2,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1, 3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateSimpleGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_FALSE(changed); } TEST_F(GatherExpanderTest, EliminateSimpleGathersRewritesTrivialGather) { const std::string hlo_text = R"( HloModule test ENTRY main { operand = s32[100] parameter(0) indices = s32[1] parameter(1) ROOT gather = s32[10] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={}, start_index_map={0}, index_vector_dim=0, slice_sizes={10} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateAllGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_TRUE(changed); ASSERT_FALSE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kGather})); } TEST_F(GatherExpanderTest, GatherIsBroadcast) { const std::string hlo_text = R"( HloModule test ENTRY main { operand = s32[1,3] parameter(0) indices = s32[7,5] parameter(1) ROOT gather = s32[7,3,5] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,3} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateSimpleGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_TRUE(changed); ASSERT_FALSE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kGather})); ASSERT_TRUE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kBroadcast})); module->VerifyOrAddFailure("after-gather-expander."); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gather_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gather_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
71508418-052b-485a-b417-d600f37f8823
cpp
tensorflow/tensorflow
tf_status_helper
tensorflow/c/tf_status_helper.cc
tensorflow/c/tf_status_helper_test.cc
#include "tensorflow/c/tf_status_helper.h" #include <string> #include "tensorflow/c/tf_status.h" #include "xla/tsl/c/tsl_status_helper.h" namespace tsl { void Set_TF_Status_from_Status(TF_Status* tf_status, const absl::Status& status) { TF_SetStatus(tf_status, TSLCodeFromStatusCode(status.code()), absl::StatusMessageAsCStr(status)); status.ForEachPayload( [tf_status](absl::string_view key, const absl::Cord& value) { std::string key_str(key); std::string value_str(value); TF_SetPayload(tf_status, key_str.c_str(), value_str.c_str()); }); } absl::Status StatusFromTF_Status(const TF_Status* tf_status) { absl::Status status(StatusCodeFromTSLCode(TF_GetCode(tf_status)), TF_Message(tf_status)); TF_ForEachPayload( tf_status, [](const char* key, const char* value, void* capture) { absl::Status* status = static_cast<absl::Status*>(capture); status->SetPayload(key, absl::Cord(absl::string_view(value))); }, &status); return status; } }
#include "tensorflow/c/tf_status_helper.h" #include "tsl/platform/errors.h" #include "tsl/platform/test.h" namespace tsl { namespace { TEST(StatusHelper, TestStatusHelper) { TSL_Status* s = TSL_NewStatus(); absl::Status cc_status(absl::InvalidArgumentError("some error")); cc_status.SetPayload("key1", absl::Cord("value1")); cc_status.SetPayload("key2", absl::Cord("value2")); Set_TF_Status_from_Status(s, cc_status); ASSERT_EQ(TSL_INVALID_ARGUMENT, TSL_GetCode(s)); ASSERT_EQ(std::string("some error"), TSL_Message(s)); absl::Status another_cc_status(StatusFromTF_Status(s)); ASSERT_FALSE(another_cc_status.ok()); ASSERT_EQ(std::string("some error"), another_cc_status.message()); ASSERT_EQ(error::INVALID_ARGUMENT, another_cc_status.code()); ASSERT_EQ(cc_status.GetPayload("key1"), another_cc_status.GetPayload("key1")); ASSERT_EQ(cc_status.GetPayload("key2"), another_cc_status.GetPayload("key2")); TSL_DeleteStatus(s); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/tf_status_helper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/tf_status_helper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
90c6fcba-9e56-454e-aa32-12dd171fd942
cpp
tensorflow/tensorflow
stable_delegate_provider
tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider.cc
tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider_test.cc
#include <cstdint> #include <map> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/tool_params.h" #if !defined(_WIN32) #include "tensorflow/lite/acceleration/configuration/c/delegate_plugin.h" #include "tensorflow/lite/acceleration/configuration/c/stable_delegate.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #endif namespace tflite { namespace tools { #if !defined(_WIN32) namespace { TfLiteDelegatePtr CreateStableDelegate( const std::string& json_settings_file_path); class StableDelegatePluginLoader { public: static StableDelegatePluginLoader& GetInstance() { static StableDelegatePluginLoader* const instance = new StableDelegatePluginLoader; return *instance; } TfLiteDelegatePtr CreateStableDelegate( const std::string& json_settings_file_path); private: struct CacheEntry { const TfLiteStableDelegate* stable_delegate = nullptr; delegates::utils::TfLiteSettingsJsonParser parser; const TFLiteSettings* parsed_settings = nullptr; }; StableDelegatePluginLoader() = default; const CacheEntry* LoadStableDelegatePlugin( const std::string& json_settings_file_path); std::map<std::string , CacheEntry> cache_; }; const StableDelegatePluginLoader::CacheEntry* StableDelegatePluginLoader::LoadStableDelegatePlugin( const std::string& json_settings_file_path) { auto it = cache_.find(json_settings_file_path); if (it != cache_.end()) { return &it->second; } CacheEntry result; const TFLiteSettings* tflite_settings = result.parser.Parse(json_settings_file_path); result.parsed_settings = tflite_settings; if (!tflite_settings || !tflite_settings->stable_delegate_loader_settings() || !tflite_settings->stable_delegate_loader_settings()->delegate_path()) { TFLITE_LOG(ERROR) << "Invalid TFLiteSettings for the stable delegate."; result.stable_delegate = nullptr; } else { std::string delegate_path = tflite_settings->stable_delegate_loader_settings() ->delegate_path() ->str(); result.stable_delegate = delegates::utils::LoadDelegateFromSharedLibrary(delegate_path); if (!result.stable_delegate || !result.stable_delegate->delegate_plugin) { TFLITE_LOG(ERROR) << "Failed to load stable ABI delegate from stable ABI " "delegate binary (" << delegate_path << ")."; } } auto it2 = cache_.emplace(json_settings_file_path, std::move(result)).first; return &it2->second; } TfLiteDelegatePtr CreateStableDelegate( const std::string& json_settings_file_path) { return StableDelegatePluginLoader::GetInstance().CreateStableDelegate( json_settings_file_path); } TfLiteDelegatePtr StableDelegatePluginLoader::CreateStableDelegate( const std::string& json_settings_file_path) { if (json_settings_file_path.empty()) { return CreateNullDelegate(); } const CacheEntry* entry = StableDelegatePluginLoader::GetInstance().LoadStableDelegatePlugin( json_settings_file_path); if (!entry || !entry->stable_delegate || !entry->stable_delegate->delegate_plugin) { return CreateNullDelegate(); } const TfLiteOpaqueDelegatePlugin* delegate_plugin = entry->stable_delegate->delegate_plugin; return TfLiteDelegatePtr(delegate_plugin->create(entry->parsed_settings), delegate_plugin->destroy); } } #endif class StableAbiDelegateProvider : public DelegateProvider { public: StableAbiDelegateProvider() { default_params_.AddParam("stable_delegate_settings_file", ToolParam::Create<std::string>("")); } std::vector<Flag> CreateFlags(ToolParams* params) const final; void LogParams(const ToolParams& params, bool verbose) const final; TfLiteDelegatePtr CreateTfLiteDelegate(const ToolParams& params) const final; std::pair<TfLiteDelegatePtr, int> CreateRankedTfLiteDelegate( const ToolParams& params) const final; std::string GetName() const final { return "STABLE_DELEGATE"; } }; REGISTER_DELEGATE_PROVIDER(StableAbiDelegateProvider); std::vector<Flag> StableAbiDelegateProvider::CreateFlags( ToolParams* params) const { std::vector<Flag> flags = { CreateFlag<std::string>("stable_delegate_settings_file", params, "The path to the delegate settings JSON file.")}; return flags; } void StableAbiDelegateProvider::LogParams(const ToolParams& params, bool verbose) const { if (params.Get<std::string>("stable_delegate_settings_file").empty()) return; LOG_TOOL_PARAM(params, std::string, "stable_delegate_settings_file", "Delegate settings file path", verbose); } TfLiteDelegatePtr StableAbiDelegateProvider::CreateTfLiteDelegate( const ToolParams& params) const { #if !defined(_WIN32) std::string stable_delegate_settings_file = params.Get<std::string>("stable_delegate_settings_file"); return CreateStableDelegate(stable_delegate_settings_file); #else return CreateNullDelegate(); #endif } std::pair<TfLiteDelegatePtr, int> StableAbiDelegateProvider::CreateRankedTfLiteDelegate( const ToolParams& params) const { auto ptr = CreateTfLiteDelegate(params); return std::make_pair(std::move(ptr), params.GetPosition<std::string>( "stable_delegate_settings_file")); } } }
#include <string> #include <vector> #include <gtest/gtest.h> #include "pthreadpool.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { namespace { static constexpr char kTestSettingsSrcDir[] = "tensorflow/lite/tools/delegates/experimental/stable_delegate/"; static constexpr char kGoodStableDelegateSettings[] = "test_sample_stable_delegate_settings.json"; static constexpr char kGoodXNNPackDelegateSettings[] = "test_stable_xnnpack_settings.json"; static constexpr char kBadMissingFile[] = "missing.json"; static constexpr char kBadInvalidSettings[] = "test_invalid_settings.json"; static constexpr char kBadMissingStableDelegateSettings[] = "test_missing_stable_delegate_settings.json"; static constexpr char kBadMissingDelegatePathSettings[] = "test_missing_delegate_path_settings.json"; std::vector<ProvidedDelegateList::ProvidedDelegate> CreateDelegates( const std::string& settings_file_path) { ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); params.Set<std::string>("stable_delegate_settings_file", settings_file_path, 1); return providers.CreateAllRankedDelegates(); } TEST(StableAbiDelegateProviderTest, CreateDelegate) { auto delegates = CreateDelegates(std::string(kTestSettingsSrcDir) + kGoodStableDelegateSettings); EXPECT_EQ(1, delegates.size()); EXPECT_EQ("STABLE_DELEGATE", delegates.front().provider->GetName()); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ(1, delegates.front().rank); } TEST(StableAbiDelegateProviderTest, CreateDelegateWithStableXNNPack) { auto delegates = CreateDelegates(std::string(kTestSettingsSrcDir) + kGoodXNNPackDelegateSettings); EXPECT_EQ(1, delegates.size()); EXPECT_EQ("STABLE_DELEGATE", delegates.front().provider->GetName()); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ(1, delegates.front().rank); pthreadpool_t threadpool = static_cast<pthreadpool_t>( TfLiteXNNPackDelegateGetThreadPool(delegates.front().delegate.get())); EXPECT_EQ(5, pthreadpool_get_threads_count(threadpool)); } TEST(StableAbiDelegateProviderTest, CreateDelegateFailedWithInvalidSettings) { std::vector<std::string> invalid_settings_names = { kBadMissingFile, kBadInvalidSettings, kBadMissingStableDelegateSettings, kBadMissingDelegatePathSettings}; for (const std::string& name : invalid_settings_names) { auto delegates = CreateDelegates(std::string(kTestSettingsSrcDir) + name); EXPECT_EQ(0, delegates.size()); } } TEST(StableAbiDelegateProviderTest, CreateDelegateFailedWithBlankSettingsPath) { auto delegates = CreateDelegates(""); EXPECT_EQ(0, delegates.size()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/experimental/stable_delegate/stable_delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c7d36866-411c-46ed-801c-d8994c2f600b
cpp
tensorflow/tensorflow
scatter_expander
third_party/xla/xla/service/gpu/transforms/scatter_expander.cc
third_party/xla/xla/service/scatter_expander_test.cc
#include "xla/service/gpu/transforms/scatter_expander.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" namespace xla { bool GpuScatterExpander::InstructionMatchesPattern(HloInstruction* inst) { return inst->opcode() == HloOpcode::kScatter && (inst->shape().IsTuple() || primitive_util::BitWidth(inst->shape().element_type()) > 64); } }
#include "xla/service/scatter_expander.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" namespace xla { namespace { class ScatterExpanderTest : public HloTestBase { protected: void ClearInstructionLayout(HloModule* module, absl::string_view inst_name) { HloInstruction* inst = FindInstruction(module, inst_name); inst->mutable_shape()->clear_layout(); } }; TEST_F(ScatterExpanderTest, ScatterOperandWithoutLayout) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update = s32[] constant(0) ROOT scatter = s32[5]{0} scatter(operand, indices, update), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateAllScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, ScatterMultipleOperandsWithoutLayout) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[5] iota(), iota_dimension=0 operand1 = f32[5] constant({2,4,6,8,10}) indices = s32[1] parameter(0) update0 = s32[] constant(0) update1 = f32[] constant(1) ROOT scatter = (s32[5]{0}, f32[5]{0}) scatter(operand0, operand1, indices, update0, update1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateAllScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleScattersSkipsNontrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleMultioutpuScattersSkipsNontrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[3,3] parameter(0) operand1 = bf16[3,3] parameter(1) indices = s32[2] parameter(2) update0 = s32[2,3] parameter(3) update1 = bf16[2,3] parameter(4) ROOT scatter = (s32[3,3], bf16[3,3]) scatter(operand0, operand1, indices, update0, update1), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleScattersRewritesTrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update = s32[] constant(0) ROOT scatter = s32[5]{0} scatter(operand, indices, update), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleMultioutputScattersRewritesTrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[5] iota(), iota_dimension=0 operand1 = f32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update0 = s32[] constant(0) update1 = f32[] constant(0) ROOT scatter = (s32[5]{0}, f32[5]{0}) scatter(operand0, operand1, indices, update0, update1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, DoNotEliminateScatterWithAssociativeCombiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = s32[] parameter(1) arg0.172 = s32[] parameter(0) ROOT add.48 = s32[] add(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = s32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = s32[4096,1,1] parameter(2) ROOT scatter.48 = s32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateScatterWithNonAssociativeCombiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = f32[] parameter(1) arg0.172 = f32[] parameter(0) ROOT add.48 = f32[] add(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = f32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = f32[4096,1,1] parameter(2) ROOT scatter.48 = f32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, DoNotEliminateScatterWithAssociativeFp32Combiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = f32[] parameter(1) arg0.172 = f32[] parameter(0) ROOT max.48 = f32[] maximum(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = f32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = f32[4096,1,1] parameter(2) ROOT scatter.48 = f32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/scatter_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/scatter_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f01b2e57-26fb-44db-948b-b0d918a37457
cpp
tensorflow/tensorflow
eval_const_tensor
tensorflow/core/common_runtime/eval_const_tensor.cc
tensorflow/core/common_runtime/eval_const_tensor_test.cc
#include "tensorflow/core/common_runtime/eval_const_tensor.h" #include <algorithm> #include <cstdint> #include <deque> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/strcat.h" namespace tensorflow { namespace { using ::tensorflow::shape_inference::InferenceContext; bool IsRank(const Node& n) { return n.type_string() == "Rank"; } bool IsSize(const Node& n) { return n.type_string() == "Size"; } bool IsShape(const Node& n) { return n.type_string() == "Shape"; } bool IsStridedSlice(const Node& n) { return n.type_string() == "StridedSlice"; } bool IsPlaceholderWithDefault(const Node& n) { return n.type_string() == "PlaceholderWithDefault"; } bool IsUnstack(const Node& n) { return n.type_string() == "Unpack"; } bool HasIntAttr(const Node& n, absl::string_view name, int64_t expected) { int64_t actual; return TryGetNodeAttr(n.def(), name, &actual) && actual == expected; } std::optional<int64_t> GetIntConst(const Node& node) { const TensorProto* proto; Tensor tensor; if (node.IsConstant() && TryGetNodeAttr(node.def(), "value", &proto) && (proto->dtype() == DT_INT32 || proto->dtype() == DT_INT64) && TensorShape(proto->tensor_shape()).num_elements() == 1 && tensor.FromProto(*proto)) { if (proto->dtype() == DT_INT32) { return *static_cast<const int32_t*>(tensor.data()); } else { return *static_cast<const int64_t*>(tensor.data()); } } return std::nullopt; } std::optional<int64_t> GetSliceIndex(const Node& node, const int node_output) { std::optional<int64_t> ix; if (IsUnstack(node)) { if (HasIntAttr(node, "axis", 0)) { ix = node_output; } } else if (IsStridedSlice(node)) { const Edge* edge; if (HasIntAttr(node, "begin_mask", 0) && HasIntAttr(node, "end_mask", 0) && HasIntAttr(node, "ellipsis_mask", 0) && HasIntAttr(node, "new_axis_mask", 0) && HasIntAttr(node, "shrink_axis_mask", 1) && node.input_edge(1, &edge).ok()) { ix = GetIntConst(*edge->src()); } } return ix; } absl::StatusOr<std::optional<Tensor>> TryInferFromShapes( const Node& node, const int node_output, const ShapeRefiner& refiner) { std::optional<Tensor> result; if (node.num_inputs() == 0 || node_output >= node.num_outputs()) { return result; } const auto dtype = node.output_type(node_output); if (dtype != DT_INT32 && dtype != DT_INT64) { return result; } absl::InlinedVector<int64_t, 8> data; std::optional<TensorShape> shape; const Edge* edge; if (IsShape(node)) { InferenceContext* c = refiner.GetContext(&node); if (c != nullptr && c->FullyDefined(c->input(0))) { const int64_t rank = c->Rank(c->input(0)); for (int i = 0; i < rank; ++i) { data.push_back(c->Value(c->Dim(c->input(0), i))); } shape.emplace({rank}); } } else if (IsRank(node)) { InferenceContext* c = refiner.GetContext(&node); if (c != nullptr && c->RankKnown(c->input(0))) { data.push_back(c->Rank(c->input(0))); shape.emplace(); } } else if (IsSize(node)) { InferenceContext* c = refiner.GetContext(&node); if (c != nullptr && c->FullyDefined(c->input(0))) { int64_t size = 1; for (int i = 0, rank = c->Rank(c->input(0)); i < rank; i++) { size *= c->Value(c->Dim(c->input(0), i)); } data.push_back(size); shape.emplace(); } } else if (node.input_edge(0, &edge).ok() && IsShape(*edge->src())) { InferenceContext* c = refiner.GetContext(edge->src()); if (c != nullptr && c->RankKnown(c->input(0))) { const int64_t rank = c->Rank(c->input(0)); std::optional<int64_t> ix = GetSliceIndex(node, node_output); if (ix.has_value() && -rank <= *ix && *ix < rank && c->ValueKnown(c->Dim(c->input(0), *ix))) { data.push_back(c->Value(c->Dim(c->input(0), *ix))); shape.emplace(); } } } if (!shape.has_value()) { return result; } if (dtype == DT_INT32) { for (const int64_t value : data) { if (TF_PREDICT_FALSE(value >= std::numeric_limits<int32_t>::max())) { return errors::InvalidArgument("Value is out of int32 range: ", value); } } } result.emplace(dtype, *shape); if (dtype == DT_INT32) { absl::c_copy(data, static_cast<int32_t*>(result->data())); } else { absl::c_copy(data, static_cast<int64_t*>(result->data())); } return result; } bool IsSupportedForEvaluation(const Node& node) { if (node.IsConstant() || node.IsArg()) { return true; } if (node.num_inputs() == 0 || IsPlaceholderWithDefault(node)) { return false; } if (node.op_def().is_stateful()) { return false; } if (node.IsEnter() || node.IsExit() || node.IsMerge()) { return false; } if (node.IsFunctionCall()) { return false; } for (const auto& [name, attr] : node.attrs()) { if (attr.has_func() || !attr.list().func().empty()) { return false; } } return KernelDefAvailable(DEVICE_CPU, node.def()); } struct Subgraph { Subgraph(const OpRegistryInterface* op_registry, int32_t graph_def_version) : graph(op_registry == nullptr ? OpRegistry::Global() : op_registry) { VersionDef versions = graph.versions(); versions.set_producer(graph_def_version); graph.set_versions(versions); } GraphRunner::NamedTensorList inputs; Graph graph; }; using NodeOutput = std::pair<const Node*, int>; std::string OutputName(const NodeOutput& output) { return strings::StrCat(output.first->name(), ":", output.second); } absl::StatusOr<std::unique_ptr<Subgraph>> ExtractConstantSubgraph( const Node& target_node, const ShapeRefiner& refiner, const absl::FunctionRef<std::optional<Tensor>(const Node&, int)> lookup, const OpRegistryInterface* op_registry, const int32_t graph_def_version) { std::unique_ptr<Subgraph> subgraph; if (!target_node.IsEnter() && !IsSupportedForEvaluation(target_node)) { return subgraph; } std::vector<const Edge*> edges; for (const Edge* edge : target_node.in_edges()) { if (!edge->IsControlEdge()) { edges.push_back(edge); } } absl::flat_hash_map<const Node*, Node*> new_by_old_node; absl::InlinedVector<const Node*, 8> arg_nodes; absl::flat_hash_map<NodeOutput, Tensor> const_inputs; for (int edge_ix = 0; edge_ix < edges.size(); ++edge_ix) { const Edge& edge = *edges[edge_ix]; const Node& node = *edge.src(); const NodeOutput node_output = {&node, edge.src_output()}; if (new_by_old_node.contains(&node) || const_inputs.contains(node_output)) { continue; } if (node.IsArg()) { arg_nodes.push_back(&node); continue; } auto tensor = lookup(node, node_output.second); if (!tensor.has_value()) { TF_ASSIGN_OR_RETURN( tensor, TryInferFromShapes(node, node_output.second, refiner)); } if (tensor.has_value()) { const_inputs.emplace(node_output, *std::move(tensor)); } else if (!IsSupportedForEvaluation(node)) { return subgraph; } else { new_by_old_node.emplace(&node, nullptr); for (const Edge* edge : node.in_edges()) { if (!edge->IsControlEdge()) { edges.push_back(edge); } } } } bool all_args_provided = true; for (const Node* node : arg_nodes) { auto tensor = lookup(*node, 0); all_args_provided = all_args_provided && tensor.has_value(); if (all_args_provided) { const_inputs.emplace(NodeOutput{node, 0}, *std::move(tensor)); } } if (!all_args_provided) { return subgraph; } subgraph = std::make_unique<Subgraph>(op_registry, graph_def_version); auto& inputs = subgraph->inputs; inputs.reserve(const_inputs.size()); for (auto& [node_output, tensor] : const_inputs) { if (!new_by_old_node.contains(node_output.first)) { inputs.emplace_back(OutputName(node_output), std::move(tensor)); } } Graph& graph = subgraph->graph; new_by_old_node[&target_node] = graph.CopyNode(&target_node); for (const Edge* edge : edges) { Node*& src = new_by_old_node[edge->src()]; if (src == nullptr) { src = graph.CopyNode(edge->src()); } Node* dst = new_by_old_node.at(edge->dst()); graph.AddEdge(src, edge->src_output(), dst, edge->dst_input()); } return subgraph; } } absl::StatusOr<std::optional<Tensor>> EvaluateConstantTensor( const Node& node, const int node_output, const ShapeRefiner& refiner, const absl::FunctionRef<std::optional<Tensor>(const Node&, int)> lookup, const std::optional<EvaluateConstantTensorRunner> runner) { std::optional<Tensor> result; if (result = lookup(node, node_output); result.has_value()) { return result; } if (node.IsArg()) { return result; } if (node.IsConstant()) { const TensorProto* proto; TF_RETURN_IF_ERROR(GetNodeAttr(node.def(), "value", &proto)); result.emplace(); if (TF_PREDICT_FALSE(!result->FromProto(*proto))) { return errors::InvalidArgument("Unable to evaluate a constant node"); } return result; } TF_ASSIGN_OR_RETURN(result, TryInferFromShapes(node, node_output, refiner)); if (result.has_value()) { return result; } if (!runner.has_value()) { return result; } TF_ASSIGN_OR_RETURN( const auto subgraph, ExtractConstantSubgraph(node, refiner, lookup, runner->op_registry, runner->graph_def_version)); if (subgraph != nullptr) { GraphRunner* graph_runner = runner->graph_runner; std::unique_ptr<GraphRunner> tmp_graph_runner; if (graph_runner == nullptr) { tmp_graph_runner = std::make_unique<GraphRunner>(Env::Default()); graph_runner = tmp_graph_runner.get(); } FunctionLibraryRuntime* function_library = nullptr; std::vector<Tensor> outputs; auto status = graph_runner->Run(&subgraph->graph, function_library, subgraph->inputs, {OutputName({&node, node_output})}, &outputs); if (status.ok()) { result = std::move(outputs[0]); } } return result; } }
#include "tensorflow/core/common_runtime/eval_const_tensor.h" #include <cstdint> #include <limits> #include <optional> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/meta/type_traits.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/logging_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { class EvaluateConstantTensorTest : public ::testing::Test { public: EvaluateConstantTensorTest& WithRunner() { runner_ = EvaluateConstantTensorRunner{ scope_.graph()->op_registry(), scope_.graph()->versions().producer(), }; return *this; } absl::StatusOr<std::optional<Tensor>> Run(const Output& output) { TF_RETURN_IF_ERROR(scope_.status()); const auto& graph = *scope_.graph(); ShapeRefiner refiner(graph.versions(), graph.op_registry()); for (const auto* node : graph.nodes()) { TF_RETURN_IF_ERROR(refiner.AddNode(node)); } auto lookup = [this](const Node& node, int index) -> std::optional<Tensor> { requested_.insert(&node); auto it = cache_.find(std::make_pair(&node, index)); if (it == cache_.end()) { return std::nullopt; } return it->second; }; auto runner = runner_; runner_ = std::nullopt; requested_.clear(); return EvaluateConstantTensor(*output.node(), output.index(), refiner, lookup, runner); } void ExpectTensor(const Output& output, const Tensor& expected) { TF_ASSERT_OK_AND_ASSIGN(auto actual, Run(output)); ASSERT_TRUE(actual.has_value()); test::ExpectEqual(*actual, expected); } void ExpectNull(const Output& output) { TF_ASSERT_OK_AND_ASSIGN(auto actual, Run(output)); ASSERT_FALSE(actual.has_value()); } void ExpectError(const Output& output) { EXPECT_FALSE(Run(output).ok()); } protected: Scope scope_ = Scope::NewRootScope(); absl::flat_hash_map<std::pair<const Node*, int>, Tensor> cache_; absl::flat_hash_set<const Node*> requested_; std::optional<EvaluateConstantTensorRunner> runner_ = std::nullopt; }; template <typename T> Output Placeholder(const Scope& scope, const PartialTensorShape& shape) { return ops::Placeholder(scope, DataTypeToEnum<T>::value, ops::Placeholder::Shape(shape)); } Output Slice(const Scope& scope, const Output& input, int index) { return ops::StridedSlice( scope, input, ops::Const(scope, {index}), ops::Const(scope, {index + 1}), ops::Const(scope, {1}), ops::StridedSlice::ShrinkAxisMask(1)); } TEST_F(EvaluateConstantTensorTest, Constant) { auto expected = test::AsTensor<float>({1, 2, 3}); auto op = ops::Const(scope_, expected); ExpectTensor(op, expected); } TEST_F(EvaluateConstantTensorTest, Shape) { auto input = Placeholder<float>(scope_, {2, 3, 5}); auto shape = ops::Shape(scope_, input); ExpectTensor(shape, test::AsTensor<int32_t>({2, 3, 5})); } TEST_F(EvaluateConstantTensorTest, ValueOutOfRange) { const int64_t dim = std::numeric_limits<int32_t>::max(); auto input = Placeholder<float>(scope_, {dim}); auto shape32 = ops::Shape(scope_, input, ops::Shape::OutType(DT_INT32)); auto shape64 = ops::Shape(scope_, input, ops::Shape::OutType(DT_INT64)); ExpectError(shape32); ExpectTensor(shape64, test::AsTensor<int64_t>({dim})); } TEST_F(EvaluateConstantTensorTest, PartialShape) { auto input = Placeholder<float>(scope_, {2, -1, 5}); auto shape = ops::Shape(scope_, input); ExpectNull(shape); } TEST_F(EvaluateConstantTensorTest, Rank) { auto input = Placeholder<float>(scope_, {2, -1, 5}); auto rank = ops::Rank(scope_, input); ExpectTensor(rank, test::AsScalar<int32_t>(3)); } TEST_F(EvaluateConstantTensorTest, Size) { auto input = Placeholder<float>(scope_, {2, 3, 5}); auto size = ops::Size(scope_, input); ExpectTensor(size, test::AsScalar<int32_t>(2 * 3 * 5)); } TEST_F(EvaluateConstantTensorTest, PartialSize) { auto input = Placeholder<float>(scope_, {2, -1, 5}); auto size = ops::Size(scope_, input); ExpectNull(size); } TEST_F(EvaluateConstantTensorTest, SliceShape) { auto input = Placeholder<float>(scope_, {2, -1, 5}); auto shape = ops::Shape(scope_, input); auto slice0 = Slice(scope_, shape, 0); auto slice1 = Slice(scope_, shape, 1); auto slice2 = Slice(scope_, shape, 2); ExpectTensor(slice0, test::AsScalar<int32_t>(2)); ExpectNull(slice1); ExpectTensor(slice2, test::AsScalar<int32_t>(5)); } TEST_F(EvaluateConstantTensorTest, UnpackShape) { auto input = Placeholder<float>(scope_, {2, -1, 5}); auto shape = ops::Shape(scope_, input); auto unpack = ops::Unstack(scope_, shape, 3, ops::Unstack::Axis(0)); ExpectTensor(unpack[0], test::AsScalar<int32_t>(2)); ExpectNull(unpack[1]); ExpectTensor(unpack[2], test::AsScalar<int32_t>(5)); } TEST_F(EvaluateConstantTensorTest, Lookup) { auto input = Placeholder<float>(scope_, {2}); ExpectNull(input); auto expected = test::AsTensor<float>({3, 5}); cache_.emplace(std::make_pair(input.node(), 0), expected); ExpectTensor(input, expected); } TEST_F(EvaluateConstantTensorTest, ConstantFolding) { auto input1 = Placeholder<float>(scope_, {2, -1, 5}); auto input2 = ops::_Arg(scope_, DT_INT32, 0); auto shape = ops::Shape(scope_, input1); auto result = ops::Add(scope_, Slice(scope_, shape, 2), input2); ExpectNull(result); WithRunner().ExpectNull(result); cache_.emplace(std::make_pair(input2.node(), 0), test::AsScalar<int32_t>(7)); WithRunner().ExpectTensor(result, test::AsScalar<int32_t>(5 + 7)); } TEST_F(EvaluateConstantTensorTest, DoNotEvalPlaceholderWithDefault) { auto tensor = test::AsTensor<float>({1, 2, 3}); auto result1 = ops::Identity(scope_, tensor); auto result2 = ops::PlaceholderWithDefault(scope_, tensor, tensor.shape()); WithRunner().ExpectTensor(result1, tensor); WithRunner().ExpectNull(result2); } TEST_F(EvaluateConstantTensorTest, AllArgsMustBeRequestedForConstSubgraph) { auto arg0 = ops::_Arg(scope_, DT_INT32, 0); auto arg1 = ops::_Arg(scope_, DT_INT32, 1); auto arg2 = ops::_Arg(scope_, DT_INT32, 2); auto result = ops::Mul(scope_, arg0, ops::Add(scope_, arg1, arg2)); cache_.emplace(std::make_pair(arg1.node(), 0), test::AsScalar<int32_t>(3)); WithRunner().ExpectNull(result); EXPECT_TRUE(requested_.contains(arg0.node())); EXPECT_TRUE(requested_.contains(arg1.node())); EXPECT_TRUE(requested_.contains(arg2.node())); cache_.emplace(std::make_pair(arg0.node(), 0), test::AsScalar<int32_t>(5)); cache_.emplace(std::make_pair(arg2.node(), 0), test::AsScalar<int32_t>(7)); WithRunner().ExpectTensor(result, test::AsScalar<int32_t>(5 * (3 + 7))); } TEST_F(EvaluateConstantTensorTest, NoArgsMustBeRequestedForNonConstSubgraph) { auto arg0 = ops::_Arg(scope_, DT_INT32, 0); auto arg1 = ops::_Arg(scope_, DT_INT32, 1); auto arg2 = ops::_Arg(scope_, DT_INT32, 2); auto feed = Placeholder<int32_t>(scope_, {}); auto result = ops::Mul(scope_, arg0, ops::Add(scope_, arg1, ops::Add(scope_, arg2, feed))); WithRunner().ExpectNull(result); EXPECT_FALSE(requested_.contains(arg0.node())); EXPECT_FALSE(requested_.contains(arg1.node())); EXPECT_FALSE(requested_.contains(arg2.node())); EXPECT_TRUE(requested_.contains(feed.node())); } TEST_F(EvaluateConstantTensorTest, MissingKernel) { auto arg0 = ops::_Arg(scope_, DT_INT32, 0); auto arg1 = ops::_Arg(scope_, DT_INT32, 1); auto print = ops::Print(scope_, arg1, {arg1.output}); auto result = ops::Add(scope_, arg0, print); ASSERT_FALSE(KernelDefAvailable(DEVICE_CPU, print.node()->def())); WithRunner().ExpectNull(result); cache_.emplace(std::make_pair(arg0.node(), 0), test::AsScalar<int32_t>(3)); WithRunner().ExpectNull(result); cache_.emplace(std::make_pair(arg1.node(), 0), test::AsScalar<int32_t>(5)); WithRunner().ExpectNull(result); cache_.emplace(std::make_pair(print.node(), 0), test::AsScalar<int32_t>(7)); WithRunner().ExpectTensor(result, test::AsScalar<int32_t>(3 + 7)); } template <bool kEvaluated> void BM_ConstantFolding(::testing::benchmark::State& state) { Scope scope = Scope::NewRootScope(); auto input1 = Placeholder<float>(scope, {2, -1, 5}); auto input2 = ops::_Arg(scope, DT_INT32, 0); auto input3 = ops::_Arg(scope, DT_INT32, 0); auto shape = ops::Shape(scope, input1); auto result = ops::Mul(scope, ops::Add(scope, Slice(scope, shape, 2), input2), input3); TF_CHECK_OK(scope.status()); const auto& graph = *scope.graph(); ShapeRefiner refiner(graph.versions(), graph.op_registry()); for (const auto* node : graph.nodes()) { TF_CHECK_OK(refiner.AddNode(node)); } auto tensor2 = test::AsScalar<int32_t>(7); auto tensor3 = test::AsScalar<int32_t>(11); auto lookup = [&](const Node& node, int index) -> std::optional<Tensor> { if (kEvaluated && &node == input2.node()) { return tensor2; } if (&node == input3.node()) { return tensor3; } return std::nullopt; }; GraphRunner graph_runner(Env::Default()); const EvaluateConstantTensorRunner runner = { graph.op_registry(), graph.versions().producer(), &graph_runner}; for (auto unused : state) { auto status_or = EvaluateConstantTensor(*result.node(), 0, refiner, lookup, runner); TF_CHECK_OK(status_or.status()); CHECK_EQ(status_or->has_value(), kEvaluated); } } BENCHMARK_TEMPLATE(BM_ConstantFolding, false); BENCHMARK_TEMPLATE(BM_ConstantFolding, true); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eval_const_tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eval_const_tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ebc77db0-35d1-443b-8e86-281f12c77876
cpp
tensorflow/tensorflow
fully_connected_4bit
tensorflow/lite/kernels/internal/optimized/fully_connected_4bit.h
tensorflow/lite/kernels/fully_connected_4bit_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_FULLY_CONNECTED_4BIT_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_FULLY_CONNECTED_4BIT_H_ #include <stdint.h> #ifndef TFLITE_MMAP_DISABLED #include <sys/mman.h> #endif #include <cstdlib> #include <memory> #if defined(FC_4BIT_SSE) && defined(__SSSE3__) #include "tensorflow/lite/kernels/internal/optimized/4bit/sse_fully_connected.h" #elif defined(FC_4BIT_NEON) && (defined(__ARM_NEON__) || defined(__ARM_NEON)) #include "tensorflow/lite/kernels/internal/optimized/4bit/neon_fully_connected.h" #else #include "tensorflow/lite/kernels/internal/optimized/4bit/fully_connected_reference.h" #endif namespace tflite { namespace optimized_4bit { constexpr int FilterWidth = 4; constexpr int FilterDepth = 32; constexpr int kDefaultAlignmentPadding = 63; struct Deleter { explicit Deleter(size_t size = 0) : size(size) {} void operator()(uint8_t* memory) { if (!memory) { return; } #ifdef TFLITE_MMAP_DISABLED delete[] memory; #else munmap(memory, size); #endif } size_t size; }; struct OpData4Bit { int rows_right = 1; int batch_size = 0; bool needs_prepack = true; uint8_t* prepacked_cache = nullptr; std::unique_ptr<uint8_t[], Deleter> prepacked_cache_buffer; size_t prepacked_cache_buffer_size = 0; void AllocatePackedRegion(size_t required_size) { #ifdef TFLITE_MMAP_DISABLED uint8_t* region = new uint8_t[required_size]; prepacked_cache_buffer = std::unique_ptr<uint8_t[], Deleter>(region, Deleter()); #else uint8_t* region = reinterpret_cast<uint8_t*>( mmap(nullptr, required_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); prepacked_cache_buffer = std::unique_ptr<uint8_t[], Deleter>(region, Deleter(required_size)); #ifdef MADV_MERGEABLE madvise(region, required_size, MADV_MERGEABLE); #endif #endif prepacked_cache = reinterpret_cast<uint8_t*>( (reinterpret_cast<uintptr_t>(prepacked_cache_buffer.get()) + kDefaultAlignmentPadding) & ~kDefaultAlignmentPadding); prepacked_cache_buffer_size = required_size; } }; namespace api { inline void Prepack(uint8_t* dest, const int8_t* tensor, int layout_rows, int layout_cols, int src_rows, int src_cols, int width, int depth) { optimized_4bit::Prepack(dest, tensor, layout_rows, layout_cols, src_rows, src_cols, width, depth); } inline void BatchQuantizeFloats4Bit(const float* float_data_ptr, int n_batch, int n_data, int8_t* quantized_data_ptr, float* scaling_factors, int width, int depth, int32_t* input_offsets) { optimized_4bit::BatchQuantizeFloats4Bit(float_data_ptr, n_batch, n_data, quantized_data_ptr, scaling_factors, width, depth, input_offsets); } inline void AssignBiasAndComputeOffsets(const int32_t* input_offsets, const float* batch_scales, float* filter_scales, const float* bias_ptr, float* output_ptr, int output_depth, int batch_size) { optimized_4bit::AssignBiasAndComputeOffsets( input_offsets, batch_scales, filter_scales, bias_ptr, output_ptr, output_depth, batch_size); } inline void RunAndUnpack(int rhs_width, const uint8_t* lhs, const int8_t* rhs, int32_t* dst, int output_depth, int batch_size, int lhs_layout_rows, int lhs_layout_cols, int rhs_layout_rows, int rhs_layout_cols, int dst_layout_rows, int dst_layout_cols, float* output_ptr, const float* scaling_factors, const float* filter_scales) { optimized_4bit::RunAndUnpack( rhs_width, lhs, rhs, dst, output_depth, batch_size, lhs_layout_rows, lhs_layout_cols, rhs_layout_rows, rhs_layout_cols, dst_layout_rows, dst_layout_cols, output_ptr, scaling_factors, filter_scales); } } } } #endif
#include <cstdlib> #include <memory> #include <random> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/fully_connected.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { class FullyConnected4BitOpModel : public SingleOpModel { public: FullyConnected4BitOpModel( int units, int batches, const TensorData& input, const TensorData& weights, const TensorData& output, std::vector<int8_t> weights_initializer, TfLiteRegistration* registration, ActivationFunctionType activation_func = ActivationFunctionType_RELU) : batches_(batches), units_(units) { int total_input_size = 1; for (size_t i = 0; i < input.shape.size(); ++i) { total_input_size *= input.shape[i]; } input_size_ = total_input_size / batches_; input_ = AddInput(input); const std::vector<int8_t> quantized_data(weights_initializer); std::vector<int8_t> weight_data(quantized_data.size() / 2); for (int i = 0; i < quantized_data.size(); i++) { uint8_t val = quantized_data[i] & UINT8_C(15); if ((i % 2) == 0) { weight_data[i / 2] = val & INT8_C(15); } else { weight_data[i / 2] |= (val << 4); } } weights_ = AddConstInput<int8_t>(weights, weight_data.data(), weight_data.size()); bias_ = AddInput({TensorType_FLOAT32, {units_}}); output_ = AddOutput(output); FullyConnectedOptionsWeightsFormat weights_format = FullyConnectedOptionsWeightsFormat_DEFAULT; SetBuiltinOp(BuiltinOperator_FULLY_CONNECTED, BuiltinOptions_FullyConnectedOptions, CreateFullyConnectedOptions(builder_, activation_func, weights_format, true) .Union()); resolver_ = std::make_unique<SingleOpResolver>( BuiltinOperator_FULLY_CONNECTED, registration); BuildInterpreter({GetShape(input_), GetShape(weights_), GetShape(bias_)}); SetUnitScale(); } void SetUnitScale() { TfLiteTensor* t = interpreter_->tensor(weights_); t->type = kTfLiteInt4; t->params.scale = 1.0; auto filter_params = reinterpret_cast<TfLiteAffineQuantization*>(t->quantization.params); if (filter_params && filter_params->scale && filter_params->scale->size > 0) { for (int i = 0; i < filter_params->scale->size; i++) { filter_params->scale->data[i] = 1.0; } } } void SetInput(const std::vector<float>& f) { PopulateTensor(input_, f); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } void SetBias(const std::vector<float>& f) { PopulateTensor(bias_, f); } int input_size() { return input_size_; } int num_units() { return units_; } int num_batches() { return batches_; } protected: int input_; int weights_; int bias_; int output_; int batches_; int units_; int input_size_; bool use_native_int4_ = false; }; TEST(Hybrid4BitFullyConnectedOpTest, SimpleTestHybridInt4) { int units = 5; int batches = 4; int cols = 40; FullyConnected4BitOpModel m( units, batches, {TensorType_FLOAT32, {batches, cols}}, {TensorType_INT4, {units, cols}, 0.0, 0.0, 1.0}, {TensorType_FLOAT32, {units, batches}}, { -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 1, 2, -3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 1, 2, -3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 1, 2, -3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, }, ops::builtin::Register_FULLY_CONNECTED_GENERIC_OPT(), ActivationFunctionType_RELU); m.SetBias({1, 2, 3, 1, 2}); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, }); m.Invoke(); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {393., 456., 457., 455., 394., 413., 476., 477., 475., 414., 393., 456., 457., 455., 394., 393., 456., 457., 455., 394}, 1.3f))); } TEST(Hybrid4BitFullyConnectedOpTest, TestHybridInt4AllZeroBatch) { int units = 5; int batches = 4; int cols = 40; FullyConnected4BitOpModel m( units, batches, {TensorType_FLOAT32, {batches, cols}}, {TensorType_INT4, {units, cols}, 0.0, 0.0, 1.0}, {TensorType_FLOAT32, {units, batches}}, { -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 1, 2, -3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 1, 2, -3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 1, 2, -3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, -1, 2, 3, 4, 5, 6, 7, 1, 2, 3, }, ops::builtin::Register_FULLY_CONNECTED_GENERIC_OPT(), ActivationFunctionType_RELU); m.SetBias({1, 2, 3, 1, 2}); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }); m.Invoke(); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {393., 456., 457., 455., 394., 413., 476., 477., 475., 414., 393., 456., 457., 455., 394., 1, 2, 3, 1, 2}, 1.3f))); } std::mt19937 random_engine(2023); std::uniform_real_distribution<float> real_dist(0.f, 1.f); std::uniform_int_distribution<int32_t> int_dist(-7, 7); class Hybrid4BitFullyConnectedVsReferenceOpTests : public ::testing::TestWithParam<::testing::tuple<int, int, int>> {}; TEST_P(Hybrid4BitFullyConnectedVsReferenceOpTests, TestHybridInt4) { auto params = GetParam(); int units = std::get<0>(params); int batches = std::get<1>(params); int cols = std::get<2>(params); std::vector<int8_t> weight_data(units * cols, 0); std::vector<float> input_data(batches * cols, 0); std::vector<float> bias_data(units, 0); for (int i = 0; i < units * cols; ++i) { weight_data[i] = int_dist(random_engine); } for (int i = 0; i < batches * cols; ++i) { input_data[i] = real_dist(random_engine); } for (int i = 0; i < units; ++i) { bias_data[i] = real_dist(random_engine); } FullyConnected4BitOpModel test( units, batches, {TensorType_FLOAT32, {batches, cols}}, {TensorType_INT4, {units, cols}, 0.0, 0.0, 1.0}, {TensorType_FLOAT32, {units, batches}}, weight_data, ops::builtin::Register_FULLY_CONNECTED_GENERIC_OPT(), ActivationFunctionType_RELU); test.SetBias(bias_data); test.SetInput(input_data); test.Invoke(); std::vector<float> test_data = test.GetOutput(); FullyConnected4BitOpModel expected( units, batches, {TensorType_FLOAT32, {batches, cols}}, {TensorType_INT4, {units, cols}, 0.0, 0.0, 1.0}, {TensorType_FLOAT32, {units, batches}}, weight_data, ops::builtin::Register_FULLY_CONNECTED_REF(), ActivationFunctionType_RELU); expected.SetBias(bias_data); expected.SetInput(input_data); expected.Invoke(); std::vector<float> expected_data = expected.GetOutput(); EXPECT_THAT(test_data, ElementsAreArray(ArrayFloatNear( expected_data, 1e-3f))); } INSTANTIATE_TEST_SUITE_P(Hybrid4BitFullyConnectedVsReferenceOpTests, Hybrid4BitFullyConnectedVsReferenceOpTests, ::testing::ValuesIn({ std::make_tuple(4, 1, 32), std::make_tuple(4, 1, 64), std::make_tuple(5, 1, 128), std::make_tuple(5, 4, 128), std::make_tuple(5, 6, 128), std::make_tuple(5, 1, 38), std::make_tuple(5, 4, 72), std::make_tuple(5, 6, 130), std::make_tuple(4, 1, 56), std::make_tuple(4, 1, 48), std::make_tuple(4, 1, 120), })); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/optimized/fully_connected_4bit.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/fully_connected_4bit_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
47d9aac5-874a-4c9c-ab63-6ce9ce4b9f1b
cpp
tensorflow/tensorflow
make_sloppy
tensorflow/core/grappler/optimizers/data/make_sloppy.cc
tensorflow/core/grappler/optimizers/data/make_sloppy_test.cc
#include "tensorflow/core/grappler/optimizers/data/make_sloppy.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" namespace tensorflow { namespace grappler { Status MakeSloppy::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); for (NodeDef& node : *output->mutable_node()) { if (graph_utils::HasSloppyAttr(node.op())) { (*node.mutable_attr())["sloppy"].set_b(true); stats->num_changes++; } if (graph_utils::HasDeterministicAttr(node.op()) && node.attr().at("deterministic").s() == "default") { (*node.mutable_attr())["deterministic"].set_s("false"); stats->num_changes++; } } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MakeSloppy, "make_sloppy"); } }
#include "tensorflow/core/grappler/optimizers/data/make_sloppy.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { TEST(MakeSloppy, ParallelInterleave) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV2Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("interleave", output)); int index = graph_utils::FindGraphNodeWithName("interleave", output); EXPECT_TRUE(output.node(index).attr().at("sloppy").b()); } TEST(MakeSloppy, ParallelMap) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapNode("map", "range", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map", output)); int index = graph_utils::FindGraphNodeWithName("map", output); EXPECT_TRUE(output.node(index).attr().at("sloppy").b()); } TEST(MakeSloppy, ParseExampleDataset) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParseExampleNode("parse_example", "range", "num_parallel_calls", false)}, {}); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("parse_example", output)); int index = graph_utils::FindGraphNodeWithName("parse_example", output); EXPECT_TRUE(output.node(index).attr().at("sloppy").b()); } TEST(ChangeDefault, ParallelInterleave) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV4Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "XTimesTwo", "default")}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("interleave", output)); int index = graph_utils::FindGraphNodeWithName("interleave", output); EXPECT_EQ(output.node(index).attr().at("deterministic").s(), "false"); } TEST(ChangeDefault, ParallelMap) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapV2Node( "map", "range", "num_parallel_calls", "XTimesTwo", "default", false)}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map", output)); int index = graph_utils::FindGraphNodeWithName("map", output); EXPECT_EQ(output.node(index).attr().at("deterministic").s(), "false"); } TEST(ChangeDefault, ParallelBatch) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), graph_tests_utils::MakeParallelBatchNode( "batch", "range", "batch_size", "num_parallel_calls", "drop_remainder", "default")}, {}); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("batch", output)); int index = graph_utils::FindGraphNodeWithName("batch", output); EXPECT_EQ(output.node(index).attr().at("deterministic").s(), "false"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/make_sloppy.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/make_sloppy_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e114bc94-ba21-4c16-9d98-227c026a9002
cpp
google/cel-cpp
optional_type
common/types/optional_type.cc
common/types/optional_type_test.cc
#include <cstddef> #include "absl/base/attributes.h" #include "absl/strings/string_view.h" #include "common/type.h" namespace cel { namespace common_internal { namespace { struct OptionalTypeData final { const absl::string_view name; const size_t parameters_size; const Type parameter; }; union DynOptionalTypeData final { OptionalTypeData optional; OpaqueTypeData opaque; }; static_assert(offsetof(OptionalTypeData, name) == offsetof(OpaqueTypeData, name)); static_assert(offsetof(OptionalTypeData, parameters_size) == offsetof(OpaqueTypeData, parameters_size)); static_assert(offsetof(OptionalTypeData, parameter) == offsetof(OpaqueTypeData, parameters)); ABSL_CONST_INIT const DynOptionalTypeData kDynOptionalTypeData = { .optional = { .name = OptionalType::kName, .parameters_size = 1, .parameter = DynType(), }, }; } } OptionalType::OptionalType() : opaque_(&common_internal::kDynOptionalTypeData.opaque) {} Type OptionalType::GetParameter() const { return GetParameters().front(); } }
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" #include "google/protobuf/arena.h" namespace cel { namespace { TEST(OptionalType, Default) { OptionalType optional_type; EXPECT_EQ(optional_type.GetParameter(), DynType()); } TEST(OptionalType, Kind) { google::protobuf::Arena arena; EXPECT_EQ(OptionalType(&arena, BoolType()).kind(), OptionalType::kKind); EXPECT_EQ(Type(OptionalType(&arena, BoolType())).kind(), OptionalType::kKind); } TEST(OptionalType, Name) { google::protobuf::Arena arena; EXPECT_EQ(OptionalType(&arena, BoolType()).name(), OptionalType::kName); EXPECT_EQ(Type(OptionalType(&arena, BoolType())).name(), OptionalType::kName); } TEST(OptionalType, DebugString) { google::protobuf::Arena arena; { std::ostringstream out; out << OptionalType(&arena, BoolType()); EXPECT_EQ(out.str(), "optional_type<bool>"); } { std::ostringstream out; out << Type(OptionalType(&arena, BoolType())); EXPECT_EQ(out.str(), "optional_type<bool>"); } } TEST(OptionalType, Parameter) { google::protobuf::Arena arena; EXPECT_EQ(OptionalType(&arena, BoolType()).GetParameter(), BoolType()); } TEST(OptionalType, Hash) { google::protobuf::Arena arena; EXPECT_EQ(absl::HashOf(OptionalType(&arena, BoolType())), absl::HashOf(OptionalType(&arena, BoolType()))); } TEST(OptionalType, Equal) { google::protobuf::Arena arena; EXPECT_EQ(OptionalType(&arena, BoolType()), OptionalType(&arena, BoolType())); EXPECT_EQ(Type(OptionalType(&arena, BoolType())), OptionalType(&arena, BoolType())); EXPECT_EQ(OptionalType(&arena, BoolType()), Type(OptionalType(&arena, BoolType()))); EXPECT_EQ(Type(OptionalType(&arena, BoolType())), Type(OptionalType(&arena, BoolType()))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/optional_type.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/optional_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
b428a4e6-f411-4fe5-b691-f4f37449cc1c
cpp
google/langsvr
optional
include/langsvr/optional.h
src/optional_test.cc
#ifndef LANGSVR_OPTIONAL_H_ #define LANGSVR_OPTIONAL_H_ #include <cassert> #include <type_traits> #include <utility> namespace langsvr { template <typename T> struct Optional { Optional() = default; ~Optional() { Reset(); } Optional(const Optional& other) { *this = other; } Optional(Optional&& other) { *this = std::move(other); } Optional(const T& other) { *this = other; } Optional(T&& other) { *this = std::move(other); } void Reset() { if (ptr) { delete ptr; ptr = nullptr; } } Optional& operator=(const Optional& other) { Reset(); if (other.ptr) { ptr = new T(*other); } return *this; } Optional& operator=(Optional&& other) { Reset(); ptr = other.ptr; other.ptr = nullptr; return *this; } Optional& operator=(const T& value) { Reset(); if (!ptr) { ptr = new T(value); } return *this; } Optional& operator=(T&& value) { Reset(); if (!ptr) { ptr = new T(std::move(value)); } return *this; } operator bool() const { return ptr != nullptr; } bool operator!() const { return ptr == nullptr; } T* operator->() { return &Get(); } const T* operator->() const { return &Get(); } T& operator*() { return Get(); } const T& operator*() const { return Get(); } template <typename V> bool operator==(V&& value) const { if constexpr (std::is_same_v<Optional, std::decay_t<V>>) { return (!*this && !value) || (*this && value && (Get() == value.Get())); } else { if (!ptr) { return false; } return Get() == std::forward<V>(value); } } template <typename V> bool operator!=(V&& value) const { return !(*this == std::forward<V>(value)); } private: T& Get() { assert(ptr); return *ptr; } const T& Get() const { assert(ptr); return *ptr; } T* ptr = nullptr; }; } #endif
#include "langsvr/optional.h" #include "gmock/gmock.h" namespace langsvr { namespace { TEST(OptionalTest, CtorNoArgs) { Optional<std::string> opt; EXPECT_FALSE(opt); EXPECT_TRUE(!opt); EXPECT_NE(opt, "hello"); } TEST(OptionalTest, CopyCtorWithValue) { std::string val{"hello"}; Optional<std::string> opt{val}; EXPECT_TRUE(opt); EXPECT_FALSE(!opt); EXPECT_EQ(opt, "hello"); EXPECT_NE(opt, "world"); EXPECT_EQ(*opt, "hello"); } TEST(OptionalTest, MoveCtorWithValue) { std::string val{"hello"}; Optional<std::string> opt{std::move(val)}; EXPECT_TRUE(opt); EXPECT_FALSE(!opt); EXPECT_EQ(opt, "hello"); EXPECT_NE(opt, "world"); EXPECT_EQ(*opt, "hello"); } TEST(OptionalTest, CopyCtorWithOptional) { Optional<std::string> other{"hello"}; Optional<std::string> opt{other}; EXPECT_TRUE(opt); EXPECT_FALSE(!opt); EXPECT_EQ(opt, "hello"); EXPECT_NE(opt, "world"); EXPECT_EQ(*opt, "hello"); } TEST(OptionalTest, MoveCtorWithOptional) { Optional<std::string> other{"hello"}; Optional<std::string> opt{std::move(other)}; EXPECT_TRUE(opt); EXPECT_FALSE(!opt); EXPECT_EQ(opt, "hello"); EXPECT_NE(opt, "world"); EXPECT_EQ(*opt, "hello"); } } }
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/include/langsvr/optional.h
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/optional_test.cc
303c526231a90049a3e384549720f3fbd453cf66
d46b1e94-dd76-416b-ac17-f2a57bb63e60
cpp
tensorflow/tensorflow
batch_op_rewriter
tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.cc
tensorflow/core/grappler/optimizers/inference/batch_op_rewriter_test.cc
#include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.h" #include <functional> #include <string> #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/map.h" #include "google/protobuf/repeated_field.h" #include "absl/status/status.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kBatchFunction[] = "BatchFunction"; constexpr char kBatchOpRewriteConfigParamKey[] = "batch_op_rewrite_config"; constexpr char kNumBatchThreadsAttr[] = "num_batch_threads"; constexpr char kMaxBatchSizeAttr[] = "max_batch_size"; constexpr char kBatchTimeoutMicrosAttr[] = "batch_timeout_micros"; constexpr char kAllowedBatchSizesAttr[] = "allowed_batch_sizes"; constexpr char kMaxEnqueuedBatchesAttr[] = "max_enqueued_batches"; constexpr char kEnableLargeBatchSplitting[] = "enable_large_batch_splitting"; constexpr int64 kBoostMicrosNotSet = -1; using BatchOpRewriteFunction = std::function<void(NodeDef* batch_op)>; } using ::tensorflow::GraphDef; using ::tensorflow::NodeDef; using ::tensorflow::Status; using ::tensorflow::grappler::Cluster; using ::tensorflow::grappler::GrapplerItem; namespace { struct AdaptiveBatchSchedulerParams { int32 initial_inflight_batches; int32 min_inflight_batches; int32 max_inflight_batches; int32 batches_to_average_over; int64_t full_batch_scheduling_boost_micros; }; AdaptiveBatchSchedulerParams GetAdaptiveBatchSchedulerParams( const BatchOpRewriteConfig::AdaptiveBatchSchedulerOption& option) { AdaptiveBatchSchedulerParams params; params.min_inflight_batches = option.has_min_inflight_batches_limit() ? option.min_inflight_batches_limit().value() : kMinInflightBatches; params.initial_inflight_batches = option.has_initial_inflight_batches_limit() ? option.initial_inflight_batches_limit().value() : kInitialInflightBatches; params.max_inflight_batches = option.has_max_inflight_batches_limit() ? option.max_inflight_batches_limit().value() : kMaxInflightBatches; params.batches_to_average_over = option.has_batches_to_average_over() ? option.batches_to_average_over().value() : kBatchesToAverageOver; params.full_batch_scheduling_boost_micros = option.has_full_batch_scheduling_boost_micros() ? option.full_batch_scheduling_boost_micros().value() : kBoostMicrosNotSet; return params; } void SetNodeAttrs(const AdaptiveBatchSchedulerParams& params, NodeDef* node) { ::tensorflow::graph_transforms::SetNodeAttr(kEnableAdaptiveSchedulerAttr, true, node); ::tensorflow::graph_transforms::SetNodeAttr( kMaxInflightBatchesAttr, params.max_inflight_batches, node); ::tensorflow::graph_transforms::SetNodeAttr( kMinInflightBatchesAttr, params.min_inflight_batches, node); ::tensorflow::graph_transforms::SetNodeAttr( kInitialInflightBatchesAttr, params.initial_inflight_batches, node); ::tensorflow::graph_transforms::SetNodeAttr( kBatchesToAverageOverAttr, params.batches_to_average_over, node); if (params.full_batch_scheduling_boost_micros != -1) { ::tensorflow::graph_transforms::SetNodeAttr( kFullBatchSchedulingBoostMicros, params.full_batch_scheduling_boost_micros, node); } } void UpdateBatchOps(GraphDef* graph, BatchOpRewriteFunction rewrite_fn) { for (int i = 0; i < graph->node_size(); ++i) { NodeDef* node = graph->mutable_node(i); if (node->op() == kBatchFunction) { rewrite_fn(node); } } for (int i = 0; i < graph->library().function_size(); i++) { FunctionDef* function_def = graph->mutable_library()->mutable_function(i); for (int j = 0; j < function_def->node_def_size(); j++) { NodeDef* node = function_def->mutable_node_def(j); if (node->op() == kBatchFunction) { rewrite_fn(node); } } } } } Status BatchOpRewriter::Init( const ::tensorflow::RewriterConfig_CustomGraphOptimizer* config) { if (config->parameter_map().find(kBatchOpRewriteConfigParamKey) == config->parameter_map().end()) { return absl::InternalError( "batch_op_rewrite_config param must be set in the rewriter config " "with a serialized/encoded BatchOpRewriteConfig."); } const auto& params = config->parameter_map().at(kBatchOpRewriteConfigParamKey); std::string unencoded; if (params.s().empty()) { VLOG(2) << "Empty batch-op rewrite config"; return absl::OkStatus(); } if (!absl::Base64Unescape(params.s(), &unencoded)) { return absl::InternalError( "Failed to unencode batch_op_rewrite_config from params."); } if (!config_.ParseFromString(unencoded)) { return absl::InternalError( "Failed to parse batch_op_rewrite_config from params."); } VLOG(2) << "BatchOp Rewrite config is " << config_.DebugString(); return absl::OkStatus(); } Status BatchOpRewriter::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { VLOG(2) << "Running BatchOp Rewriter"; *optimized_graph = item.graph; bool asbs_overridden = false; if (config_proto_.has_experimental() && config_proto_.experimental().has_session_metadata()) { const string model_name = config_proto_.experimental().session_metadata().name(); if (!config_.model_scheduler_options().empty()) { return absl::InvalidArgumentError( "model_scheduler_options is deprecated. Please use the " "adaptive_batch_scheduler_option field in batch_options instead."); } auto model_batch_options = config_.batch_options().find(model_name); if (model_batch_options != config_.batch_options().end()) { auto& batch_options = model_batch_options->second; VLOG(2) << "Rewriting batch_options for " << model_name << " to " << batch_options.DebugString(); if (batch_options.has_adaptive_batch_scheduler_option()) { AdaptiveBatchSchedulerParams params = GetAdaptiveBatchSchedulerParams( batch_options.adaptive_batch_scheduler_option()); if ((params.min_inflight_batches > params.max_inflight_batches) || (params.initial_inflight_batches < params.min_inflight_batches) || (params.initial_inflight_batches > params.max_inflight_batches)) { return absl::InvalidArgumentError(absl::StrCat( "Requires min_inflight_batches <= initial_inflight_batches " "and initial_inflight_batches <= max_inflight_batches; Got " "{min_inflight_batches : ", params.min_inflight_batches, ", initial_inflight_batches : ", params.initial_inflight_batches, ", max_inflight_batches : ", params.max_inflight_batches, "}.")); } asbs_overridden = true; UpdateBatchOps(optimized_graph, [&params](NodeDef* batch_op) { SetNodeAttrs(params, batch_op); }); } if (config_.enable_adaptive_shared_batching_thread_pool() && !asbs_overridden && batch_options.has_num_batch_threads() && batch_options.num_batch_threads() != 0) { return absl::InvalidArgumentError( "Unable to enable adapative shared batching because it requires " "num_batch_threads=0 but the BatchOpRewriteConfig is also trying " "to set num_batch_threads. Set either set " "enable_adaptive_shared_batching_thread_pool or num_batch_threads " "but not both."); } UpdateBatchOps(optimized_graph, [&batch_options](NodeDef* batch_op) { if (batch_options.has_num_batch_threads()) { ::tensorflow::graph_transforms::SetNodeAttr( kNumBatchThreadsAttr, batch_options.num_batch_threads(), batch_op); } if (batch_options.has_max_batch_size()) { ::tensorflow::graph_transforms::SetNodeAttr( kMaxBatchSizeAttr, batch_options.max_batch_size(), batch_op); } if (batch_options.has_batch_timeout_micros()) { ::tensorflow::graph_transforms::SetNodeAttr( kBatchTimeoutMicrosAttr, batch_options.batch_timeout_micros(), batch_op); } if (!batch_options.allowed_batch_sizes().empty()) { ::tensorflow::graph_transforms::SetNodeAttr( kAllowedBatchSizesAttr, batch_options.allowed_batch_sizes(), batch_op); } if (batch_options.has_max_enqueued_batches()) { ::tensorflow::graph_transforms::SetNodeAttr( kMaxEnqueuedBatchesAttr, batch_options.max_enqueued_batches(), batch_op); } if (batch_options.has_disable_large_batch_splitting()) { ::tensorflow::graph_transforms::SetNodeAttr( kEnableLargeBatchSplitting, !batch_options.disable_large_batch_splitting(), batch_op); } }); } } if (asbs_overridden) { return absl::OkStatus(); } if (config_.enable_adaptive_shared_batching_thread_pool()) { UpdateBatchOps(optimized_graph, [](NodeDef* batch_op) { ::tensorflow::graph_transforms::SetNodeAttr(kNumBatchThreadsAttr, 0, batch_op); }); } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(BatchOpRewriter, "batch_op_rewrite"); } }
#include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.h" #include <vector> #include "google/protobuf/wrappers.pb.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/escaping.h" #include "absl/strings/substitute.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace grappler { namespace { using ::tensorflow::GraphDef; using ::tensorflow::NodeDef; using ::tensorflow::RewriterConfig_CustomGraphOptimizer; using ::tensorflow::Status; using ::tensorflow::grappler::GrapplerItem; using ::tensorflow::serving::BatchOpRewriteConfig; void AddBatchOp(GraphDef* graph, int num_batch_threads = 16, const absl::flat_hash_map<string, int>& reserved_int_attrs = {}, int max_batch_size = 16, int batch_timeout_micros = 10000, const std::vector<int32>& allowed_batch_sizes = {8, 16}, int max_enqueued_batches = 1000, bool disable_large_batch_splitting = false) { auto set_batch_node_attribute = [&](const int32_t num_batch_threads, NodeDef* batch_op) { batch_op->set_name("cond/batch/BatchFunction"); batch_op->set_op("BatchFunction"); ::tensorflow::graph_transforms::SetNodeAttr("num_batch_threads", num_batch_threads, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("max_batch_size", max_batch_size, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("batch_timeout_micros", batch_timeout_micros, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("allowed_batch_sizes", allowed_batch_sizes, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("max_enqueued_batches", max_enqueued_batches, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("enable_large_batch_splitting", !disable_large_batch_splitting, batch_op); if (!reserved_int_attrs.empty()) { ::tensorflow::graph_transforms::SetNodeAttr(kEnableAdaptiveSchedulerAttr, true, batch_op); for (const auto& reserved_int_attr : reserved_int_attrs) { ::tensorflow::graph_transforms::SetNodeAttr( reserved_int_attr.first, reserved_int_attr.second, batch_op); } } }; set_batch_node_attribute(num_batch_threads, graph->add_node()); FunctionDefLibrary* function_def_lib = graph->mutable_library(); FunctionDef* function_def = function_def_lib->add_function(); set_batch_node_attribute(num_batch_threads, function_def->add_node_def()); } RewriterConfig_CustomGraphOptimizer MakeConfig( const BatchOpRewriteConfig& config) { RewriterConfig_CustomGraphOptimizer rewriter_config; (*rewriter_config.mutable_parameter_map())["batch_op_rewrite_config"].set_s( absl::Base64Escape(config.SerializeAsString())); return rewriter_config; } class BatchOpRewriterTest : public ::testing::TestWithParam<bool> {}; INSTANTIATE_TEST_SUITE_P(RewriteNumBatchThreads, BatchOpRewriterTest, ::testing::Bool()); TEST_P(BatchOpRewriterTest, Basic) { GrapplerItem item; AddBatchOp(&item.graph, 16); BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(GetParam()); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.Init(&rewriter_config)); GraphDef optimized_graph; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected_graph; AddBatchOp(&expected_graph, GetParam() ? 0 : 16); EXPECT_EQ(optimized_graph.DebugString(), expected_graph.DebugString()); } TEST_P(BatchOpRewriterTest, InvalidArgumentForAdaptiveBatchScheduler) { GrapplerItem item; AddBatchOp(&item.graph, 16); BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(GetParam()); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_batches_to_average_over() ->set_value(1000); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_initial_inflight_batches_limit() ->set_value(8); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_min_inflight_batches_limit() ->set_value(16); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_max_inflight_batches_limit() ->set_value(32); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.Init(&rewriter_config)); optimizer.config_proto_.mutable_experimental() ->mutable_session_metadata() ->set_version(123); optimizer.config_proto_.mutable_experimental() ->mutable_session_metadata() ->set_name("model_with_override"); GraphDef optimized_graph; Status status = optimizer.Optimize(nullptr, item, &optimized_graph); EXPECT_FALSE(status.ok()); EXPECT_TRUE(errors::IsInvalidArgument(status)); } TEST_P(BatchOpRewriterTest, AdaptiveBatchScheduler) { BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(GetParam()); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_batches_to_average_over() ->set_value(1000); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_initial_inflight_batches_limit() ->set_value(16); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_min_inflight_batches_limit() ->set_value(8); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_max_inflight_batches_limit() ->set_value(32); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_full_batch_scheduling_boost_micros() ->set_value(12345); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; GrapplerItem item; AddBatchOp(&item.graph, 16); TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected_graph; AddBatchOp(&expected_graph, 16 , {{kBatchesToAverageOverAttr, 1000}, {kInitialInflightBatchesAttr, 16}, {kMinInflightBatchesAttr, 8}, {kMaxInflightBatchesAttr, 32}, {kFullBatchSchedulingBoostMicros, 12345}}); EXPECT_EQ(optimized_graph.DebugString(), expected_graph.DebugString()); } TEST_F(BatchOpRewriterTest, UpdateModelSchedulerOptions) { BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(true); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_batches_to_average_over() ->set_value(1000); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_initial_inflight_batches_limit() ->set_value(16); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_min_inflight_batches_limit() ->set_value(8); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_max_inflight_batches_limit() ->set_value(32); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; GrapplerItem item; AddBatchOp(&item.graph, 16); ASSERT_FALSE(optimizer.Optimize(nullptr, item, &optimized_graph).ok()); } TEST_F(BatchOpRewriterTest, UpdateBatchOptions) { BatchOpRewriteConfig config; (*config.mutable_batch_options())["model_with_override"] .set_num_batch_threads(2); (*config.mutable_batch_options())["model_with_override"].set_max_batch_size( 128); (*config.mutable_batch_options())["model_with_override"] .set_batch_timeout_micros(5000); const std::vector<int32> allowed_batch_sizes{4, 32}; (*config.mutable_batch_options())["model_with_override"] .mutable_allowed_batch_sizes() ->Add(allowed_batch_sizes.begin(), allowed_batch_sizes.end()); (*config.mutable_batch_options())["model_with_override"] .set_max_enqueued_batches(500); (*config.mutable_batch_options())["model_with_override"] .set_disable_large_batch_splitting(true); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; GrapplerItem item; AddBatchOp(&item.graph); TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected_graph; AddBatchOp(&expected_graph, 2 , {} , 128 , 5000 , allowed_batch_sizes, 500 , true ); EXPECT_EQ(optimized_graph.DebugString(), expected_graph.DebugString()); } TEST_F(BatchOpRewriterTest, UpdateAdaptiveSharedBatchSchedulerAndNumBatchThreads) { GrapplerItem item; AddBatchOp(&item.graph, 16); BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(true); (*config.mutable_batch_options())["model_with_override"] .set_num_batch_threads(2); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; ASSERT_FALSE(optimizer.Optimize(nullptr, item, &optimized_graph).ok()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/inference/batch_op_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
81f07eaa-6daf-4636-87c4-9733b688408d
cpp
tensorflow/tensorflow
layout
third_party/xla/xla/layout.cc
third_party/xla/xla/layout_test.cc
#include "xla/layout.h" #include <cstdint> #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/layout_util.h" #include "xla/primitive_util.h" #include "xla/printer.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { TileProto Tile::ToProto() const { TileProto tile_proto; SetProto(tile_proto); return tile_proto; } void Tile::SetProto(TileProto& tile_proto) const { tile_proto.Clear(); for (int64_t i : dimensions()) { tile_proto.add_dimensions(i); } } void Tile::Print(Printer* printer) const { printer->Append("("); AppendJoin(printer, dimensions(), ",", [&](Printer* printer, int64_t dim) { if (dim >= 0) { printer->Append(dim); } else { if (dim == kCombineDimension) { printer->Append("*"); } else { printer->Append("Invalid value "); printer->Append(dim); } } }); printer->Append(")"); } std::string Tile::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } Layout::Layout() : index_primitive_type_(PRIMITIVE_TYPE_INVALID), pointer_primitive_type_(PRIMITIVE_TYPE_INVALID) {} SplitConfigProto SplitConfig::ToProto() const { SplitConfigProto split_config_proto; split_config_proto.set_dimension(dimension_); for (int64_t i : split_indices_) { split_config_proto.add_split_indices(i); } return split_config_proto; } void SplitConfig::SetProto(SplitConfigProto& split_config_proto) const { split_config_proto.Clear(); split_config_proto.set_dimension(dimension_); for (int64_t i : split_indices_) { split_config_proto.add_split_indices(i); } } std::string SplitConfig::ToString() const { return absl::StrCat("(", dimension_, ":", absl::StrJoin(split_indices_, ","), ")"); } Layout::Layout(absl::Span<const int64_t> minor_to_major) : index_primitive_type_(PRIMITIVE_TYPE_INVALID), pointer_primitive_type_(PRIMITIVE_TYPE_INVALID), minor_to_major_(minor_to_major.begin(), minor_to_major.end()) {} Layout::Layout(absl::Span<const int64_t> minor_to_major, absl::Span<const Tile> tiles, int64_t element_size_in_bits) : index_primitive_type_(PRIMITIVE_TYPE_INVALID), pointer_primitive_type_(PRIMITIVE_TYPE_INVALID), element_size_in_bits_(element_size_in_bits), minor_to_major_(minor_to_major.begin(), minor_to_major.end()), tiles_(tiles.begin(), tiles.end()) {} Layout::Layout(absl::Span<const int64_t> minor_to_major, absl::Span<const DimLevelType> dim_level_types, absl::Span<const bool> dim_unique, absl::Span<const bool> dim_ordered, absl::Span<const Tile> tiles, int64_t tail_padding_alignment_in_elements, PrimitiveType index_primitive_type, PrimitiveType element_primitive_type, int64_t element_size_in_bits, int64_t memory_space, absl::Span<const SplitConfig> split_configs, std::unique_ptr<Shape> physical_shape, int64_t dynamic_shape_metadata_prefix_bytes) : index_primitive_type_(index_primitive_type), pointer_primitive_type_(element_primitive_type), memory_space_(memory_space), element_size_in_bits_(element_size_in_bits), minor_to_major_(minor_to_major.begin(), minor_to_major.end()), tiles_(tiles.begin(), tiles.end()), split_configs_(split_configs.begin(), split_configs.end()), tail_padding_alignment_in_elements_(tail_padding_alignment_in_elements), physical_shape_(std::move(physical_shape)), dynamic_shape_metadata_prefix_bytes_( dynamic_shape_metadata_prefix_bytes) { n_dim_level_types_ = dim_level_types.size(); n_dim_unique_ = dim_unique.size(); n_dim_ordered_ = dim_ordered.size(); const int n_attributes = std::max<int>( n_dim_level_types_, std::max<int>(n_dim_unique_, n_dim_ordered_)); dim_attributes_.resize(n_attributes); for (int i = 0; i < n_attributes; i++) { if (i < n_dim_level_types_) dim_attributes_[i].dim_level_type = dim_level_types[i]; if (i < n_dim_unique_) dim_attributes_[i].dim_unique = dim_unique[i]; if (i < n_dim_ordered_) dim_attributes_[i].dim_ordered = dim_ordered[i]; } } Layout::Layout(const Layout& other) : dim_attributes_(other.dim_attributes_), n_dim_level_types_(other.n_dim_level_types_), n_dim_unique_(other.n_dim_unique_), n_dim_ordered_(other.n_dim_ordered_), index_primitive_type_(other.index_primitive_type_), pointer_primitive_type_(other.pointer_primitive_type_), memory_space_(other.memory_space_), element_size_in_bits_(other.element_size_in_bits_), minor_to_major_(other.minor_to_major_), tiles_(other.tiles_), split_configs_(other.split_configs_), tail_padding_alignment_in_elements_( other.tail_padding_alignment_in_elements_), physical_shape_(other.physical_shape_ != nullptr ? std::make_unique<Shape>(*other.physical_shape_) : nullptr), dynamic_shape_metadata_prefix_bytes_( other.dynamic_shape_metadata_prefix_bytes_) {} Layout::Layout(Layout&& other) = default; Layout::~Layout() = default; Layout& Layout::operator=(const Layout& other) { if (this != &other) { dim_attributes_ = other.dim_attributes_; n_dim_level_types_ = other.n_dim_level_types_; n_dim_unique_ = other.n_dim_unique_; n_dim_ordered_ = other.n_dim_ordered_; minor_to_major_ = other.minor_to_major_; tiles_ = other.tiles_; tail_padding_alignment_in_elements_ = other.tail_padding_alignment_in_elements_; index_primitive_type_ = other.index_primitive_type_; pointer_primitive_type_ = other.pointer_primitive_type_; element_size_in_bits_ = other.element_size_in_bits_; memory_space_ = other.memory_space_; split_configs_ = other.split_configs_; if (other.physical_shape_ != nullptr) { physical_shape_ = std::make_unique<Shape>(*other.physical_shape_); } else { physical_shape_ = nullptr; } dynamic_shape_metadata_prefix_bytes_ = other.dynamic_shape_metadata_prefix_bytes_; } return *this; } Layout& Layout::operator=(Layout&& other) = default; Layout Layout::CreateFromProto(const LayoutProto& proto) { Layout layout; for (int dim_level_type : proto.dim_level_types()) { layout.add_dim_level_type(static_cast<DimLevelType>(dim_level_type)); } for (bool dim_unique : proto.dim_unique()) { layout.add_dim_unique(dim_unique); } for (bool dim_ordered : proto.dim_ordered()) { layout.add_dim_ordered(dim_ordered); } layout.minor_to_major_.reserve(proto.minor_to_major_size()); for (const int64_t dimension : proto.minor_to_major()) { layout.add_minor_to_major(dimension); } for (const TileProto& tile_proto : proto.tiles()) { *layout.add_tiles() = Tile::CreateFromProto(tile_proto); } if (proto.tail_padding_alignment_in_elements() != 0) { layout.set_tail_padding_alignment_in_elements( proto.tail_padding_alignment_in_elements()); } else { layout.set_tail_padding_alignment_in_elements(1); } layout.set_index_primitive_type(proto.index_primitive_type()); layout.set_pointer_primitive_type(proto.pointer_primitive_type()); layout.set_element_size_in_bits(proto.element_size_in_bits()); layout.set_memory_space(proto.memory_space()); for (const SplitConfigProto& split_config_proto : proto.split_configs()) { layout.add_split_configs(SplitConfig::CreateFromProto(split_config_proto)); } if (proto.has_physical_shape()) { *layout.mutable_physical_shape() = Shape(proto.physical_shape()); } layout.set_dynamic_shape_metadata_prefix_bytes( proto.dynamic_shape_metadata_prefix_bytes()); return layout; } LayoutProto Layout::ToProto() const { LayoutProto proto; SetProto(proto); return proto; } void Layout::SetProto(LayoutProto& proto) const { proto.Clear(); for (int i = 0; i < n_dim_level_types_; i++) { proto.add_dim_level_types(dim_level_type(i)); } for (int i = 0; i < n_dim_unique_; i++) { proto.add_dim_unique(dim_unique(i)); } for (int i = 0; i < n_dim_ordered_; i++) { proto.add_dim_ordered(dim_ordered(i)); } proto.mutable_minor_to_major()->Reserve(minor_to_major_size()); for (const int64_t dimension : minor_to_major()) { proto.add_minor_to_major(dimension); } for (const Tile& tile : tiles()) { tile.SetProto(*proto.add_tiles()); } proto.set_tail_padding_alignment_in_elements( tail_padding_alignment_in_elements()); proto.set_index_primitive_type(index_primitive_type()); proto.set_pointer_primitive_type(pointer_primitive_type()); proto.set_element_size_in_bits(element_size_in_bits_); proto.set_memory_space(memory_space_); for (const SplitConfig& split_config : split_configs()) { split_config.SetProto(*proto.add_split_configs()); } if (has_physical_shape()) { *proto.mutable_physical_shape() = physical_shape_->ToProto(); } proto.set_dynamic_shape_metadata_prefix_bytes( dynamic_shape_metadata_prefix_bytes_); } namespace { absl::string_view DimLevelTypeAbbrev(DimLevelType dim_level_type) { switch (dim_level_type) { case DIM_DENSE: return "D"; case DIM_COMPRESSED: return "C"; case DIM_SINGLETON: return "S"; case xla::DIM_LOOSE_COMPRESSED: return "H"; default: LOG(FATAL) << "Invalid DimLevelType value: " << dim_level_type; } } } void Layout::Print(Printer* printer) const { printer->Append("{"); AppendJoin(printer, minor_to_major(), ","); bool colon_printed = false; auto print_colon = [&]() { if (colon_printed) return; printer->Append(":"); colon_printed = true; }; if (n_dim_level_types_ > 0) { auto print_one = [&](int i) { printer->Append(DimLevelTypeAbbrev(dim_level_type(i))); if (n_dim_unique_ > 0 && !dim_unique(i)) { printer->Append("+"); } if (n_dim_ordered_ > 0 && !dim_ordered(i)) { printer->Append("~"); } }; print_colon(); printer->Append("D("); print_one(0); for (int i = 1; i < n_dim_level_types_; ++i) { printer->Append(","); print_one(i); } printer->Append(")"); } if (!tiles().empty()) { print_colon(); printer->Append("T"); for (const Tile& tile : tiles()) { tile.Print(printer); } } if (tail_padding_alignment_in_elements() != 1) { print_colon(); printer->Append("L("); printer->Append(tail_padding_alignment_in_elements()); printer->Append(")"); } if (index_primitive_type() != PRIMITIVE_TYPE_INVALID) { print_colon(); if (primitive_util::IsIntegralType(index_primitive_type())) { printer->Append("#("); printer->Append( primitive_util::LowercasePrimitiveTypeName(index_primitive_type())); printer->Append(")"); } else { printer->Append("#(invalid)"); } } if (pointer_primitive_type() != PRIMITIVE_TYPE_INVALID) { print_colon(); if (primitive_util::IsIntegralType(pointer_primitive_type())) { printer->Append("*("); printer->Append( primitive_util::LowercasePrimitiveTypeName(pointer_primitive_type())); printer->Append(")"); } else { printer->Append("*(invalid)"); } } if (element_size_in_bits() != 0) { print_colon(); printer->Append("E("); printer->Append(element_size_in_bits()); printer->Append(")"); } if (memory_space() != 0) { print_colon(); printer->Append("S("); printer->Append(memory_space()); printer->Append(")"); } if (!split_configs().empty()) { print_colon(); printer->Append("SC"); for (const auto& split_config : split_configs()) { printer->Append(split_config.ToString()); } } if (has_physical_shape()) { print_colon(); printer->Append("P("); physical_shape_->Print(printer, true); printer->Append(")"); } if (dynamic_shape_metadata_prefix_bytes_ > 0) { print_colon(); printer->Append("M("); printer->Append(dynamic_shape_metadata_prefix_bytes()); printer->Append(")"); } printer->Append("}"); } std::string Layout::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } bool Layout::Equal::operator()(const Layout& lhs, const Layout& rhs) { if (!LayoutUtil::IsDense(lhs) || !LayoutUtil::IsDense(rhs)) { if (lhs.dim_level_types_size() != rhs.dim_level_types_size()) { return false; } for (int i = 0; i < lhs.dim_level_types_size(); i++) { if (lhs.dim_level_type(i) != rhs.dim_level_type(i)) { return false; } } if (lhs.dim_unique_size() != rhs.dim_unique_size()) { return false; } for (int i = 0; i < lhs.dim_unique_size(); i++) { if (lhs.dim_unique(i) != rhs.dim_unique(i)) { return false; } } if (lhs.dim_ordered_size() != rhs.dim_ordered_size()) { return false; } for (int i = 0; i < lhs.dim_ordered_size(); i++) { if (lhs.dim_ordered(i) != rhs.dim_ordered(i)) { return false; } } } if (lhs.minor_to_major() != rhs.minor_to_major()) { return false; } if (!ignore_tiles_ && lhs.tiles() != rhs.tiles()) { return false; } if (!ignore_tail_padding_alignment_in_elements_ && lhs.tail_padding_alignment_in_elements() != rhs.tail_padding_alignment_in_elements()) { return false; } if (!ignore_index_primitive_type_ && lhs.index_primitive_type() != rhs.index_primitive_type()) { return false; } if (!ignore_pointer_primitive_type_ && lhs.pointer_primitive_type() != rhs.pointer_primitive_type()) { return false; } if (!ignore_element_size_ && lhs.element_size_in_bits() != rhs.element_size_in_bits()) { return false; } if (!ignore_memory_space_ && lhs.memory_space() != rhs.memory_space()) { return false; } if (!ignore_split_configs_ && lhs.split_configs() != rhs.split_configs()) { return false; } if (!ignore_physical_shape_) { if (lhs.has_physical_shape() || rhs.has_physical_shape()) { if (!lhs.has_physical_shape() || !rhs.has_physical_shape()) { return false; } if (lhs.physical_shape() != rhs.physical_shape()) { return false; } } } return true; } bool Layout::operator==(const Layout& other) const { return Equal()(*this, other); } std::ostream& operator<<(std::ostream& out, const Tile& tile) { out << tile.ToString(); return out; } std::ostream& operator<<(std::ostream& out, const Layout& layout) { out << layout.ToString(); return out; } Shape* Layout::mutable_physical_shape() { if (physical_shape_ == nullptr) { physical_shape_ = std::make_unique<Shape>(); } return physical_shape_.get(); } void Layout::clear_physical_shape() { physical_shape_ = nullptr; } Layout& Layout::DeleteDimension(int64_t dim_to_delete) { for (int64_t i = 0; i < minor_to_major_.size();) { if (minor_to_major_[i] == dim_to_delete) { minor_to_major_.erase(minor_to_major_.begin() + i); continue; } if (minor_to_major_[i] > dim_to_delete) { minor_to_major_[i] -= 1; } ++i; } if (LayoutUtil::IsSparse(*this)) { if (dim_to_delete < n_dim_level_types_) n_dim_level_types_--; if (dim_to_delete < n_dim_unique_) n_dim_unique_--; if (dim_to_delete < n_dim_ordered_) n_dim_ordered_--; dim_attributes_.erase(dim_attributes_.begin() + dim_to_delete); } return *this; } }
#include "xla/layout.h" #include <cstdint> #include <memory> #include <sstream> #include <vector> #include "xla/shape_util.h" #include "xla/test.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class LayoutTest : public ::testing::Test {}; TEST_F(LayoutTest, ToString) { EXPECT_EQ(Layout().ToString(), "{}"); EXPECT_EQ(Layout({4, 5, 6}).ToString(), "{4,5,6}"); EXPECT_EQ(Layout({4, 5, 6}).ToString(), "{4,5,6}"); EXPECT_EQ(Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})}) .ToString(), "{3,2,1,0:T(42,123)(4,5)}"); EXPECT_EQ(Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})}) .set_tail_padding_alignment_in_elements(100) .set_element_size_in_bits(42) .ToString(), "{3,2,1,0:T(42,123)(4,5)L(100)E(42)}"); EXPECT_EQ(Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})}) .set_memory_space(3) .ToString(), "{3,2,1,0:T(42,123)(4,5)S(3)}"); EXPECT_EQ(Layout({0, 1}, {}, {}, {}, {Tile({123})}) .add_split_configs(SplitConfig(0, {3})) .add_split_configs(SplitConfig(1, {0, 4})) .ToString(), "{0,1:T(123)SC(0:3)(1:0,4)}"); } TEST_F(LayoutTest, StreamOut) { { std::ostringstream oss; oss << Tile({7, 8}); EXPECT_EQ(oss.str(), "(7,8)"); } { std::ostringstream oss; oss << Layout({0, 1, 2}); EXPECT_EQ(oss.str(), "{0,1,2}"); } } TEST_F(LayoutTest, Equality) { EXPECT_EQ(Layout(), Layout()); const std::vector<int64_t> empty_dims; EXPECT_EQ(Layout(empty_dims), Layout(empty_dims)); EXPECT_EQ(Layout(), Layout(empty_dims)); EXPECT_EQ(Layout({0, 1, 2, 3}), Layout({0, 1, 2, 3})); EXPECT_NE(Layout({0, 1, 2, 3}), Layout({0, 1, 2})); EXPECT_EQ(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})})); EXPECT_NE(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 45})})); EXPECT_NE(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2, 3})); EXPECT_EQ(Layout({0, 1, 2}).set_element_size_in_bits(33), Layout({0, 1, 2}).set_element_size_in_bits(33)); EXPECT_NE(Layout({0, 1, 2}).set_element_size_in_bits(33), Layout({0, 1, 2}).set_element_size_in_bits(7)); EXPECT_EQ(Layout({0, 1, 2}).set_memory_space(3), Layout({0, 1, 2}).set_memory_space(3)); EXPECT_NE(Layout({0, 1, 2}).set_memory_space(1), Layout({0, 1, 2}).set_memory_space(3)); EXPECT_FALSE(Layout::Equal()(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}))); EXPECT_EQ(Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2})), Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2}))); EXPECT_NE(Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2})), Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {3}))); EXPECT_TRUE(Layout::Equal().IgnoreTiles()( Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}))); EXPECT_FALSE(Layout::Equal()( Layout({0, 1, 2}, {}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 32), Layout({0, 1, 2}, {}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 1))); EXPECT_TRUE(Layout::Equal().IgnoreElementSize()( Layout({0, 1, 2}).set_element_size_in_bits(32), Layout({0, 1, 2}).set_element_size_in_bits(1))); EXPECT_TRUE(Layout::Equal().IgnoreMemorySpace()( Layout({0, 1, 2}).set_memory_space(1), Layout({0, 1, 2}).set_memory_space(3))); EXPECT_TRUE(Layout::Equal().IgnoreSplitConfigs()( Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2})), Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {3})))); } TEST_F(LayoutTest, LayoutToFromProto) { auto expect_unchanged = [](const Layout& layout) { EXPECT_EQ(layout, Layout::CreateFromProto(layout.ToProto())); }; expect_unchanged(Layout()); expect_unchanged(Layout({1, 3, 2, 0})); expect_unchanged(Layout({0, 1}).set_element_size_in_bits(42)); expect_unchanged( Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})})); expect_unchanged(Layout({1, 0}, {DIM_DENSE, DIM_COMPRESSED}, {}, {}, {})); expect_unchanged( Layout({1, 0}, {DIM_DENSE, DIM_COMPRESSED}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 0, 0, {}, std::make_unique<Shape>(ShapeUtil::MakeShape(S32, {10, 10})))); expect_unchanged(Layout({0, 1}, {}, {}, {}, {Tile({123})}) .add_split_configs(SplitConfig(0, {3})) .add_split_configs(SplitConfig(1, {0, 4}))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/layout.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/layout_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d43c021f-cd0c-40a6-968e-a0d750ae4d54
cpp
google/quiche
quic_dispatcher
quiche/quic/core/quic_dispatcher.cc
quiche/quic/core/quic_dispatcher_test.cc
#include "quiche/quic/core/quic_dispatcher.h" #include <openssl/ssl.h> #include <algorithm> #include <cstddef> #include <cstdint> #include <limits> #include <list> #include <memory> #include <optional> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/chlo_extractor.h" #include "quiche/quic/core/connection_id_generator.h" #include "quiche/quic/core/crypto/crypto_handshake_message.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/crypto/quic_compressed_certs_cache.h" #include "quiche/quic/core/frames/quic_connection_close_frame.h" #include "quiche/quic/core/frames/quic_frame.h" #include "quiche/quic/core/frames/quic_rst_stream_frame.h" #include "quiche/quic/core/frames/quic_stop_sending_frame.h" #include "quiche/quic/core/quic_alarm.h" #include "quiche/quic/core/quic_alarm_factory.h" #include "quiche/quic/core/quic_blocked_writer_interface.h" #include "quiche/quic/core/quic_buffered_packet_store.h" #include "quiche/quic/core/quic_connection.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_crypto_server_stream_base.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_framer.h" #include "quiche/quic/core/quic_packet_creator.h" #include "quiche/quic/core/quic_packet_number.h" #include "quiche/quic/core/quic_packet_writer.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_stream_frame_data_producer.h" #include "quiche/quic/core/quic_stream_send_buffer.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_time_wait_list_manager.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_version_manager.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/core/tls_chlo_extractor.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_stack_trace.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/print_elements.h" #include "quiche/common/quiche_buffer_allocator.h" #include "quiche/common/quiche_callbacks.h" #include "quiche/common/quiche_text_utils.h" namespace quic { using BufferedPacket = QuicBufferedPacketStore::BufferedPacket; using BufferedPacketList = QuicBufferedPacketStore::BufferedPacketList; using EnqueuePacketResult = QuicBufferedPacketStore::EnqueuePacketResult; namespace { const QuicPacketLength kMinClientInitialPacketLength = 1200; class DeleteSessionsAlarm : public QuicAlarm::DelegateWithoutContext { public: explicit DeleteSessionsAlarm(QuicDispatcher* dispatcher) : dispatcher_(dispatcher) {} DeleteSessionsAlarm(const DeleteSessionsAlarm&) = delete; DeleteSessionsAlarm& operator=(const DeleteSessionsAlarm&) = delete; void OnAlarm() override { dispatcher_->DeleteSessions(); } private: QuicDispatcher* dispatcher_; }; class ClearStatelessResetAddressesAlarm : public QuicAlarm::DelegateWithoutContext { public: explicit ClearStatelessResetAddressesAlarm(QuicDispatcher* dispatcher) : dispatcher_(dispatcher) {} ClearStatelessResetAddressesAlarm(const DeleteSessionsAlarm&) = delete; ClearStatelessResetAddressesAlarm& operator=(const DeleteSessionsAlarm&) = delete; void OnAlarm() override { dispatcher_->ClearStatelessResetAddresses(); } private: QuicDispatcher* dispatcher_; }; class StatelessConnectionTerminator { public: StatelessConnectionTerminator(QuicConnectionId server_connection_id, QuicConnectionId original_server_connection_id, const ParsedQuicVersion version, QuicPacketNumber last_sent_packet_number, QuicConnectionHelperInterface* helper, QuicTimeWaitListManager* time_wait_list_manager) : server_connection_id_(server_connection_id), framer_(ParsedQuicVersionVector{version}, QuicTime::Zero(), Perspective::IS_SERVER, kQuicDefaultConnectionIdLength), collector_(helper->GetStreamSendBufferAllocator()), creator_(server_connection_id, &framer_, &collector_), time_wait_list_manager_(time_wait_list_manager) { framer_.set_data_producer(&collector_); framer_.SetInitialObfuscators(original_server_connection_id); if (last_sent_packet_number.IsInitialized()) { QUICHE_DCHECK( GetQuicRestartFlag(quic_dispatcher_ack_buffered_initial_packets)); QUIC_RESTART_FLAG_COUNT_N(quic_dispatcher_ack_buffered_initial_packets, 3, 8); creator_.set_packet_number(last_sent_packet_number); } } ~StatelessConnectionTerminator() { framer_.set_data_producer(nullptr); } void CloseConnection(QuicErrorCode error_code, const std::string& error_details, bool ietf_quic, std::vector<QuicConnectionId> active_connection_ids) { SerializeConnectionClosePacket(error_code, error_details); time_wait_list_manager_->AddConnectionIdToTimeWait( QuicTimeWaitListManager::SEND_TERMINATION_PACKETS, TimeWaitConnectionInfo(ietf_quic, collector_.packets(), std::move(active_connection_ids), QuicTime::Delta::Zero())); } private: void SerializeConnectionClosePacket(QuicErrorCode error_code, const std::string& error_details) { QuicConnectionCloseFrame* frame = new QuicConnectionCloseFrame(framer_.transport_version(), error_code, NO_IETF_QUIC_ERROR, error_details, 0); if (!creator_.AddFrame(QuicFrame(frame), NOT_RETRANSMISSION)) { QUIC_BUG(quic_bug_10287_1) << "Unable to add frame to an empty packet"; delete frame; return; } creator_.FlushCurrentPacket(); QUICHE_DCHECK_EQ(1u, collector_.packets()->size()); } QuicConnectionId server_connection_id_; QuicFramer framer_; PacketCollector collector_; QuicPacketCreator creator_; QuicTimeWaitListManager* time_wait_list_manager_; }; class ChloAlpnSniExtractor : public ChloExtractor::Delegate { public: void OnChlo(QuicTransportVersion , QuicConnectionId , const CryptoHandshakeMessage& chlo) override { absl::string_view alpn_value; if (chlo.GetStringPiece(kALPN, &alpn_value)) { alpn_ = std::string(alpn_value); } absl::string_view sni; if (chlo.GetStringPiece(quic::kSNI, &sni)) { sni_ = std::string(sni); } absl::string_view uaid_value; if (chlo.GetStringPiece(quic::kUAID, &uaid_value)) { uaid_ = std::string(uaid_value); } } std::string&& ConsumeAlpn() { return std::move(alpn_); } std::string&& ConsumeSni() { return std::move(sni_); } std::string&& ConsumeUaid() { return std::move(uaid_); } private: std::string alpn_; std::string sni_; std::string uaid_; }; } QuicDispatcher::QuicDispatcher( const QuicConfig* config, const QuicCryptoServerConfig* crypto_config, QuicVersionManager* version_manager, std::unique_ptr<QuicConnectionHelperInterface> helper, std::unique_ptr<QuicCryptoServerStreamBase::Helper> session_helper, std::unique_ptr<QuicAlarmFactory> alarm_factory, uint8_t expected_server_connection_id_length, ConnectionIdGeneratorInterface& connection_id_generator) : config_(config), crypto_config_(crypto_config), compressed_certs_cache_( QuicCompressedCertsCache::kQuicCompressedCertsCacheSize), helper_(std::move(helper)), session_helper_(std::move(session_helper)), alarm_factory_(std::move(alarm_factory)), delete_sessions_alarm_( alarm_factory_->CreateAlarm(new DeleteSessionsAlarm(this))), buffered_packets_(this, helper_->GetClock(), alarm_factory_.get(), stats_), version_manager_(version_manager), last_error_(QUIC_NO_ERROR), new_sessions_allowed_per_event_loop_(0u), accept_new_connections_(true), expected_server_connection_id_length_( expected_server_connection_id_length), clear_stateless_reset_addresses_alarm_(alarm_factory_->CreateAlarm( new ClearStatelessResetAddressesAlarm(this))), connection_id_generator_(connection_id_generator) { QUIC_DLOG(INFO) << "Created QuicDispatcher with versions: " << ParsedQuicVersionVectorToString(GetSupportedVersions()); } QuicDispatcher::~QuicDispatcher() { if (delete_sessions_alarm_ != nullptr) { delete_sessions_alarm_->PermanentCancel(); } if (clear_stateless_reset_addresses_alarm_ != nullptr) { clear_stateless_reset_addresses_alarm_->PermanentCancel(); } reference_counted_session_map_.clear(); closed_session_list_.clear(); num_sessions_in_session_map_ = 0; } void QuicDispatcher::InitializeWithWriter(QuicPacketWriter* writer) { QUICHE_DCHECK(writer_ == nullptr); writer_.reset(writer); buffered_packets_.set_writer(writer); time_wait_list_manager_.reset(CreateQuicTimeWaitListManager()); } void QuicDispatcher::ProcessPacket(const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, const QuicReceivedPacket& packet) { QUIC_DVLOG(2) << "Dispatcher received encrypted " << packet.length() << " bytes:" << std::endl << quiche::QuicheTextUtils::HexDump( absl::string_view(packet.data(), packet.length())); ++stats_.packets_processed; ReceivedPacketInfo packet_info(self_address, peer_address, packet); std::string detailed_error; QuicErrorCode error; error = QuicFramer::ParsePublicHeaderDispatcherShortHeaderLengthUnknown( packet, &packet_info.form, &packet_info.long_packet_type, &packet_info.version_flag, &packet_info.use_length_prefix, &packet_info.version_label, &packet_info.version, &packet_info.destination_connection_id, &packet_info.source_connection_id, &packet_info.retry_token, &detailed_error, connection_id_generator_); if (error != QUIC_NO_ERROR) { SetLastError(error); QUIC_DLOG(ERROR) << detailed_error; return; } if (packet_info.destination_connection_id.length() != expected_server_connection_id_length_ && packet_info.version.IsKnown() && !packet_info.version.AllowsVariableLengthConnectionIds()) { SetLastError(QUIC_INVALID_PACKET_HEADER); QUIC_DLOG(ERROR) << "Invalid Connection Id Length"; return; } if (packet_info.version_flag && IsSupportedVersion(packet_info.version)) { if (!QuicUtils::IsConnectionIdValidForVersion( packet_info.destination_connection_id, packet_info.version.transport_version)) { SetLastError(QUIC_INVALID_PACKET_HEADER); QUIC_DLOG(ERROR) << "Invalid destination connection ID length for version"; return; } if (packet_info.version.SupportsClientConnectionIds() && !QuicUtils::IsConnectionIdValidForVersion( packet_info.source_connection_id, packet_info.version.transport_version)) { SetLastError(QUIC_INVALID_PACKET_HEADER); QUIC_DLOG(ERROR) << "Invalid source connection ID length for version"; return; } } #ifndef NDEBUG if (ack_buffered_initial_packets()) { const BufferedPacketList* packet_list = buffered_packets_.GetPacketList(packet_info.destination_connection_id); if (packet_list != nullptr && packet_list->replaced_connection_id.has_value() && *packet_list->replaced_connection_id == packet_info.destination_connection_id) { QUIC_RESTART_FLAG_COUNT_N(quic_dispatcher_ack_buffered_initial_packets, 4, 8); ++stats_.packets_processed_with_replaced_cid_in_store; } } #endif if (MaybeDispatchPacket(packet_info)) { return; } if (!packet_info.version_flag && IsSupportedVersion(ParsedQuicVersion::Q046())) { ReceivedPacketInfo gquic_packet_info(self_address, peer_address, packet); const QuicErrorCode gquic_error = QuicFramer::ParsePublicHeaderDispatcher( packet, expected_server_connection_id_length_, &gquic_packet_info.form, &gquic_packet_info.long_packet_type, &gquic_packet_info.version_flag, &gquic_packet_info.use_length_prefix, &gquic_packet_info.version_label, &gquic_packet_info.version, &gquic_packet_info.destination_connection_id, &gquic_packet_info.source_connection_id, &gquic_packet_info.retry_token, &detailed_error); if (gquic_error == QUIC_NO_ERROR) { if (MaybeDispatchPacket(gquic_packet_info)) { return; } } else { QUICHE_VLOG(1) << "Tried to parse short header as gQUIC packet: " << detailed_error; } } ProcessHeader(&packet_info); } namespace { constexpr bool IsSourceUdpPortBlocked(uint16_t port) { constexpr uint16_t blocked_ports[] = { 0, 17, 19, 53, 111, 123, 137, 138, 161, 389, 500, 1900, 3702, 5353, 5355, 11211, }; constexpr size_t num_blocked_ports = ABSL_ARRAYSIZE(blocked_ports); constexpr uint16_t highest_blocked_port = blocked_ports[num_blocked_ports - 1]; if (ABSL_PREDICT_TRUE(port > highest_blocked_port)) { return false; } for (size_t i = 0; i < num_blocked_ports; i++) { if (port == blocked_ports[i]) { return true; } } return false; } } bool QuicDispatcher::MaybeDispatchPacket( const ReceivedPacketInfo& packet_info) { if (IsSourceUdpPortBlocked(packet_info.peer_address.port())) { QUIC_CODE_COUNT(quic_dropped_blocked_port); return true; } const QuicConnectionId server_connection_id = packet_info.destination_connection_id; if (packet_info.version_flag && packet_info.version.IsKnown() && IsServerConnectionIdTooShort(server_connection_id)) { QUICHE_DCHECK(packet_info.version_flag); QUICHE_DCHECK(packet_info.version.AllowsVariableLengthConnectionIds()); QUIC_DLOG(INFO) << "Packet with short destination connection ID " << server_connection_id << " expected " << static_cast<int>(expected_server_connection_id_length_); QUIC_CODE_COUNT(quic_dropped_invalid_small_initial_connection_id); return true; } if (packet_info.version_flag && packet_info.version.IsKnown() && !QuicUtils::IsConnectionIdLengthValidForVersion( server_connection_id.length(), packet_info.version.transport_version)) { QUIC_DLOG(INFO) << "Packet with destination connection ID " << server_connection_id << " is invalid with version " << packet_info.version; QUIC_CODE_COUNT(quic_dropped_invalid_initial_connection_id); return true; } auto it = reference_counted_session_map_.find(server_connection_id); if (it != reference_counted_session_map_.end()) { QUICHE_DCHECK(!buffered_packets_.HasBufferedPackets(server_connection_id)); it->second->ProcessUdpPacket(packet_info.self_address, packet_info.peer_address, packet_info.packet); return true; } if (buffered_packets_.HasChloForConnection(server_connection_id)) { EnqueuePacketResult rs = buffered_packets_.EnqueuePacket( packet_info, std::nullopt, ConnectionIdGenerator()); switch (rs) { case EnqueuePacketResult::SUCCESS: break; case EnqueuePacketResult::CID_COLLISION: QUICHE_DCHECK(false) << "Connection " << server_connection_id << " already has a CHLO buffered, but " "EnqueuePacket returned CID_COLLISION."; ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_PACKETS: ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_CONNECTIONS: OnBufferPacketFailure(rs, packet_info.destination_connection_id); break; } return true; } if (OnFailedToDispatchPacket(packet_info)) { return true; } if (time_wait_list_manager_->IsConnectionIdInTimeWait(server_connection_id)) { time_wait_list_manager_->ProcessPacket( packet_info.self_address, packet_info.peer_address, packet_info.destination_connection_id, packet_info.form, packet_info.packet.length(), GetPerPacketContext()); return true; } if (!accept_new_connections_ && packet_info.version_flag) { StatelesslyTerminateConnection( packet_info.self_address, packet_info.peer_address, packet_info.destination_connection_id, packet_info.form, packet_info.version_flag, packet_info.use_length_prefix, packet_info.version, QUIC_HANDSHAKE_FAILED, "Stop accepting new connections", quic::QuicTimeWaitListManager::SEND_STATELESS_RESET); time_wait_list_manager()->ProcessPacket( packet_info.self_address, packet_info.peer_address, packet_info.destination_connection_id, packet_info.form, packet_info.packet.length(), GetPerPacketContext()); OnNewConnectionRejected(); return true; } if (packet_info.version_flag) { if (!IsSupportedVersion(packet_info.version)) { if (ShouldCreateSessionForUnknownVersion(packet_info)) { return false; } MaybeSendVersionNegotiationPacket(packet_info); return true; } if (crypto_config()->validate_chlo_size() && packet_info.form == IETF_QUIC_LONG_HEADER_PACKET && packet_info.long_packet_type == INITIAL && packet_info.packet.length() < kMinClientInitialPacketLength) { QUIC_DVLOG(1) << "Dropping initial packet which is too short, length: " << packet_info.packet.length(); QUIC_CODE_COUNT(quic_drop_small_initial_packets); return true; } } return false; } void QuicDispatcher::ProcessHeader(ReceivedPacketInfo* packet_info) { ++stats_.packets_processed_with_unknown_cid; QuicConnectionId server_connection_id = packet_info->destination_connection_id; QuicPacketFate fate = ValidityChecks(*packet_info); QuicErrorCode connection_close_error_code = QUIC_HANDSHAKE_FAILED; std::string tls_alert_error_detail; if (fate == kFateProcess) { ExtractChloResult extract_chlo_result = TryExtractChloOrBufferEarlyPacket(*packet_info); auto& parsed_chlo = extract_chlo_result.parsed_chlo; if (extract_chlo_result.tls_alert.has_value()) { QUIC_BUG_IF(quic_dispatcher_parsed_chlo_and_tls_alert_coexist_1, parsed_chlo.has_value()) << "parsed_chlo and tls_alert should not be set at the same time."; fate = kFateTimeWait; uint8_t tls_alert = *extract_chlo_result.tls_alert; connection_close_error_code = TlsAlertToQuicErrorCode(tls_alert); tls_alert_error_detail = absl::StrCat("TLS handshake failure from dispatcher (", EncryptionLevelToString(ENCRYPTION_INITIAL), ") ", static_cast<int>(tls_alert), ": ", SSL_alert_desc_string_long(tls_alert)); } else if (!parsed_chlo.has_value()) { return; } else { fate = ValidityChecksOnFullChlo(*packet_info, *parsed_chlo); if (fate == kFateProcess) { ProcessChlo(*std::move(parsed_chlo), packet_info); return; } } } switch (fate) { case kFateProcess: QUIC_BUG(quic_dispatcher_bad_packet_fate) << fate; break; case kFateTimeWait: { QUIC_DLOG(INFO) << "Adding connection ID " << server_connection_id << " to time-wait list."; QUIC_CODE_COUNT(quic_reject_fate_time_wait); const std::string& connection_close_error_detail = tls_alert_error_detail.empty() ? "Reject connection" : tls_alert_error_detail; StatelesslyTerminateConnection( packet_info->self_address, packet_info->peer_address, server_connection_id, packet_info->form, packet_info->version_flag, packet_info->use_length_prefix, packet_info->version, connection_close_error_code, connection_close_error_detail, quic::QuicTimeWaitListManager::SEND_STATELESS_RESET); QUICHE_DCHECK(time_wait_list_manager_->IsConnectionIdInTimeWait( server_connection_id)); time_wait_list_manager_->ProcessPacket( packet_info->self_address, packet_info->peer_address, server_connection_id, packet_info->form, packet_info->packet.length(), GetPerPacketContext()); buffered_packets_.DiscardPackets(server_connection_id); } break; case kFateDrop: break; } } QuicDispatcher::ExtractChloResult QuicDispatcher::TryExtractChloOrBufferEarlyPacket( const ReceivedPacketInfo& packet_info) { ExtractChloResult result; if (packet_info.version.UsesTls()) { bool has_full_tls_chlo = false; std::string sni; std::vector<uint16_t> supported_groups; std::vector<uint16_t> cert_compression_algos; std::vector<std::string> alpns; bool resumption_attempted = false, early_data_attempted = false; if (buffered_packets_.HasBufferedPackets( packet_info.destination_connection_id)) { has_full_tls_chlo = buffered_packets_.IngestPacketForTlsChloExtraction( packet_info.destination_connection_id, packet_info.version, packet_info.packet, &supported_groups, &cert_compression_algos, &alpns, &sni, &resumption_attempted, &early_data_attempted, &result.tls_alert); } else { TlsChloExtractor tls_chlo_extractor; tls_chlo_extractor.IngestPacket(packet_info.version, packet_info.packet); if (tls_chlo_extractor.HasParsedFullChlo()) { has_full_tls_chlo = true; supported_groups = tls_chlo_extractor.supported_groups(); cert_compression_algos = tls_chlo_extractor.cert_compression_algos(); alpns = tls_chlo_extractor.alpns(); sni = tls_chlo_extractor.server_name(); resumption_attempted = tls_chlo_extractor.resumption_attempted(); early_data_attempted = tls_chlo_extractor.early_data_attempted(); } else { result.tls_alert = tls_chlo_extractor.tls_alert(); } } if (result.tls_alert.has_value()) { QUIC_BUG_IF(quic_dispatcher_parsed_chlo_and_tls_alert_coexist_2, has_full_tls_chlo) << "parsed_chlo and tls_alert should not be set at the same time."; return result; } if (GetQuicFlag(quic_allow_chlo_buffering) && !has_full_tls_chlo) { EnqueuePacketResult rs = buffered_packets_.EnqueuePacket( packet_info, std::nullopt, ConnectionIdGenerator()); switch (rs) { case EnqueuePacketResult::SUCCESS: break; case EnqueuePacketResult::CID_COLLISION: buffered_packets_.DiscardPackets( packet_info.destination_connection_id); ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_PACKETS: ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_CONNECTIONS: OnBufferPacketFailure(rs, packet_info.destination_connection_id); break; } return result; } ParsedClientHello& parsed_chlo = result.parsed_chlo.emplace(); parsed_chlo.sni = std::move(sni); parsed_chlo.supported_groups = std::move(supported_groups); parsed_chlo.cert_compression_algos = std::move(cert_compression_algos); parsed_chlo.alpns = std::move(alpns); if (packet_info.retry_token.has_value()) { parsed_chlo.retry_token = std::string(*packet_info.retry_token); } parsed_chlo.resumption_attempted = resumption_attempted; parsed_chlo.early_data_attempted = early_data_attempted; return result; } ChloAlpnSniExtractor alpn_extractor; if (GetQuicFlag(quic_allow_chlo_buffering) && !ChloExtractor::Extract(packet_info.packet, packet_info.version, config_->create_session_tag_indicators(), &alpn_extractor, packet_info.destination_connection_id.length())) { EnqueuePacketResult rs = buffered_packets_.EnqueuePacket( packet_info, std::nullopt, ConnectionIdGenerator()); switch (rs) { case EnqueuePacketResult::SUCCESS: break; case EnqueuePacketResult::CID_COLLISION: QUIC_BUG(quic_store_cid_collision_from_gquic_packet); ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_PACKETS: ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_CONNECTIONS: OnBufferPacketFailure(rs, packet_info.destination_connection_id); break; } return result; } ParsedClientHello& parsed_chlo = result.parsed_chlo.emplace(); parsed_chlo.sni = alpn_extractor.ConsumeSni(); parsed_chlo.uaid = alpn_extractor.ConsumeUaid(); parsed_chlo.alpns = {alpn_extractor.ConsumeAlpn()}; return result; } std::string QuicDispatcher::SelectAlpn(const std::vector<std::string>& alpns) { if (alpns.empty()) { return ""; } if (alpns.size() > 1u) { const std::vector<std::string>& supported_alpns = version_manager_->GetSupportedAlpns(); for (const std::string& alpn : alpns) { if (std::find(supported_alpns.begin(), supported_alpns.end(), alpn) != supported_alpns.end()) { return alpn; } } } return alpns[0]; } QuicDispatcher::QuicPacketFate QuicDispatcher::ValidityChecks( const ReceivedPacketInfo& packet_info) { if (!packet_info.version_flag) { QUIC_DLOG(INFO) << "Packet without version arrived for unknown connection ID " << packet_info.destination_connection_id; MaybeResetPacketsWithNoVersion(packet_info); return kFateDrop; } return kFateProcess; } void QuicDispatcher::CleanUpSession(QuicConnectionId server_connection_id, QuicConnection* connection, QuicErrorCode , const std::string& , ConnectionCloseSource ) { write_blocked_list_.Remove(*connection); QuicTimeWaitListManager::TimeWaitAction action = QuicTimeWaitListManager::SEND_STATELESS_RESET; if (connection->termination_packets() != nullptr && !connection->termination_packets()->empty()) { action = QuicTimeWaitListManager::SEND_CONNECTION_CLOSE_PACKETS; } else { if (!connection->IsHandshakeComplete()) { QUIC_CODE_COUNT(quic_v44_add_to_time_wait_list_with_handshake_failed); StatelessConnectionTerminator terminator( server_connection_id, connection->GetOriginalDestinationConnectionId(), connection->version(), QuicPacketNumber(), helper_.get(), time_wait_list_manager_.get()); terminator.CloseConnection( QUIC_HANDSHAKE_FAILED, "Connection is closed by server before handshake confirmed", true, connection->GetActiveServerConnectionIds()); return; } QUIC_CODE_COUNT(quic_v44_add_to_time_wait_list_with_stateless_reset); } time_wait_list_manager_->AddConnectionIdToTimeWait( action, TimeWaitConnectionInfo( true, connection->termination_packets(), connection->GetActiveServerConnectionIds(), connection->sent_packet_manager().GetRttStats()->smoothed_rtt())); } void QuicDispatcher::StartAcceptingNewConnections() { accept_new_connections_ = true; } void QuicDispatcher::StopAcceptingNewConnections() { accept_new_connections_ = false; buffered_packets_.DiscardAllPackets(); } void QuicDispatcher::PerformActionOnActiveSessions( quiche::UnretainedCallback<void(QuicSession*)> operation) const { absl::flat_hash_set<QuicSession*> visited_session; visited_session.reserve(reference_counted_session_map_.size()); for (auto const& kv : reference_counted_session_map_) { QuicSession* session = kv.second.get(); if (visited_session.insert(session).second) { operation(session); } } } std::vector<std::shared_ptr<QuicSession>> QuicDispatcher::GetSessionsSnapshot() const { std::vector<std::shared_ptr<QuicSession>> snapshot; snapshot.reserve(reference_counted_session_map_.size()); absl::flat_hash_set<QuicSession*> visited_session; visited_session.reserve(reference_counted_session_map_.size()); for (auto const& kv : reference_counted_session_map_) { QuicSession* session = kv.second.get(); if (visited_session.insert(session).second) { snapshot.push_back(kv.second); } } return snapshot; } std::unique_ptr<QuicPerPacketContext> QuicDispatcher::GetPerPacketContext() const { return nullptr; } void QuicDispatcher::DeleteSessions() { if (!write_blocked_list_.Empty()) { for (const auto& session : closed_session_list_) { if (write_blocked_list_.Remove(*session->connection())) { QUIC_BUG(quic_bug_12724_2) << "QuicConnection was in WriteBlockedList before destruction " << session->connection()->connection_id(); } } } closed_session_list_.clear(); } void QuicDispatcher::ClearStatelessResetAddresses() { recent_stateless_reset_addresses_.clear(); } void QuicDispatcher::OnCanWrite() { writer_->SetWritable(); write_blocked_list_.OnWriterUnblocked(); } bool QuicDispatcher::HasPendingWrites() const { return !write_blocked_list_.Empty(); } void QuicDispatcher::Shutdown() { while (!reference_counted_session_map_.empty()) { QuicSession* session = reference_counted_session_map_.begin()->second.get(); session->connection()->CloseConnection( QUIC_PEER_GOING_AWAY, "Server shutdown imminent", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); QUICHE_DCHECK(reference_counted_session_map_.empty() || reference_counted_session_map_.begin()->second.get() != session); } DeleteSessions(); } void QuicDispatcher::OnConnectionClosed(QuicConnectionId server_connection_id, QuicErrorCode error, const std::string& error_details, ConnectionCloseSource source) { auto it = reference_counted_session_map_.find(server_connection_id); if (it == reference_counted_session_map_.end()) { QUIC_BUG(quic_bug_10287_3) << "ConnectionId " << server_connection_id << " does not exist in the session map. Error: " << QuicErrorCodeToString(error); QUIC_BUG(quic_bug_10287_4) << QuicStackTrace(); return; } QUIC_DLOG_IF(INFO, error != QUIC_NO_ERROR) << "Closing connection (" << server_connection_id << ") due to error: " << QuicErrorCodeToString(error) << ", with details: " << error_details; const QuicSession* session = it->second.get(); QuicConnection* connection = it->second->connection(); if (closed_session_list_.empty()) { delete_sessions_alarm_->Update(helper()->GetClock()->ApproximateNow(), QuicTime::Delta::Zero()); } closed_session_list_.push_back(std::move(it->second)); CleanUpSession(it->first, connection, error, error_details, source); bool session_removed = false; for (const QuicConnectionId& cid : connection->GetActiveServerConnectionIds()) { auto it1 = reference_counted_session_map_.find(cid); if (it1 != reference_counted_session_map_.end()) { const QuicSession* session2 = it1->second.get(); if (session2 == session || cid == server_connection_id) { reference_counted_session_map_.erase(it1); session_removed = true; } else { QUIC_BUG(quic_dispatcher_session_mismatch) << "Session is mismatched in the map. server_connection_id: " << server_connection_id << ". Current cid: " << cid << ". Cid of the other session " << (session2 == nullptr ? "null" : session2->connection()->connection_id().ToString()); } } else { QUIC_BUG_IF(quic_dispatcher_session_not_found, cid != connection->GetOriginalDestinationConnectionId()) << "Missing session for cid " << cid << ". server_connection_id: " << server_connection_id; } } QUIC_BUG_IF(quic_session_is_not_removed, !session_removed); --num_sessions_in_session_map_; } void QuicDispatcher::OnWriteBlocked( QuicBlockedWriterInterface* blocked_writer) { write_blocked_list_.Add(*blocked_writer); } void QuicDispatcher::OnRstStreamReceived(const QuicRstStreamFrame& ) {} void QuicDispatcher::OnStopSendingReceived( const QuicStopSendingFrame& ) {} bool QuicDispatcher::TryAddNewConnectionId( const QuicConnectionId& server_connection_id, const QuicConnectionId& new_connection_id) { auto it = reference_counted_session_map_.find(server_connection_id); if (it == reference_counted_session_map_.end()) { QUIC_BUG(quic_bug_10287_7) << "Couldn't locate the session that issues the connection ID in " "reference_counted_session_map_. server_connection_id:" << server_connection_id << " new_connection_id: " << new_connection_id; return false; } auto insertion_result = reference_counted_session_map_.insert( std::make_pair(new_connection_id, it->second)); if (!insertion_result.second) { QUIC_CODE_COUNT(quic_cid_already_in_session_map); } return insertion_result.second; } void QuicDispatcher::OnConnectionIdRetired( const QuicConnectionId& server_connection_id) { reference_counted_session_map_.erase(server_connection_id); } void QuicDispatcher::OnConnectionAddedToTimeWaitList( QuicConnectionId server_connection_id) { QUIC_DLOG(INFO) << "Connection " << server_connection_id << " added to time wait list."; } void QuicDispatcher::StatelesslyTerminateConnection( const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, QuicConnectionId server_connection_id, PacketHeaderFormat format, bool version_flag, bool use_length_prefix, ParsedQuicVersion version, QuicErrorCode error_code, const std::string& error_details, QuicTimeWaitListManager::TimeWaitAction action) { const BufferedPacketList* packet_list = buffered_packets_.GetPacketList(server_connection_id); if (packet_list == nullptr) { StatelesslyTerminateConnection( self_address, peer_address, server_connection_id, format, version_flag, use_length_prefix, version, error_code, error_details, action, std::nullopt, QuicPacketNumber()); return; } QUIC_RESTART_FLAG_COUNT_N(quic_dispatcher_ack_buffered_initial_packets, 5, 8); StatelesslyTerminateConnection( self_address, peer_address, packet_list->original_connection_id, format, version_flag, use_length_prefix, version, error_code, error_details, action, packet_list->replaced_connection_id, packet_list->GetLastSentPacketNumber()); } void QuicDispatcher::StatelesslyTerminateConnection( const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, QuicConnectionId server_connection_id, PacketHeaderFormat format, bool version_flag, bool use_length_prefix, ParsedQuicVersion version, QuicErrorCode error_code, const std::string& error_details, QuicTimeWaitListManager::TimeWaitAction action, const std::optional<QuicConnectionId>& replaced_connection_id, QuicPacketNumber last_sent_packet_number) { if (format != IETF_QUIC_LONG_HEADER_PACKET && !version_flag) { QUIC_DVLOG(1) << "Statelessly terminating " << server_connection_id << " based on a non-ietf-long packet, action:" << action << ", error_code:" << error_code << ", error_details:" << error_details; time_wait_list_manager_->AddConnectionIdToTimeWait( action, TimeWaitConnectionInfo(format != GOOGLE_QUIC_PACKET, nullptr, {server_connection_id})); return; } if (IsSupportedVersion(version)) { QUIC_DVLOG(1) << "Statelessly terminating " << server_connection_id << " based on an ietf-long packet, which has a supported version:" << version << ", error_code:" << error_code << ", error_details:" << error_details << ", replaced_connection_id:" << (replaced_connection_id.has_value() ? replaced_connection_id->ToString() : "n/a"); if (ack_buffered_initial_packets()) { QuicConnectionId original_connection_id = server_connection_id; if (last_sent_packet_number.IsInitialized()) { QUIC_RESTART_FLAG_COUNT_N(quic_dispatcher_ack_buffered_initial_packets, 6, 8); } StatelessConnectionTerminator terminator( replaced_connection_id.value_or(original_connection_id), original_connection_id, version, last_sent_packet_number, helper_.get(), time_wait_list_manager_.get()); std::vector<QuicConnectionId> active_connection_ids = { original_connection_id}; if (replaced_connection_id.has_value()) { active_connection_ids.push_back(*replaced_connection_id); } terminator.CloseConnection(error_code, error_details, format != GOOGLE_QUIC_PACKET, std::move(active_connection_ids)); } else { StatelessConnectionTerminator terminator( server_connection_id, server_connection_id, version, last_sent_packet_number, helper_.get(), time_wait_list_manager_.get()); terminator.CloseConnection( error_code, error_details, format != GOOGLE_QUIC_PACKET, {server_connection_id}); } QUIC_CODE_COUNT(quic_dispatcher_generated_connection_close); QuicSession::RecordConnectionCloseAtServer( error_code, ConnectionCloseSource::FROM_SELF); OnStatelessConnectionCloseGenerated(self_address, peer_address, server_connection_id, version, error_code, error_details); return; } QUIC_DVLOG(1) << "Statelessly terminating " << server_connection_id << " based on an ietf-long packet, which has an unsupported version:" << version << ", error_code:" << error_code << ", error_details:" << error_details; std::vector<std::unique_ptr<QuicEncryptedPacket>> termination_packets; termination_packets.push_back(QuicFramer::BuildVersionNegotiationPacket( server_connection_id, EmptyQuicConnectionId(), format != GOOGLE_QUIC_PACKET, use_length_prefix, {})); time_wait_list_manager()->AddConnectionIdToTimeWait( QuicTimeWaitListManager::SEND_TERMINATION_PACKETS, TimeWaitConnectionInfo(format != GOOGLE_QUIC_PACKET, &termination_packets, {server_connection_id})); } bool QuicDispatcher::ShouldCreateSessionForUnknownVersion( const ReceivedPacketInfo& ) { return false; } void QuicDispatcher::OnExpiredPackets( QuicConnectionId server_connection_id, BufferedPacketList early_arrived_packets) { QUIC_CODE_COUNT(quic_reject_buffered_packets_expired); QuicErrorCode error_code = QUIC_HANDSHAKE_FAILED_PACKETS_BUFFERED_TOO_LONG; QuicSocketAddress self_address, peer_address; if (!early_arrived_packets.buffered_packets.empty()) { self_address = early_arrived_packets.buffered_packets.front().self_address; peer_address = early_arrived_packets.buffered_packets.front().peer_address; } if (ack_buffered_initial_packets()) { QUIC_RESTART_FLAG_COUNT_N(quic_dispatcher_ack_buffered_initial_packets, 7, 8); StatelesslyTerminateConnection( self_address, peer_address, early_arrived_packets.original_connection_id, early_arrived_packets.ietf_quic ? IETF_QUIC_LONG_HEADER_PACKET : GOOGLE_QUIC_PACKET, true, early_arrived_packets.version.HasLengthPrefixedConnectionIds(), early_arrived_packets.version, error_code, "Packets buffered for too long", quic::QuicTimeWaitListManager::SEND_STATELESS_RESET, early_arrived_packets.replaced_connection_id, early_arrived_packets.GetLastSentPacketNumber()); } else { StatelesslyTerminateConnection( self_address, peer_address, server_connection_id, early_arrived_packets.ietf_quic ? IETF_QUIC_LONG_HEADER_PACKET : GOOGLE_QUIC_PACKET, true, early_arrived_packets.version.HasLengthPrefixedConnectionIds(), early_arrived_packets.version, error_code, "Packets buffered for too long", quic::QuicTimeWaitListManager::SEND_STATELESS_RESET); } } void QuicDispatcher::ProcessBufferedChlos(size_t max_connections_to_create) { new_sessions_allowed_per_event_loop_ = max_connections_to_create; for (; new_sessions_allowed_per_event_loop_ > 0; --new_sessions_allowed_per_event_loop_) { QuicConnectionId server_connection_id; BufferedPacketList packet_list = buffered_packets_.DeliverPacketsForNextConnection( &server_connection_id); const std::list<BufferedPacket>& packets = packet_list.buffered_packets; if (packets.empty()) { return; } if (!packet_list.parsed_chlo.has_value()) { QUIC_BUG(quic_dispatcher_no_parsed_chlo_in_buffered_packets) << "Buffered connection has no CHLO. connection_id:" << server_connection_id; continue; } auto session_ptr = CreateSessionFromChlo( server_connection_id, packet_list.replaced_connection_id, *packet_list.parsed_chlo, packet_list.version, packets.front().self_address, packets.front().peer_address, packet_list.tls_chlo_extractor.state(), packet_list.connection_id_generator, packet_list.dispatcher_sent_packets); if (session_ptr != nullptr) { DeliverPacketsToSession(packets, session_ptr.get()); } } } bool QuicDispatcher::HasChlosBuffered() const { return buffered_packets_.HasChlosBuffered(); } bool QuicDispatcher::HasBufferedPackets(QuicConnectionId server_connection_id) { return buffered_packets_.HasBufferedPackets(server_connection_id); } void QuicDispatcher::OnBufferPacketFailure( EnqueuePacketResult result, QuicConnectionId server_connection_id) { QUIC_DLOG(INFO) << "Fail to buffer packet on connection " << server_connection_id << " because of " << result; } QuicTimeWaitListManager* QuicDispatcher::CreateQuicTimeWaitListManager() { return new QuicTimeWaitListManager(writer_.get(), this, helper_->GetClock(), alarm_factory_.get()); } void QuicDispatcher::ProcessChlo(ParsedClientHello parsed_chlo, ReceivedPacketInfo* packet_info) { if (GetQuicFlag(quic_allow_chlo_buffering) && new_sessions_allowed_per_event_loop_ <= 0) { QUIC_BUG_IF(quic_bug_12724_7, buffered_packets_.HasChloForConnection( packet_info->destination_connection_id)); EnqueuePacketResult rs = buffered_packets_.EnqueuePacket( *packet_info, std::move(parsed_chlo), ConnectionIdGenerator()); switch (rs) { case EnqueuePacketResult::SUCCESS: break; case EnqueuePacketResult::CID_COLLISION: buffered_packets_.DiscardPackets( packet_info->destination_connection_id); ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_PACKETS: ABSL_FALLTHROUGH_INTENDED; case EnqueuePacketResult::TOO_MANY_CONNECTIONS: OnBufferPacketFailure(rs, packet_info->destination_connection_id); break; } return; } BufferedPacketList packet_list = buffered_packets_.DeliverPackets(packet_info->destination_connection_id); QuicConnectionId original_connection_id = packet_list.buffered_packets.empty() ? packet_info->destination_connection_id : packet_list.original_connection_id; TlsChloExtractor::State chlo_extractor_state = packet_list.buffered_packets.empty() ? TlsChloExtractor::State::kParsedFullSinglePacketChlo : packet_list.tls_chlo_extractor.state(); auto session_ptr = CreateSessionFromChlo( original_connection_id, packet_list.replaced_connection_id, parsed_chlo, packet_info->version, packet_info->self_address, packet_info->peer_address, chlo_extractor_state, packet_list.connection_id_generator, packet_list.dispatcher_sent_packets); if (session_ptr == nullptr) { QUICHE_DCHECK_EQ(packet_list.connection_id_generator, nullptr); return; } session_ptr->ProcessUdpPacket(packet_info->self_address, packet_info->peer_address, packet_info->packet); DeliverPacketsToSession(packet_list.buffered_packets, session_ptr.get()); --new_sessions_allowed_per_event_loop_; } void QuicDispatcher::SetLastError(QuicErrorCode error) { last_error_ = error; } bool QuicDispatcher::OnFailedToDispatchPacket( const ReceivedPacketInfo& ) { return false; } const ParsedQuicVersionVector& QuicDispatcher::GetSupportedVersions() { return version_manager_->GetSupportedVersions(); } void QuicDispatcher::DeliverPacketsToSession( const std::list<BufferedPacket>& packets, QuicSession* session) { for (const BufferedPacket& packet : packets) { session->ProcessUdpPacket(packet.self_address, packet.peer_address, *(packet.packet)); } } bool QuicDispatcher::IsSupportedVersion(const ParsedQuicVersion version) { for (const ParsedQuicVersion& supported_version : version_manager_->GetSupportedVersions()) { if (version == supported_version) { return true; } } return false; } bool QuicDispatcher::IsServerConnectionIdTooShort( QuicConnectionId connection_id) const { if (connection_id.length() >= kQuicMinimumInitialConnectionIdLength || connection_id.length() >= expected_server_connection_id_length_) { return false; } uint8_t generator_output = connection_id.IsEmpty() ? connection_id_generator_.ConnectionIdLength(0x00) : connection_id_generator_.ConnectionIdLength( static_cast<uint8_t>(*connection_id.data())); return connection_id.length() < generator_output; } std::shared_ptr<QuicSession> QuicDispatcher::CreateSessionFromChlo( const QuicConnectionId original_connection_id, const std::optional<QuicConnectionId>& replaced_connection_id, const ParsedClientHello& parsed_chlo, const ParsedQuicVersion version, const QuicSocketAddress self_address, const QuicSocketAddress peer_address, TlsChloExtractor::State chlo_extractor_state, ConnectionIdGeneratorInterface* connection_id_generator, absl::Span<const DispatcherSentPacket> dispatcher_sent_packets) { bool should_generate_cid = false; if (connection_id_generator == nullptr) { should_generate_cid = true; connection_id_generator = &ConnectionIdGenerator(); } std::optional<QuicConnectionId> server_connection_id; if (should_generate_cid) { server_connection_id = connection_id_generator->MaybeReplaceConnectionId( original_connection_id, version); if (server_connection_id.has_value() && (server_connection_id->IsEmpty() || *server_connection_id == original_connection_id)) { server_connection_id.reset(); } QUIC_DVLOG(1) << "MaybeReplaceConnectionId(" << original_connection_id << ") = " << (server_connection_id.has_value() ? server_connection_id->ToString() : "nullopt"); if (server_connection_id.has_value()) { switch (HandleConnectionIdCollision( original_connection_id, *server_connection_id, self_address, peer_address, version, &parsed_chlo)) { case VisitorInterface::HandleCidCollisionResult::kOk: break; case VisitorInterface::HandleCidCollisionResult::kCollision: return nullptr; } } } else { server_connection_id = replaced_connection_id; } const bool connection_id_replaced = server_connection_id.has_value(); if (!connection_id_replaced) { server_connection_id = original_connection_id; } std::string alpn = SelectAlpn(parsed_chlo.alpns); std::unique_ptr<QuicSession> session = CreateQuicSession(*server_connection_id, self_address, peer_address, alpn, version, parsed_chlo, *connection_id_generator); if (ABSL_PREDICT_FALSE(session == nullptr)) { QUIC_BUG(quic_bug_10287_8) << "CreateQuicSession returned nullptr for " << *server_connection_id << " from " << peer_address << " to " << self_address << " ALPN \"" << alpn << "\" version " << version; return nullptr; } ++stats_.sessions_created; if (chlo_extractor_state == TlsChloExtractor::State::kParsedFullMultiPacketChlo) { QUIC_CODE_COUNT(quic_connection_created_multi_packet_chlo); session->connection()->SetMultiPacketClientHello(); } else { QUIC_CODE_COUNT(quic_connection_created_single_packet_chlo); } if (ack_buffered_initial_packets() && !dispatcher_sent_packets.empty()) { QUIC_RESTART_FLAG_COUNT_N(quic_dispatcher_ack_buffered_initial_packets, 8, 8); session->connection()->AddDispatcherSentPackets(dispatcher_sent_packets); } if (connection_id_replaced) { session->connection()->SetOriginalDestinationConnectionId( original_connection_id); } session->connection()->OnParsedClientHelloInfo(parsed_chlo); QUIC_DLOG(INFO) << "Created new session for " << *server_connection_id; auto insertion_result = reference_counted_session_map_.insert(std::make_pair( *server_connection_id, std::shared_ptr<QuicSession>(std::move(session)))); std::shared_ptr<QuicSession> session_ptr = insertion_result.first->second; if (!insertion_result.second) { QUIC_BUG(quic_bug_10287_9) << "Tried to add a session to session_map with existing " "connection id: " << *server_connection_id; } else { ++num_sessions_in_session_map_; if (connection_id_replaced) { auto insertion_result2 = reference_counted_session_map_.insert( std::make_pair(original_connection_id, session_ptr)); QUIC_BUG_IF(quic_460317833_02, !insertion_result2.second) << "Original connection ID already in session_map: " << original_connection_id; } } return session_ptr; } QuicDispatcher::HandleCidCollisionResult QuicDispatcher::HandleConnectionIdCollision( const QuicConnectionId& original_connection_id, const QuicConnectionId& replaced_connection_id, const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, ParsedQuicVersion version, const ParsedClientHello* parsed_chlo) { HandleCidCollisionResult result = HandleCidCollisionResult::kOk; auto existing_session_iter = reference_counted_session_map_.find(replaced_connection_id); if (existing_session_iter != reference_counted_session_map_.end()) { result = HandleCidCollisionResult::kCollision; QUIC_CODE_COUNT(quic_connection_id_collision); QuicConnection* other_connection = existing_session_iter->second->connection(); if (other_connection != nullptr) { QUIC_LOG_EVERY_N_SEC(ERROR, 10) << "QUIC Connection ID collision. original_connection_id:" << original_connection_id << ", replaced_connection_id:" << replaced_connection_id << ", version:" << version << ", self_address:" << self_address << ", peer_address:" << peer_address << ", parsed_chlo:" << (parsed_chlo == nullptr ? "null" : parsed_chlo->ToString()) << ", other peer address: " << other_connection->peer_address() << ", other CIDs: " << quiche::PrintElements( other_connection->GetActiveServerConnectionIds()) << ", other stats: " << other_connection->GetStats(); } } else if (buffered_packets_.HasBufferedPackets(replaced_connection_id)) { result = HandleCidCollisionResult::kCollision; QUIC_CODE_COUNT(quic_connection_id_collision_with_buffered_session); } if (result == HandleCidCollisionResult::kOk) { return result; } const bool collide_with_active_session = existing_session_iter != reference_counted_session_map_.end(); QUIC_DLOG(INFO) << "QUIC Connection ID collision with " << (collide_with_active_session ? "active session" : "buffered session") << " for original_connection_id:" << original_connection_id << ", replaced_connection_id:" << replaced_connection_id; StatelesslyTerminateConnection( self_address, peer_address, original_connection_id, IETF_QUIC_LONG_HEADER_PACKET, true, version.HasLengthPrefixedConnectionIds(), version, QUIC_HANDSHAKE_FAILED, "Connection ID collision, please retry", QuicTimeWaitListManager::SEND_CONNECTION_CLOSE_PACKETS); return result; } void QuicDispatcher::MaybeResetPacketsWithNoVersion( const ReceivedPacketInfo& packet_info) { QUICHE_DCHECK(!packet_info.version_flag); if (recent_stateless_reset_addresses_.contains(packet_info.peer_address)) { QUIC_CODE_COUNT(quic_donot_send_reset_repeatedly); return; } if (packet_info.form != GOOGLE_QUIC_PACKET) { if (packet_info.packet.length() <= QuicFramer::GetMinStatelessResetPacketLength()) { QUIC_CODE_COUNT(quic_drop_too_small_short_header_packets); return; } } else { const size_t MinValidPacketLength = kPacketHeaderTypeSize + expected_server_connection_id_length_ + PACKET_1BYTE_PACKET_NUMBER + 1 + 12; if (packet_info.packet.length() < MinValidPacketLength) { QUIC_CODE_COUNT(drop_too_small_packets); return; } } if (recent_stateless_reset_addresses_.size() >= GetQuicFlag(quic_max_recent_stateless_reset_addresses)) { QUIC_CODE_COUNT(quic_too_many_recent_reset_addresses); return; } if (recent_stateless_reset_addresses_.empty()) { clear_stateless_reset_addresses_alarm_->Update( helper()->GetClock()->ApproximateNow() + QuicTime::Delta::FromMilliseconds( GetQuicFlag(quic_recent_stateless_reset_addresses_lifetime_ms)), QuicTime::Delta::Zero()); } recent_stateless_reset_addresses_.emplace(packet_info.peer_address); time_wait_list_manager()->SendPublicReset( packet_info.self_address, packet_info.peer_address, packet_info.destination_connection_id, packet_info.form != GOOGLE_QUIC_PACKET, packet_info.packet.length(), GetPerPacketContext()); } void QuicDispatcher::MaybeSendVersionNegotiationPacket( const ReceivedPacketInfo& packet_info) { if (crypto_config()->validate_chlo_size() && packet_info.packet.length() < kMinPacketSizeForVersionNegotiation) { return; } time_wait_list_manager()->SendVersionNegotiationPacket( packet_info.destination_connection_id, packet_info.source_connection_id, packet_info.form != GOOGLE_QUIC_PACKET, packet_info.use_length_prefix, GetSupportedVersions(), packet_info.self_address, packet_info.peer_address, GetPerPacketContext()); } size_t QuicDispatcher::NumSessions() const { return num_sessions_in_session_map_; } }
#include "quiche/quic/core/quic_dispatcher.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <list> #include <map> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/chlo_extractor.h" #include "quiche/quic/core/connection_id_generator.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/crypto/quic_compressed_certs_cache.h" #include "quiche/quic/core/crypto/quic_crypto_client_config.h" #include "quiche/quic/core/crypto/quic_crypto_server_config.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/crypto/transport_parameters.h" #include "quiche/quic/core/frames/quic_connection_close_frame.h" #include "quiche/quic/core/http/quic_server_session_base.h" #include "quiche/quic/core/http/quic_spdy_stream.h" #include "quiche/quic/core/quic_config.h" #include "quiche/quic/core/quic_connection.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_crypto_server_stream_base.h" #include "quiche/quic/core/quic_crypto_stream.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_packet_writer.h" #include "quiche/quic/core/quic_packet_writer_wrapper.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_stream.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_time_wait_list_manager.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_version_manager.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/quic/test_tools/first_flight.h" #include "quiche/quic/test_tools/mock_connection_id_generator.h" #include "quiche/quic/test_tools/mock_quic_time_wait_list_manager.h" #include "quiche/quic/test_tools/quic_buffered_packet_store_peer.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_dispatcher_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/tools/quic_simple_crypto_server_stream_helper.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/test_tools/quiche_test_utils.h" using testing::_; using testing::AllOf; using testing::ByMove; using testing::ElementsAreArray; using testing::Eq; using testing::Field; using testing::InSequence; using testing::Invoke; using testing::IsEmpty; using testing::NiceMock; using testing::Not; using testing::Ref; using testing::Return; using testing::ReturnRef; using testing::WithArg; using testing::WithoutArgs; static const size_t kDefaultMaxConnectionsInStore = 100; static const size_t kMaxConnectionsWithoutCHLO = kDefaultMaxConnectionsInStore / 2; static const int16_t kMaxNumSessionsToCreate = 16; namespace quic { namespace test { namespace { const QuicConnectionId kReturnConnectionId{ {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}}; class TestQuicSpdyServerSession : public QuicServerSessionBase { public: TestQuicSpdyServerSession(const QuicConfig& config, QuicConnection* connection, const QuicCryptoServerConfig* crypto_config, QuicCompressedCertsCache* compressed_certs_cache) : QuicServerSessionBase(config, CurrentSupportedVersions(), connection, nullptr, nullptr, crypto_config, compressed_certs_cache) { Initialize(); } TestQuicSpdyServerSession(const TestQuicSpdyServerSession&) = delete; TestQuicSpdyServerSession& operator=(const TestQuicSpdyServerSession&) = delete; ~TestQuicSpdyServerSession() override { DeleteConnection(); } MOCK_METHOD(void, OnConnectionClosed, (const QuicConnectionCloseFrame& frame, ConnectionCloseSource source), (override)); MOCK_METHOD(QuicSpdyStream*, CreateIncomingStream, (QuicStreamId id), (override)); MOCK_METHOD(QuicSpdyStream*, CreateIncomingStream, (PendingStream*), (override)); MOCK_METHOD(QuicSpdyStream*, CreateOutgoingBidirectionalStream, (), (override)); MOCK_METHOD(QuicSpdyStream*, CreateOutgoingUnidirectionalStream, (), (override)); std::unique_ptr<QuicCryptoServerStreamBase> CreateQuicCryptoServerStream( const QuicCryptoServerConfig* crypto_config, QuicCompressedCertsCache* compressed_certs_cache) override { return CreateCryptoServerStream(crypto_config, compressed_certs_cache, this, stream_helper()); } QuicCryptoServerStreamBase::Helper* stream_helper() { return QuicServerSessionBase::stream_helper(); } }; class TestDispatcher : public QuicDispatcher { public: TestDispatcher(const QuicConfig* config, const QuicCryptoServerConfig* crypto_config, QuicVersionManager* version_manager, QuicRandom* random, ConnectionIdGeneratorInterface& generator) : QuicDispatcher(config, crypto_config, version_manager, std::make_unique<MockQuicConnectionHelper>(), std::unique_ptr<QuicCryptoServerStreamBase::Helper>( new QuicSimpleCryptoServerStreamHelper()), std::make_unique<TestAlarmFactory>(), kQuicDefaultConnectionIdLength, generator), random_(random) { EXPECT_CALL(*this, ConnectionIdGenerator()) .WillRepeatedly(ReturnRef(generator)); } MOCK_METHOD(std::unique_ptr<QuicSession>, CreateQuicSession, (QuicConnectionId connection_id, const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, absl::string_view alpn, const ParsedQuicVersion& version, const ParsedClientHello& parsed_chlo, ConnectionIdGeneratorInterface& connection_id_generator), (override)); MOCK_METHOD(ConnectionIdGeneratorInterface&, ConnectionIdGenerator, (), (override)); struct TestQuicPerPacketContext : public QuicPerPacketContext { std::string custom_packet_context; }; std::unique_ptr<QuicPerPacketContext> GetPerPacketContext() const override { auto test_context = std::make_unique<TestQuicPerPacketContext>(); test_context->custom_packet_context = custom_packet_context_; return std::move(test_context); } void RestorePerPacketContext( std::unique_ptr<QuicPerPacketContext> context) override { TestQuicPerPacketContext* test_context = static_cast<TestQuicPerPacketContext*>(context.get()); custom_packet_context_ = test_context->custom_packet_context; } std::string custom_packet_context_; using QuicDispatcher::ConnectionIdGenerator; using QuicDispatcher::MaybeDispatchPacket; using QuicDispatcher::writer; QuicRandom* random_; }; class MockServerConnection : public MockQuicConnection { public: MockServerConnection(QuicConnectionId connection_id, MockQuicConnectionHelper* helper, MockAlarmFactory* alarm_factory, QuicDispatcher* dispatcher) : MockQuicConnection(connection_id, helper, alarm_factory, Perspective::IS_SERVER), dispatcher_(dispatcher), active_connection_ids_({connection_id}) {} void AddNewConnectionId(QuicConnectionId id) { if (!dispatcher_->TryAddNewConnectionId(active_connection_ids_.back(), id)) { return; } QuicConnectionPeer::SetServerConnectionId(this, id); active_connection_ids_.push_back(id); } void UnconditionallyAddNewConnectionIdForTest(QuicConnectionId id) { dispatcher_->TryAddNewConnectionId(active_connection_ids_.back(), id); active_connection_ids_.push_back(id); } void RetireConnectionId(QuicConnectionId id) { auto it = std::find(active_connection_ids_.begin(), active_connection_ids_.end(), id); QUICHE_DCHECK(it != active_connection_ids_.end()); dispatcher_->OnConnectionIdRetired(id); active_connection_ids_.erase(it); } std::vector<QuicConnectionId> GetActiveServerConnectionIds() const override { std::vector<QuicConnectionId> result; for (const auto& cid : active_connection_ids_) { result.push_back(cid); } auto original_connection_id = GetOriginalDestinationConnectionId(); if (std::find(result.begin(), result.end(), original_connection_id) == result.end()) { result.push_back(original_connection_id); } return result; } void UnregisterOnConnectionClosed() { QUIC_LOG(ERROR) << "Unregistering " << connection_id(); dispatcher_->OnConnectionClosed(connection_id(), QUIC_NO_ERROR, "Unregistering.", ConnectionCloseSource::FROM_SELF); } private: QuicDispatcher* dispatcher_; std::vector<QuicConnectionId> active_connection_ids_; }; class QuicDispatcherTestBase : public QuicTestWithParam<ParsedQuicVersion> { public: QuicDispatcherTestBase() : QuicDispatcherTestBase(crypto_test_utils::ProofSourceForTesting()) {} explicit QuicDispatcherTestBase(std::unique_ptr<ProofSource> proof_source) : QuicDispatcherTestBase(std::move(proof_source), AllSupportedVersions()) {} explicit QuicDispatcherTestBase( const ParsedQuicVersionVector& supported_versions) : QuicDispatcherTestBase(crypto_test_utils::ProofSourceForTesting(), supported_versions) {} explicit QuicDispatcherTestBase( std::unique_ptr<ProofSource> proof_source, const ParsedQuicVersionVector& supported_versions) : version_(GetParam()), version_manager_(supported_versions), crypto_config_(QuicCryptoServerConfig::TESTING, QuicRandom::GetInstance(), std::move(proof_source), KeyExchangeSource::Default()), server_address_(QuicIpAddress::Any4(), 5), dispatcher_(new NiceMock<TestDispatcher>( &config_, &crypto_config_, &version_manager_, mock_helper_.GetRandomGenerator(), connection_id_generator_)), time_wait_list_manager_(nullptr), session1_(nullptr), session2_(nullptr), store_(nullptr), connection_id_(1) {} void SetUp() override { dispatcher_->InitializeWithWriter(new NiceMock<MockPacketWriter>()); QuicDispatcherPeer::set_new_sessions_allowed_per_event_loop( dispatcher_.get(), kMaxNumSessionsToCreate); } MockQuicConnection* connection1() { if (session1_ == nullptr) { return nullptr; } return reinterpret_cast<MockQuicConnection*>(session1_->connection()); } MockQuicConnection* connection2() { if (session2_ == nullptr) { return nullptr; } return reinterpret_cast<MockQuicConnection*>(session2_->connection()); } void ProcessPacket(QuicSocketAddress peer_address, QuicConnectionId server_connection_id, bool has_version_flag, const std::string& data) { ProcessPacket(peer_address, server_connection_id, has_version_flag, data, CONNECTION_ID_PRESENT, PACKET_4BYTE_PACKET_NUMBER); } void ProcessPacket(QuicSocketAddress peer_address, QuicConnectionId server_connection_id, bool has_version_flag, const std::string& data, QuicConnectionIdIncluded server_connection_id_included, QuicPacketNumberLength packet_number_length) { ProcessPacket(peer_address, server_connection_id, has_version_flag, data, server_connection_id_included, packet_number_length, 1); } void ProcessPacket(QuicSocketAddress peer_address, QuicConnectionId server_connection_id, bool has_version_flag, const std::string& data, QuicConnectionIdIncluded server_connection_id_included, QuicPacketNumberLength packet_number_length, uint64_t packet_number) { ProcessPacket(peer_address, server_connection_id, has_version_flag, version_, data, true, server_connection_id_included, packet_number_length, packet_number); } void ProcessPacket(QuicSocketAddress peer_address, QuicConnectionId server_connection_id, bool has_version_flag, ParsedQuicVersion version, const std::string& data, bool full_padding, QuicConnectionIdIncluded server_connection_id_included, QuicPacketNumberLength packet_number_length, uint64_t packet_number) { ProcessPacket(peer_address, server_connection_id, EmptyQuicConnectionId(), has_version_flag, version, data, full_padding, server_connection_id_included, CONNECTION_ID_ABSENT, packet_number_length, packet_number); } void ProcessPacket(QuicSocketAddress peer_address, QuicConnectionId server_connection_id, QuicConnectionId client_connection_id, bool has_version_flag, ParsedQuicVersion version, const std::string& data, bool full_padding, QuicConnectionIdIncluded server_connection_id_included, QuicConnectionIdIncluded client_connection_id_included, QuicPacketNumberLength packet_number_length, uint64_t packet_number) { ParsedQuicVersionVector versions(SupportedVersions(version)); std::unique_ptr<QuicEncryptedPacket> packet(ConstructEncryptedPacket( server_connection_id, client_connection_id, has_version_flag, false, packet_number, data, full_padding, server_connection_id_included, client_connection_id_included, packet_number_length, &versions)); std::unique_ptr<QuicReceivedPacket> received_packet( ConstructReceivedPacket(*packet, mock_helper_.GetClock()->Now())); if (!has_version_flag || !version.AllowsVariableLengthConnectionIds() || server_connection_id.length() == 0 || server_connection_id_included == CONNECTION_ID_ABSENT) { EXPECT_CALL(connection_id_generator_, ConnectionIdLength(_)) .WillRepeatedly(Return(generated_connection_id_.has_value() ? generated_connection_id_->length() : kQuicDefaultConnectionIdLength)); } ProcessReceivedPacket(std::move(received_packet), peer_address, version, server_connection_id); } void ProcessReceivedPacket( std::unique_ptr<QuicReceivedPacket> received_packet, const QuicSocketAddress& peer_address, const ParsedQuicVersion& version, const QuicConnectionId& server_connection_id) { if (version.UsesQuicCrypto() && ChloExtractor::Extract(*received_packet, version, {}, nullptr, server_connection_id.length())) { data_connection_map_[server_connection_id].push_front( std::string(received_packet->data(), received_packet->length())); } else { data_connection_map_[server_connection_id].push_back( std::string(received_packet->data(), received_packet->length())); } dispatcher_->ProcessPacket(server_address_, peer_address, *received_packet); } void ValidatePacket(QuicConnectionId conn_id, const QuicEncryptedPacket& packet) { EXPECT_EQ(data_connection_map_[conn_id].front().length(), packet.AsStringPiece().length()); EXPECT_EQ(data_connection_map_[conn_id].front(), packet.AsStringPiece()); data_connection_map_[conn_id].pop_front(); } std::unique_ptr<QuicSession> CreateSession( TestDispatcher* dispatcher, const QuicConfig& config, QuicConnectionId connection_id, const QuicSocketAddress& , MockQuicConnectionHelper* helper, MockAlarmFactory* alarm_factory, const QuicCryptoServerConfig* crypto_config, QuicCompressedCertsCache* compressed_certs_cache, TestQuicSpdyServerSession** session_ptr) { MockServerConnection* connection = new MockServerConnection( connection_id, helper, alarm_factory, dispatcher); connection->SetQuicPacketWriter(dispatcher->writer(), false); auto session = std::make_unique<TestQuicSpdyServerSession>( config, connection, crypto_config, compressed_certs_cache); *session_ptr = session.get(); connection->set_visitor(session.get()); ON_CALL(*connection, CloseConnection(_, _, _)) .WillByDefault(WithoutArgs(Invoke( connection, &MockServerConnection::UnregisterOnConnectionClosed))); return session; } void CreateTimeWaitListManager() { time_wait_list_manager_ = new MockTimeWaitListManager( QuicDispatcherPeer::GetWriter(dispatcher_.get()), dispatcher_.get(), mock_helper_.GetClock(), &mock_alarm_factory_); QuicDispatcherPeer::SetTimeWaitListManager(dispatcher_.get(), time_wait_list_manager_); } std::string SerializeCHLO() { CryptoHandshakeMessage client_hello; client_hello.set_tag(kCHLO); client_hello.SetStringPiece(kALPN, ExpectedAlpn()); return std::string(client_hello.GetSerialized().AsStringPiece()); } void ProcessUndecryptableEarlyPacket( const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { ProcessUndecryptableEarlyPacket(version_, peer_address, server_connection_id); } void ProcessUndecryptableEarlyPacket( const ParsedQuicVersion& version, const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { std::unique_ptr<QuicEncryptedPacket> encrypted_packet = GetUndecryptableEarlyPacket(version, server_connection_id); std::unique_ptr<QuicReceivedPacket> received_packet(ConstructReceivedPacket( *encrypted_packet, mock_helper_.GetClock()->Now())); ProcessReceivedPacket(std::move(received_packet), peer_address, version, server_connection_id); } void ProcessFirstFlight(const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { ProcessFirstFlight(version_, peer_address, server_connection_id); } void ProcessFirstFlight(const ParsedQuicVersion& version, const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { ProcessFirstFlight(version, peer_address, server_connection_id, EmptyQuicConnectionId()); } void ProcessFirstFlight(const ParsedQuicVersion& version, const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id, const QuicConnectionId& client_connection_id) { ProcessFirstFlight(version, peer_address, server_connection_id, client_connection_id, TestClientCryptoConfig()); } void ProcessFirstFlight( const ParsedQuicVersion& version, const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id, const QuicConnectionId& client_connection_id, std::unique_ptr<QuicCryptoClientConfig> client_crypto_config) { if (expect_generator_is_called_) { if (version.AllowsVariableLengthConnectionIds()) { EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(server_connection_id, version)) .WillOnce(Return(generated_connection_id_)); } else { EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(server_connection_id, version)) .WillOnce(Return(std::nullopt)); } } std::vector<std::unique_ptr<QuicReceivedPacket>> packets = GetFirstFlightOfPackets(version, DefaultQuicConfig(), server_connection_id, client_connection_id, std::move(client_crypto_config)); for (auto&& packet : packets) { ProcessReceivedPacket(std::move(packet), peer_address, version, server_connection_id); } } std::unique_ptr<QuicCryptoClientConfig> TestClientCryptoConfig() { auto client_crypto_config = std::make_unique<QuicCryptoClientConfig>( crypto_test_utils::ProofVerifierForTesting()); if (address_token_.has_value()) { client_crypto_config->LookupOrCreate(TestServerId()) ->set_source_address_token(*address_token_); } return client_crypto_config; } void SetAddressToken(std::string address_token) { address_token_ = std::move(address_token); } std::string ExpectedAlpnForVersion(ParsedQuicVersion version) { return AlpnForVersion(version); } std::string ExpectedAlpn() { return ExpectedAlpnForVersion(version_); } auto MatchParsedClientHello() { if (version_.UsesQuicCrypto()) { return AllOf( Field(&ParsedClientHello::alpns, ElementsAreArray({ExpectedAlpn()})), Field(&ParsedClientHello::sni, Eq(TestHostname())), Field(&ParsedClientHello::supported_groups, IsEmpty())); } return AllOf( Field(&ParsedClientHello::alpns, ElementsAreArray({ExpectedAlpn()})), Field(&ParsedClientHello::sni, Eq(TestHostname())), Field(&ParsedClientHello::supported_groups, Not(IsEmpty()))); } void MarkSession1Deleted() { session1_ = nullptr; } void VerifyVersionSupported(ParsedQuicVersion version) { expect_generator_is_called_ = true; QuicConnectionId connection_id = TestConnectionId(++connection_id_); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(connection_id, _, client_address, Eq(ExpectedAlpnForVersion(version)), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, connection_id, client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, connection_id](const QuicEncryptedPacket& packet) { ValidatePacket(connection_id, packet); }))); ProcessFirstFlight(version, client_address, connection_id); } void VerifyVersionNotSupported(ParsedQuicVersion version) { QuicConnectionId connection_id = TestConnectionId(++connection_id_); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(connection_id, _, client_address, _, _, _, _)) .Times(0); expect_generator_is_called_ = false; ProcessFirstFlight(version, client_address, connection_id); } void TestTlsMultiPacketClientHello(bool add_reordering, bool long_connection_id); void TestVersionNegotiationForUnknownVersionInvalidShortInitialConnectionId( const QuicConnectionId& server_connection_id, const QuicConnectionId& client_connection_id); TestAlarmFactory::TestAlarm* GetClearResetAddressesAlarm() { return reinterpret_cast<TestAlarmFactory::TestAlarm*>( QuicDispatcherPeer::GetClearResetAddressesAlarm(dispatcher_.get())); } ParsedQuicVersion version_; MockQuicConnectionHelper mock_helper_; MockAlarmFactory mock_alarm_factory_; QuicConfig config_; QuicVersionManager version_manager_; QuicCryptoServerConfig crypto_config_; QuicSocketAddress server_address_; bool expect_generator_is_called_ = true; std::optional<QuicConnectionId> generated_connection_id_; MockConnectionIdGenerator connection_id_generator_; std::unique_ptr<NiceMock<TestDispatcher>> dispatcher_; MockTimeWaitListManager* time_wait_list_manager_; TestQuicSpdyServerSession* session1_; TestQuicSpdyServerSession* session2_; std::map<QuicConnectionId, std::list<std::string>> data_connection_map_; QuicBufferedPacketStore* store_; uint64_t connection_id_; std::optional<std::string> address_token_; }; class QuicDispatcherTestAllVersions : public QuicDispatcherTestBase {}; class QuicDispatcherTestOneVersion : public QuicDispatcherTestBase {}; class QuicDispatcherTestNoVersions : public QuicDispatcherTestBase { public: QuicDispatcherTestNoVersions() : QuicDispatcherTestBase(ParsedQuicVersionVector{}) {} }; INSTANTIATE_TEST_SUITE_P(QuicDispatcherTestsAllVersions, QuicDispatcherTestAllVersions, ::testing::ValuesIn(CurrentSupportedVersions()), ::testing::PrintToStringParamName()); INSTANTIATE_TEST_SUITE_P(QuicDispatcherTestsOneVersion, QuicDispatcherTestOneVersion, ::testing::Values(CurrentSupportedVersions().front()), ::testing::PrintToStringParamName()); INSTANTIATE_TEST_SUITE_P(QuicDispatcherTestsNoVersion, QuicDispatcherTestNoVersions, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicDispatcherTestAllVersions, TlsClientHelloCreatesSession) { if (version_.UsesQuicCrypto()) { return; } SetAddressToken("hsdifghdsaifnasdpfjdsk"); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), OnParsedClientHelloInfo(MatchParsedClientHello())) .Times(1); ProcessFirstFlight(client_address, TestConnectionId(1)); } TEST_P(QuicDispatcherTestAllVersions, TlsClientHelloCreatesSessionWithCorrectConnectionIdGenerator) { if (version_.UsesQuicCrypto()) { return; } SetAddressToken("hsdifghdsaifnasdpfjdsk"); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); MockConnectionIdGenerator mock_connection_id_generator; EXPECT_CALL(*dispatcher_, ConnectionIdGenerator()) .WillRepeatedly(ReturnRef(mock_connection_id_generator)); ConnectionIdGeneratorInterface& expected_generator = mock_connection_id_generator; EXPECT_CALL(mock_connection_id_generator, MaybeReplaceConnectionId(TestConnectionId(1), version_)) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), Ref(expected_generator))) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); expect_generator_is_called_ = false; ProcessFirstFlight(client_address, TestConnectionId(1)); } TEST_P(QuicDispatcherTestAllVersions, VariableServerConnectionIdLength) { QuicConnectionId old_id = TestConnectionId(1); if (version_.HasIetfQuicFrames()) { generated_connection_id_ = QuicConnectionId({0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b}); } QuicConnectionId new_id = generated_connection_id_.has_value() ? *generated_connection_id_ : old_id; QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(new_id, _, client_address, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, new_id, client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, old_id); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(1); ProcessPacket(client_address, new_id, false, "foo"); } void QuicDispatcherTestBase::TestTlsMultiPacketClientHello( bool add_reordering, bool long_connection_id) { if (!version_.UsesTls()) { return; } SetAddressToken("857293462398"); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicConnectionId original_connection_id, new_connection_id; if (long_connection_id) { original_connection_id = TestConnectionIdNineBytesLong(1); new_connection_id = kReturnConnectionId; EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(original_connection_id, version_)) .WillOnce(Return(new_connection_id)); } else { original_connection_id = TestConnectionId(); new_connection_id = original_connection_id; EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(original_connection_id, version_)) .WillOnce(Return(std::nullopt)); } QuicConfig client_config = DefaultQuicConfig(); constexpr auto kCustomParameterId = static_cast<TransportParameters::TransportParameterId>(0xff33); std::string kCustomParameterValue(2000, '-'); client_config.custom_transport_parameters_to_send()[kCustomParameterId] = kCustomParameterValue; std::vector<std::unique_ptr<QuicReceivedPacket>> packets = GetFirstFlightOfPackets(version_, client_config, original_connection_id, EmptyQuicConnectionId(), TestClientCryptoConfig()); ASSERT_EQ(packets.size(), 2u); if (add_reordering) { std::swap(packets[0], packets[1]); } ProcessReceivedPacket(std::move(packets[0]), client_address, version_, original_connection_id); EXPECT_EQ(dispatcher_->NumSessions(), 0u) << "No session should be created before the rest of the CHLO arrives."; EXPECT_CALL( *dispatcher_, CreateQuicSession(new_connection_id, _, client_address, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, new_connection_id, client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(2); ProcessReceivedPacket(std::move(packets[1]), client_address, version_, original_connection_id); EXPECT_EQ(dispatcher_->NumSessions(), 1u); } TEST_P(QuicDispatcherTestAllVersions, TlsMultiPacketClientHello) { TestTlsMultiPacketClientHello(false, false); } TEST_P(QuicDispatcherTestAllVersions, TlsMultiPacketClientHelloWithReordering) { TestTlsMultiPacketClientHello(true, false); } TEST_P(QuicDispatcherTestAllVersions, TlsMultiPacketClientHelloWithLongId) { TestTlsMultiPacketClientHello(false, true); } TEST_P(QuicDispatcherTestAllVersions, TlsMultiPacketClientHelloWithReorderingAndLongId) { TestTlsMultiPacketClientHello(true, true); } TEST_P(QuicDispatcherTestAllVersions, ProcessPackets) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(2), _, client_address, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(2), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session2_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session2_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(2), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(2)); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(1) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessPacket(client_address, TestConnectionId(1), false, "data"); } TEST_P(QuicDispatcherTestAllVersions, DispatcherDoesNotRejectPacketNumberZero) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(2) .WillRepeatedly( WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); ProcessPacket(client_address, TestConnectionId(1), false, version_, "", true, CONNECTION_ID_PRESENT, PACKET_1BYTE_PACKET_NUMBER, 256); } TEST_P(QuicDispatcherTestOneVersion, StatelessVersionNegotiation) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(TestConnectionId(1), _, _, _, _, _, _, _)) .Times(1); expect_generator_is_called_ = false; ProcessFirstFlight(QuicVersionReservedForNegotiation(), client_address, TestConnectionId(1)); } TEST_P(QuicDispatcherTestOneVersion, StatelessVersionNegotiationWithVeryLongConnectionId) { QuicConnectionId connection_id = QuicUtils::CreateRandomConnectionId(33); CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, SendVersionNegotiationPacket(connection_id, _, _, _, _, _, _, _)) .Times(1); expect_generator_is_called_ = false; ProcessFirstFlight(QuicVersionReservedForNegotiation(), client_address, connection_id); } TEST_P(QuicDispatcherTestOneVersion, StatelessVersionNegotiationWithClientConnectionId) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, SendVersionNegotiationPacket( TestConnectionId(1), TestConnectionId(2), _, _, _, _, _, _)) .Times(1); expect_generator_is_called_ = false; ProcessFirstFlight(QuicVersionReservedForNegotiation(), client_address, TestConnectionId(1), TestConnectionId(2)); } TEST_P(QuicDispatcherTestOneVersion, NoVersionNegotiationWithSmallPacket) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, SendVersionNegotiationPacket(_, _, _, _, _, _, _, _)) .Times(0); std::string chlo = SerializeCHLO() + std::string(1200, 'a'); QUICHE_DCHECK_LE(1200u, chlo.length()); std::string truncated_chlo = chlo.substr(0, 1100); QUICHE_DCHECK_EQ(1100u, truncated_chlo.length()); ProcessPacket(client_address, TestConnectionId(1), true, QuicVersionReservedForNegotiation(), truncated_chlo, false, CONNECTION_ID_PRESENT, PACKET_4BYTE_PACKET_NUMBER, 1); } TEST_P(QuicDispatcherTestOneVersion, VersionNegotiationWithoutChloSizeValidation) { crypto_config_.set_validate_chlo_size(false); CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, SendVersionNegotiationPacket(_, _, _, _, _, _, _, _)) .Times(1); std::string chlo = SerializeCHLO() + std::string(1200, 'a'); QUICHE_DCHECK_LE(1200u, chlo.length()); std::string truncated_chlo = chlo.substr(0, 1100); QUICHE_DCHECK_EQ(1100u, truncated_chlo.length()); ProcessPacket(client_address, TestConnectionId(1), true, QuicVersionReservedForNegotiation(), truncated_chlo, true, CONNECTION_ID_PRESENT, PACKET_4BYTE_PACKET_NUMBER, 1); } TEST_P(QuicDispatcherTestAllVersions, Shutdown) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); dispatcher_->Shutdown(); } TEST_P(QuicDispatcherTestAllVersions, TimeWaitListManager) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicConnectionId connection_id = TestConnectionId(1); EXPECT_CALL(*dispatcher_, CreateQuicSession(connection_id, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, connection_id, client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, connection_id); session1_->connection()->CloseConnection( QUIC_INVALID_VERSION, "Server: Packet 2 without version flag before version negotiated.", ConnectionCloseBehavior::SILENT_CLOSE); EXPECT_TRUE(time_wait_list_manager_->IsConnectionIdInTimeWait(connection_id)); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, connection_id, _, _, _)) .Times(1); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); ProcessPacket(client_address, connection_id, true, "data"); } TEST_P(QuicDispatcherTestAllVersions, NoVersionPacketToTimeWaitListManager) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicConnectionId connection_id = TestConnectionId(1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, connection_id, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(1); ProcessPacket(client_address, connection_id, false, "data"); } TEST_P(QuicDispatcherTestAllVersions, DonotTimeWaitPacketsWithUnknownConnectionIdAndNoVersion) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t short_packet[22] = {0x70, 0xa7, 0x02, 0x6b}; uint8_t valid_size_packet[23] = {0x70, 0xa7, 0x02, 0x6c}; size_t short_packet_len = 21; QuicReceivedPacket packet(reinterpret_cast<char*>(short_packet), short_packet_len, QuicTime::Zero()); QuicReceivedPacket packet2(reinterpret_cast<char*>(valid_size_packet), short_packet_len + 1, QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); EXPECT_CALL(connection_id_generator_, ConnectionIdLength(0xa7)) .WillOnce(Return(kQuicDefaultConnectionIdLength)); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(0); dispatcher_->ProcessPacket(server_address_, client_address, packet); EXPECT_CALL(connection_id_generator_, ConnectionIdLength(0xa7)) .WillOnce(Return(kQuicDefaultConnectionIdLength)); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, packet2); } TEST_P(QuicDispatcherTestOneVersion, DropPacketWithInvalidFlags) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t all_zero_packet[1200] = {}; QuicReceivedPacket packet(reinterpret_cast<char*>(all_zero_packet), sizeof(all_zero_packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(connection_id_generator_, ConnectionIdLength(_)) .WillOnce(Return(kQuicDefaultConnectionIdLength)); dispatcher_->ProcessPacket(server_address_, client_address, packet); } TEST_P(QuicDispatcherTestAllVersions, LimitResetsToSameClientAddress) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicSocketAddress client_address2(QuicIpAddress::Loopback4(), 2); QuicSocketAddress client_address3(QuicIpAddress::Loopback6(), 1); QuicConnectionId connection_id = TestConnectionId(1); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(1); ProcessPacket(client_address, connection_id, false, "data"); ProcessPacket(client_address, connection_id, false, "data2"); ProcessPacket(client_address, connection_id, false, "data3"); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(2); ProcessPacket(client_address2, connection_id, false, "data"); ProcessPacket(client_address3, connection_id, false, "data"); } TEST_P(QuicDispatcherTestAllVersions, StopSendingResetOnTooManyRecentAddresses) { SetQuicFlag(quic_max_recent_stateless_reset_addresses, 2); const size_t kTestLifeTimeMs = 10; SetQuicFlag(quic_recent_stateless_reset_addresses_lifetime_ms, kTestLifeTimeMs); CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicSocketAddress client_address2(QuicIpAddress::Loopback4(), 2); QuicSocketAddress client_address3(QuicIpAddress::Loopback6(), 1); QuicConnectionId connection_id = TestConnectionId(1); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(2); EXPECT_FALSE(GetClearResetAddressesAlarm()->IsSet()); ProcessPacket(client_address, connection_id, false, "data"); const QuicTime expected_deadline = mock_helper_.GetClock()->Now() + QuicTime::Delta::FromMilliseconds(kTestLifeTimeMs); ASSERT_TRUE(GetClearResetAddressesAlarm()->IsSet()); EXPECT_EQ(expected_deadline, GetClearResetAddressesAlarm()->deadline()); mock_helper_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); ProcessPacket(client_address2, connection_id, false, "data"); ASSERT_TRUE(GetClearResetAddressesAlarm()->IsSet()); EXPECT_EQ(expected_deadline, GetClearResetAddressesAlarm()->deadline()); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(0); ProcessPacket(client_address3, connection_id, false, "data"); mock_helper_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); GetClearResetAddressesAlarm()->Fire(); EXPECT_CALL(*time_wait_list_manager_, SendPublicReset(_, _, _, _, _, _)) .Times(2); ProcessPacket(client_address, connection_id, false, "data"); ProcessPacket(client_address2, connection_id, false, "data"); ProcessPacket(client_address3, connection_id, false, "data"); } TEST_P(QuicDispatcherTestAllVersions, LongConnectionIdLengthReplaced) { if (!version_.AllowsVariableLengthConnectionIds()) { return; } QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicConnectionId bad_connection_id = TestConnectionIdNineBytesLong(2); generated_connection_id_ = kReturnConnectionId; EXPECT_CALL(*dispatcher_, CreateQuicSession(*generated_connection_id_, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, *generated_connection_id_, client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, bad_connection_id](const QuicEncryptedPacket& packet) { ValidatePacket(bad_connection_id, packet); }))); ProcessFirstFlight(client_address, bad_connection_id); } TEST_P(QuicDispatcherTestAllVersions, MixGoodAndBadConnectionIdLengthPackets) { if (!version_.AllowsVariableLengthConnectionIds()) { return; } QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicConnectionId bad_connection_id = TestConnectionIdNineBytesLong(2); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); generated_connection_id_ = kReturnConnectionId; EXPECT_CALL(*dispatcher_, CreateQuicSession(*generated_connection_id_, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, *generated_connection_id_, client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session2_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session2_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, bad_connection_id](const QuicEncryptedPacket& packet) { ValidatePacket(bad_connection_id, packet); }))); ProcessFirstFlight(client_address, bad_connection_id); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(1) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessPacket(client_address, TestConnectionId(1), false, "data"); } TEST_P(QuicDispatcherTestAllVersions, ProcessPacketWithZeroPort) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 0); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); ProcessPacket(client_address, TestConnectionId(1), true, "data"); } TEST_P(QuicDispatcherTestAllVersions, ProcessPacketWithBlockedPort) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 17); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); ProcessPacket(client_address, TestConnectionId(1), true, "data"); } TEST_P(QuicDispatcherTestAllVersions, ProcessPacketWithNonBlockedPort) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 443); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); ProcessFirstFlight(client_address, TestConnectionId(1)); } TEST_P(QuicDispatcherTestAllVersions, DropPacketWithKnownVersionAndInvalidShortInitialConnectionId) { if (!version_.AllowsVariableLengthConnectionIds()) { return; } CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(connection_id_generator_, ConnectionIdLength(0x00)) .WillOnce(Return(10)); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); expect_generator_is_called_ = false; ProcessFirstFlight(client_address, EmptyQuicConnectionId()); } TEST_P(QuicDispatcherTestAllVersions, DropPacketWithKnownVersionAndInvalidInitialConnectionId) { CreateTimeWaitListManager(); QuicSocketAddress server_address; QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); absl::string_view cid_str = "123456789abcdefg123456789abcdefg"; QuicConnectionId invalid_connection_id(cid_str.data(), cid_str.length()); QuicReceivedPacket packet("packet", 6, QuicTime::Zero()); ReceivedPacketInfo packet_info(server_address, client_address, packet); packet_info.version_flag = true; packet_info.version = version_; packet_info.destination_connection_id = invalid_connection_id; ASSERT_TRUE(dispatcher_->MaybeDispatchPacket(packet_info)); } void QuicDispatcherTestBase:: TestVersionNegotiationForUnknownVersionInvalidShortInitialConnectionId( const QuicConnectionId& server_connection_id, const QuicConnectionId& client_connection_id) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, SendVersionNegotiationPacket( server_connection_id, client_connection_id, true, true, _, _, client_address, _)) .Times(1); expect_generator_is_called_ = false; EXPECT_CALL(connection_id_generator_, ConnectionIdLength(_)).Times(0); ProcessFirstFlight(ParsedQuicVersion::ReservedForNegotiation(), client_address, server_connection_id, client_connection_id); } TEST_P(QuicDispatcherTestOneVersion, VersionNegotiationForUnknownVersionInvalidShortInitialConnectionId) { TestVersionNegotiationForUnknownVersionInvalidShortInitialConnectionId( EmptyQuicConnectionId(), EmptyQuicConnectionId()); } TEST_P(QuicDispatcherTestOneVersion, VersionNegotiationForUnknownVersionInvalidShortInitialConnectionId2) { char server_connection_id_bytes[3] = {1, 2, 3}; QuicConnectionId server_connection_id(server_connection_id_bytes, sizeof(server_connection_id_bytes)); TestVersionNegotiationForUnknownVersionInvalidShortInitialConnectionId( server_connection_id, EmptyQuicConnectionId()); } TEST_P(QuicDispatcherTestOneVersion, VersionNegotiationForUnknownVersionInvalidShortInitialConnectionId3) { char client_connection_id_bytes[8] = {1, 2, 3, 4, 5, 6, 7, 8}; QuicConnectionId client_connection_id(client_connection_id_bytes, sizeof(client_connection_id_bytes)); TestVersionNegotiationForUnknownVersionInvalidShortInitialConnectionId( EmptyQuicConnectionId(), client_connection_id); } TEST_P(QuicDispatcherTestOneVersion, VersionsChangeInFlight) { VerifyVersionNotSupported(QuicVersionReservedForNegotiation()); for (ParsedQuicVersion version : CurrentSupportedVersions()) { VerifyVersionSupported(version); QuicDisableVersion(version); VerifyVersionNotSupported(version); QuicEnableVersion(version); VerifyVersionSupported(version); } } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionDraft28WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 0xFF, 0x00, 0x00, 28, 0x08}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, true, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionDraft27WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 0xFF, 0x00, 0x00, 27, 0x08}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, true, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionDraft25WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 0xFF, 0x00, 0x00, 25, 0x08}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, true, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionT050WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 'T', '0', '5', '0', 0x08}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, true, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionQ049WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 'Q', '0', '4', '9', 0x08}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, true, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionQ048WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 'Q', '0', '4', '8', 0x50}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, false, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionQ047WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 'Q', '0', '4', '7', 0x50}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, false, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionQ045WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xC0, 'Q', '0', '4', '5', 0x50}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet), QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, false, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionQ044WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet44[kMinPacketSizeForVersionNegotiation] = { 0xFF, 'Q', '0', '4', '4', 0x50}; QuicReceivedPacket received_packet44(reinterpret_cast<char*>(packet44), kMinPacketSizeForVersionNegotiation, QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, false, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet44); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionQ050WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xFF, 'Q', '0', '5', '0', 0x50}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), kMinPacketSizeForVersionNegotiation, QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, true, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } TEST_P(QuicDispatcherTestOneVersion, RejectDeprecatedVersionT051WithVersionNegotiation) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); uint8_t packet[kMinPacketSizeForVersionNegotiation] = { 0xFF, 'T', '0', '5', '1', 0x08}; QuicReceivedPacket received_packet(reinterpret_cast<char*>(packet), kMinPacketSizeForVersionNegotiation, QuicTime::Zero()); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(_, _, true, true, _, _, _, _)) .Times(1); dispatcher_->ProcessPacket(server_address_, client_address, received_packet); } static_assert(quic::SupportedVersions().size() == 4u, "Please add new RejectDeprecatedVersion tests above this assert " "when deprecating versions"); TEST_P(QuicDispatcherTestOneVersion, VersionNegotiationProbe) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); CreateTimeWaitListManager(); char packet[1200]; char destination_connection_id_bytes[] = {0x56, 0x4e, 0x20, 0x70, 0x6c, 0x7a, 0x20, 0x21}; EXPECT_TRUE(QuicFramer::WriteClientVersionNegotiationProbePacket( packet, sizeof(packet), destination_connection_id_bytes, sizeof(destination_connection_id_bytes))); QuicEncryptedPacket encrypted(packet, sizeof(packet), false); std::unique_ptr<QuicReceivedPacket> received_packet( ConstructReceivedPacket(encrypted, mock_helper_.GetClock()->Now())); QuicConnectionId client_connection_id = EmptyQuicConnectionId(); QuicConnectionId server_connection_id( destination_connection_id_bytes, sizeof(destination_connection_id_bytes)); EXPECT_CALL(*time_wait_list_manager_, SendVersionNegotiationPacket( server_connection_id, client_connection_id, true, true, _, _, _, _)) .Times(1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); dispatcher_->ProcessPacket(server_address_, client_address, *received_packet); } class SavingWriter : public QuicPacketWriterWrapper { public: bool IsWriteBlocked() const override { return false; } WriteResult WritePacket(const char* buffer, size_t buf_len, const QuicIpAddress& , const QuicSocketAddress& , PerPacketOptions* , const QuicPacketWriterParams& ) override { packets_.push_back( QuicEncryptedPacket(buffer, buf_len, false).Clone()); return WriteResult(WRITE_STATUS_OK, buf_len); } std::vector<std::unique_ptr<QuicEncryptedPacket>>* packets() { return &packets_; } private: std::vector<std::unique_ptr<QuicEncryptedPacket>> packets_; }; TEST_P(QuicDispatcherTestOneVersion, VersionNegotiationProbeEndToEnd) { SavingWriter* saving_writer = new SavingWriter(); QuicDispatcherPeer::UseWriter(dispatcher_.get(), saving_writer); QuicTimeWaitListManager* time_wait_list_manager = new QuicTimeWaitListManager( saving_writer, dispatcher_.get(), mock_helper_.GetClock(), &mock_alarm_factory_); QuicDispatcherPeer::SetTimeWaitListManager(dispatcher_.get(), time_wait_list_manager); char packet[1200] = {}; char destination_connection_id_bytes[] = {0x56, 0x4e, 0x20, 0x70, 0x6c, 0x7a, 0x20, 0x21}; EXPECT_TRUE(QuicFramer::WriteClientVersionNegotiationProbePacket( packet, sizeof(packet), destination_connection_id_bytes, sizeof(destination_connection_id_bytes))); QuicEncryptedPacket encrypted(packet, sizeof(packet), false); std::unique_ptr<QuicReceivedPacket> received_packet( ConstructReceivedPacket(encrypted, mock_helper_.GetClock()->Now())); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); dispatcher_->ProcessPacket(server_address_, client_address, *received_packet); ASSERT_EQ(1u, saving_writer->packets()->size()); char source_connection_id_bytes[255] = {}; uint8_t source_connection_id_length = sizeof(source_connection_id_bytes); std::string detailed_error = "foobar"; EXPECT_TRUE(QuicFramer::ParseServerVersionNegotiationProbeResponse( (*(saving_writer->packets()))[0]->data(), (*(saving_writer->packets()))[0]->length(), source_connection_id_bytes, &source_connection_id_length, &detailed_error)); EXPECT_EQ("", detailed_error); quiche::test::CompareCharArraysWithHexError( "parsed probe", source_connection_id_bytes, source_connection_id_length, destination_connection_id_bytes, sizeof(destination_connection_id_bytes)); } TEST_P(QuicDispatcherTestOneVersion, AndroidConformanceTest) { SavingWriter* saving_writer = new SavingWriter(); QuicDispatcherPeer::UseWriter(dispatcher_.get(), saving_writer); QuicTimeWaitListManager* time_wait_list_manager = new QuicTimeWaitListManager( saving_writer, dispatcher_.get(), mock_helper_.GetClock(), &mock_alarm_factory_); QuicDispatcherPeer::SetTimeWaitListManager(dispatcher_.get(), time_wait_list_manager); static const unsigned char packet[1200] = { 0xc0, 0xaa, 0xda, 0xca, 0xca, 0x08, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x00, }; QuicEncryptedPacket encrypted(reinterpret_cast<const char*>(packet), sizeof(packet), false); std::unique_ptr<QuicReceivedPacket> received_packet( ConstructReceivedPacket(encrypted, mock_helper_.GetClock()->Now())); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); dispatcher_->ProcessPacket(server_address_, client_address, *received_packet); ASSERT_EQ(1u, saving_writer->packets()->size()); ASSERT_GE((*(saving_writer->packets()))[0]->length(), 15u); quiche::test::CompareCharArraysWithHexError( "response connection ID", &(*(saving_writer->packets()))[0]->data()[7], 8, reinterpret_cast<const char*>(&packet[6]), 8); } TEST_P(QuicDispatcherTestOneVersion, AndroidConformanceTestOld) { SavingWriter* saving_writer = new SavingWriter(); QuicDispatcherPeer::UseWriter(dispatcher_.get(), saving_writer); QuicTimeWaitListManager* time_wait_list_manager = new QuicTimeWaitListManager( saving_writer, dispatcher_.get(), mock_helper_.GetClock(), &mock_alarm_factory_); QuicDispatcherPeer::SetTimeWaitListManager(dispatcher_.get(), time_wait_list_manager); static const unsigned char packet[1200] = { 0x0d, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0xaa, 0xda, 0xca, 0xaa, 0x01, 0x00, 0x07, }; QuicEncryptedPacket encrypted(reinterpret_cast<const char*>(packet), sizeof(packet), false); std::unique_ptr<QuicReceivedPacket> received_packet( ConstructReceivedPacket(encrypted, mock_helper_.GetClock()->Now())); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); dispatcher_->ProcessPacket(server_address_, client_address, *received_packet); ASSERT_EQ(1u, saving_writer->packets()->size()); static const char connection_id_bytes[] = {0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78}; ASSERT_GE((*(saving_writer->packets()))[0]->length(), 1u + sizeof(connection_id_bytes)); quiche::test::CompareCharArraysWithHexError( "response connection ID", &(*(saving_writer->packets()))[0]->data()[1], sizeof(connection_id_bytes), connection_id_bytes, sizeof(connection_id_bytes)); } TEST_P(QuicDispatcherTestAllVersions, DoNotProcessSmallPacket) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, SendPacket(_, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); ProcessPacket(client_address, TestConnectionId(1), true, version_, SerializeCHLO(), false, CONNECTION_ID_PRESENT, PACKET_4BYTE_PACKET_NUMBER, 1); } TEST_P(QuicDispatcherTestAllVersions, ProcessSmallCoalescedPacket) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*time_wait_list_manager_, SendPacket(_, _, _)).Times(0); uint8_t coalesced_packet[1200] = { 0xC3, 'Q', '0', '9', '9', 0x08, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x05, 0x12, 0x34, 0x56, 0x78, 0x00, 0xC3, 'Q', '0', '9', '9', 0x08, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x1E, 0x12, 0x34, 0x56, 0x79, }; QuicReceivedPacket packet(reinterpret_cast<char*>(coalesced_packet), 1200, QuicTime::Zero()); dispatcher_->ProcessPacket(server_address_, client_address, packet); } TEST_P(QuicDispatcherTestAllVersions, StopAcceptingNewConnections) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); dispatcher_->StopAcceptingNewConnections(); EXPECT_FALSE(dispatcher_->accept_new_connections()); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(2), _, client_address, Eq(ExpectedAlpn()), _, _, _)) .Times(0u); expect_generator_is_called_ = false; ProcessFirstFlight(client_address, TestConnectionId(2)); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(1u) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessPacket(client_address, TestConnectionId(1), false, "data"); } TEST_P(QuicDispatcherTestAllVersions, StartAcceptingNewConnections) { dispatcher_->StopAcceptingNewConnections(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(2), _, client_address, Eq(ExpectedAlpn()), _, _, _)) .Times(0u); expect_generator_is_called_ = false; ProcessFirstFlight(client_address, TestConnectionId(2)); dispatcher_->StartAcceptingNewConnections(); EXPECT_TRUE(dispatcher_->accept_new_connections()); expect_generator_is_called_ = true; EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(1), _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); } TEST_P(QuicDispatcherTestOneVersion, SelectAlpn) { EXPECT_EQ(QuicDispatcherPeer::SelectAlpn(dispatcher_.get(), {}), ""); EXPECT_EQ(QuicDispatcherPeer::SelectAlpn(dispatcher_.get(), {""}), ""); EXPECT_EQ(QuicDispatcherPeer::SelectAlpn(dispatcher_.get(), {"hq"}), "hq"); QuicEnableVersion(ParsedQuicVersion::Q046()); EXPECT_EQ( QuicDispatcherPeer::SelectAlpn(dispatcher_.get(), {"h3-Q033", "h3-Q046"}), "h3-Q046"); } TEST_P(QuicDispatcherTestNoVersions, VersionNegotiationFromReservedVersion) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(TestConnectionId(1), _, _, _, _, _, _, _)) .Times(1); expect_generator_is_called_ = false; ProcessFirstFlight(QuicVersionReservedForNegotiation(), client_address, TestConnectionId(1)); } TEST_P(QuicDispatcherTestNoVersions, VersionNegotiationFromRealVersion) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL( *time_wait_list_manager_, SendVersionNegotiationPacket(TestConnectionId(1), _, _, _, _, _, _, _)) .Times(1); expect_generator_is_called_ = false; ProcessFirstFlight(version_, client_address, TestConnectionId(1)); } class QuicDispatcherTestStrayPacketConnectionId : public QuicDispatcherTestBase {}; INSTANTIATE_TEST_SUITE_P(QuicDispatcherTestsStrayPacketConnectionId, QuicDispatcherTestStrayPacketConnectionId, ::testing::ValuesIn(CurrentSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicDispatcherTestStrayPacketConnectionId, StrayPacketTruncatedConnectionId) { CreateTimeWaitListManager(); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); QuicConnectionId connection_id = TestConnectionId(1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, _, _, _, _, _)).Times(0); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, _, _, _, _)) .Times(0); EXPECT_CALL(*time_wait_list_manager_, AddConnectionIdToTimeWait(_, _)) .Times(0); ProcessPacket(client_address, connection_id, true, "data", CONNECTION_ID_ABSENT, PACKET_4BYTE_PACKET_NUMBER); } class BlockingWriter : public QuicPacketWriterWrapper { public: BlockingWriter() : write_blocked_(false) {} bool IsWriteBlocked() const override { return write_blocked_; } void SetWritable() override { write_blocked_ = false; } WriteResult WritePacket(const char* , size_t , const QuicIpAddress& , const QuicSocketAddress& , PerPacketOptions* , const QuicPacketWriterParams& ) override { QUIC_LOG(DFATAL) << "Not supported"; return WriteResult(); } bool write_blocked_; }; class QuicDispatcherWriteBlockedListTest : public QuicDispatcherTestBase { public: void SetUp() override { QuicDispatcherTestBase::SetUp(); writer_ = new BlockingWriter; QuicDispatcherPeer::UseWriter(dispatcher_.get(), writer_); QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &helper_, &alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(2), client_address, &helper_, &alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session2_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session2_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(2), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(2)); blocked_list_ = QuicDispatcherPeer::GetWriteBlockedList(dispatcher_.get()); } void TearDown() override { if (connection1() != nullptr) { EXPECT_CALL(*connection1(), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); } if (connection2() != nullptr) { EXPECT_CALL(*connection2(), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); } dispatcher_->Shutdown(); } void SetBlocked() { QUIC_LOG(INFO) << "set writer " << writer_ << " to blocked"; writer_->write_blocked_ = true; } void BlockConnection1() { Connection1Writer()->write_blocked_ = true; dispatcher_->OnWriteBlocked(connection1()); } BlockingWriter* Connection1Writer() { return static_cast<BlockingWriter*>(connection1()->writer()); } void BlockConnection2() { Connection2Writer()->write_blocked_ = true; dispatcher_->OnWriteBlocked(connection2()); } BlockingWriter* Connection2Writer() { return static_cast<BlockingWriter*>(connection2()->writer()); } protected: MockQuicConnectionHelper helper_; MockAlarmFactory alarm_factory_; BlockingWriter* writer_; QuicBlockedWriterList* blocked_list_; }; INSTANTIATE_TEST_SUITE_P(QuicDispatcherWriteBlockedListTests, QuicDispatcherWriteBlockedListTest, ::testing::Values(CurrentSupportedVersions().front()), ::testing::PrintToStringParamName()); TEST_P(QuicDispatcherWriteBlockedListTest, BasicOnCanWrite) { dispatcher_->OnCanWrite(); SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); EXPECT_CALL(*connection1(), OnCanWrite()); dispatcher_->OnCanWrite(); EXPECT_CALL(*connection1(), OnCanWrite()).Times(0); dispatcher_->OnCanWrite(); EXPECT_FALSE(dispatcher_->HasPendingWrites()); } TEST_P(QuicDispatcherWriteBlockedListTest, OnCanWriteOrder) { InSequence s; SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); dispatcher_->OnWriteBlocked(connection2()); EXPECT_CALL(*connection1(), OnCanWrite()); EXPECT_CALL(*connection2(), OnCanWrite()); dispatcher_->OnCanWrite(); SetBlocked(); dispatcher_->OnWriteBlocked(connection2()); dispatcher_->OnWriteBlocked(connection1()); EXPECT_CALL(*connection2(), OnCanWrite()); EXPECT_CALL(*connection1(), OnCanWrite()); dispatcher_->OnCanWrite(); } TEST_P(QuicDispatcherWriteBlockedListTest, OnCanWriteRemove) { SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); blocked_list_->Remove(*connection1()); EXPECT_CALL(*connection1(), OnCanWrite()).Times(0); dispatcher_->OnCanWrite(); SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); dispatcher_->OnWriteBlocked(connection2()); blocked_list_->Remove(*connection1()); EXPECT_CALL(*connection2(), OnCanWrite()); dispatcher_->OnCanWrite(); SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); blocked_list_->Remove(*connection1()); dispatcher_->OnWriteBlocked(connection1()); EXPECT_CALL(*connection1(), OnCanWrite()).Times(1); dispatcher_->OnCanWrite(); } TEST_P(QuicDispatcherWriteBlockedListTest, DoubleAdd) { SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); dispatcher_->OnWriteBlocked(connection1()); blocked_list_->Remove(*connection1()); EXPECT_CALL(*connection1(), OnCanWrite()).Times(0); dispatcher_->OnCanWrite(); SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); dispatcher_->OnWriteBlocked(connection1()); EXPECT_CALL(*connection1(), OnCanWrite()).Times(1); dispatcher_->OnCanWrite(); } TEST_P(QuicDispatcherWriteBlockedListTest, OnCanWriteHandleBlockConnection1) { InSequence s; SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); dispatcher_->OnWriteBlocked(connection2()); EXPECT_CALL(*connection1(), OnCanWrite()) .WillOnce( Invoke(this, &QuicDispatcherWriteBlockedListTest::BlockConnection1)); EXPECT_CALL(*connection2(), OnCanWrite()); dispatcher_->OnCanWrite(); EXPECT_TRUE(dispatcher_->HasPendingWrites()); EXPECT_CALL(*connection1(), OnCanWrite()); EXPECT_CALL(*connection2(), OnCanWrite()).Times(0); dispatcher_->OnCanWrite(); EXPECT_FALSE(dispatcher_->HasPendingWrites()); } TEST_P(QuicDispatcherWriteBlockedListTest, OnCanWriteHandleBlockConnection2) { InSequence s; SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); dispatcher_->OnWriteBlocked(connection2()); EXPECT_CALL(*connection1(), OnCanWrite()); EXPECT_CALL(*connection2(), OnCanWrite()) .WillOnce( Invoke(this, &QuicDispatcherWriteBlockedListTest::BlockConnection2)); dispatcher_->OnCanWrite(); EXPECT_TRUE(dispatcher_->HasPendingWrites()); EXPECT_CALL(*connection1(), OnCanWrite()).Times(0); EXPECT_CALL(*connection2(), OnCanWrite()); dispatcher_->OnCanWrite(); EXPECT_FALSE(dispatcher_->HasPendingWrites()); } TEST_P(QuicDispatcherWriteBlockedListTest, OnCanWriteHandleBlockBothConnections) { InSequence s; SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); dispatcher_->OnWriteBlocked(connection2()); EXPECT_CALL(*connection1(), OnCanWrite()) .WillOnce( Invoke(this, &QuicDispatcherWriteBlockedListTest::BlockConnection1)); EXPECT_CALL(*connection2(), OnCanWrite()) .WillOnce( Invoke(this, &QuicDispatcherWriteBlockedListTest::BlockConnection2)); dispatcher_->OnCanWrite(); EXPECT_TRUE(dispatcher_->HasPendingWrites()); EXPECT_CALL(*connection1(), OnCanWrite()); EXPECT_CALL(*connection2(), OnCanWrite()); dispatcher_->OnCanWrite(); EXPECT_FALSE(dispatcher_->HasPendingWrites()); } TEST_P(QuicDispatcherWriteBlockedListTest, PerConnectionWriterBlocked) { EXPECT_EQ(dispatcher_->writer(), connection1()->writer()); EXPECT_EQ(dispatcher_->writer(), connection2()->writer()); connection2()->SetQuicPacketWriter(new BlockingWriter, true); EXPECT_NE(dispatcher_->writer(), connection2()->writer()); BlockConnection2(); EXPECT_TRUE(dispatcher_->HasPendingWrites()); EXPECT_CALL(*connection2(), OnCanWrite()); dispatcher_->OnCanWrite(); EXPECT_FALSE(dispatcher_->HasPendingWrites()); } TEST_P(QuicDispatcherWriteBlockedListTest, RemoveConnectionFromWriteBlockedListWhenDeletingSessions) { EXPECT_QUIC_BUG( { dispatcher_->OnConnectionClosed( connection1()->connection_id(), QUIC_PACKET_WRITE_ERROR, "Closed by test.", ConnectionCloseSource::FROM_SELF); SetBlocked(); ASSERT_FALSE(dispatcher_->HasPendingWrites()); SetBlocked(); dispatcher_->OnWriteBlocked(connection1()); ASSERT_TRUE(dispatcher_->HasPendingWrites()); dispatcher_->DeleteSessions(); MarkSession1Deleted(); }, "QuicConnection was in WriteBlockedList before destruction"); } class QuicDispatcherSupportMultipleConnectionIdPerConnectionTest : public QuicDispatcherTestBase { public: QuicDispatcherSupportMultipleConnectionIdPerConnectionTest() : QuicDispatcherTestBase(crypto_test_utils::ProofSourceForTesting()) { dispatcher_ = std::make_unique<NiceMock<TestDispatcher>>( &config_, &crypto_config_, &version_manager_, mock_helper_.GetRandomGenerator(), connection_id_generator_); } void AddConnection1() { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 1); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(1), client_address, &helper_, &alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(1), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(1)); } void AddConnection2() { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 2); EXPECT_CALL(*dispatcher_, CreateQuicSession(_, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(2), client_address, &helper_, &alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session2_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session2_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>(Invoke([this](const QuicEncryptedPacket& packet) { ValidatePacket(TestConnectionId(2), packet); }))); ProcessFirstFlight(client_address, TestConnectionId(2)); } protected: MockQuicConnectionHelper helper_; MockAlarmFactory alarm_factory_; }; INSTANTIATE_TEST_SUITE_P( QuicDispatcherSupportMultipleConnectionIdPerConnectionTests, QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, ::testing::Values(CurrentSupportedVersions().front()), ::testing::PrintToStringParamName()); TEST_P(QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, FailToAddExistingConnectionId) { AddConnection1(); EXPECT_FALSE(dispatcher_->TryAddNewConnectionId(TestConnectionId(1), TestConnectionId(1))); } TEST_P(QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, TryAddNewConnectionId) { AddConnection1(); ASSERT_EQ(dispatcher_->NumSessions(), 1u); ASSERT_THAT(session1_, testing::NotNull()); MockServerConnection* mock_server_connection1 = reinterpret_cast<MockServerConnection*>(connection1()); { mock_server_connection1->AddNewConnectionId(TestConnectionId(3)); EXPECT_EQ(dispatcher_->NumSessions(), 1u); auto* session = QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(3)); ASSERT_EQ(session, session1_); } { mock_server_connection1->AddNewConnectionId(TestConnectionId(4)); EXPECT_EQ(dispatcher_->NumSessions(), 1u); auto* session = QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(4)); ASSERT_EQ(session, session1_); } EXPECT_CALL(*connection1(), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); dispatcher_->Shutdown(); } TEST_P(QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, TryAddNewConnectionIdWithCollision) { AddConnection1(); AddConnection2(); ASSERT_EQ(dispatcher_->NumSessions(), 2u); ASSERT_THAT(session1_, testing::NotNull()); ASSERT_THAT(session2_, testing::NotNull()); MockServerConnection* mock_server_connection1 = reinterpret_cast<MockServerConnection*>(connection1()); MockServerConnection* mock_server_connection2 = reinterpret_cast<MockServerConnection*>(connection2()); { mock_server_connection1->UnconditionallyAddNewConnectionIdForTest( TestConnectionId(2)); EXPECT_EQ(dispatcher_->NumSessions(), 2u); auto* session = QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(2)); ASSERT_EQ(session, session2_); EXPECT_THAT(mock_server_connection1->GetActiveServerConnectionIds(), testing::ElementsAre(TestConnectionId(1), TestConnectionId(2))); } { mock_server_connection2->AddNewConnectionId(TestConnectionId(3)); EXPECT_EQ(dispatcher_->NumSessions(), 2u); auto* session = QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(3)); ASSERT_EQ(session, session2_); EXPECT_THAT(mock_server_connection2->GetActiveServerConnectionIds(), testing::ElementsAre(TestConnectionId(2), TestConnectionId(3))); } dispatcher_->OnConnectionClosed(TestConnectionId(2), QuicErrorCode::QUIC_NO_ERROR, "detail", quic::ConnectionCloseSource::FROM_SELF); EXPECT_QUICHE_BUG(dispatcher_->OnConnectionClosed( TestConnectionId(1), QuicErrorCode::QUIC_NO_ERROR, "detail", quic::ConnectionCloseSource::FROM_SELF), "Missing session for cid"); } TEST_P(QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, MismatchedSessionAfterAddingCollidedConnectionId) { AddConnection1(); AddConnection2(); MockServerConnection* mock_server_connection1 = reinterpret_cast<MockServerConnection*>(connection1()); { mock_server_connection1->UnconditionallyAddNewConnectionIdForTest( TestConnectionId(2)); EXPECT_EQ(dispatcher_->NumSessions(), 2u); auto* session = QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(2)); ASSERT_EQ(session, session2_); EXPECT_THAT(mock_server_connection1->GetActiveServerConnectionIds(), testing::ElementsAre(TestConnectionId(1), TestConnectionId(2))); } EXPECT_QUIC_BUG(dispatcher_->OnConnectionClosed( TestConnectionId(1), QuicErrorCode::QUIC_NO_ERROR, "detail", quic::ConnectionCloseSource::FROM_SELF), "Session is mismatched in the map"); } TEST_P(QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, RetireConnectionIdFromSingleConnection) { AddConnection1(); ASSERT_EQ(dispatcher_->NumSessions(), 1u); ASSERT_THAT(session1_, testing::NotNull()); MockServerConnection* mock_server_connection1 = reinterpret_cast<MockServerConnection*>(connection1()); for (int i = 2; i < 10; ++i) { mock_server_connection1->AddNewConnectionId(TestConnectionId(i)); ASSERT_EQ( QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(i)), session1_); ASSERT_EQ(QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(i - 1)), session1_); EXPECT_EQ(dispatcher_->NumSessions(), 1u); if (i % 2 == 1) { mock_server_connection1->RetireConnectionId(TestConnectionId(i - 2)); mock_server_connection1->RetireConnectionId(TestConnectionId(i - 1)); } } EXPECT_CALL(*connection1(), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); dispatcher_->Shutdown(); } TEST_P(QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, RetireConnectionIdFromMultipleConnections) { AddConnection1(); AddConnection2(); ASSERT_EQ(dispatcher_->NumSessions(), 2u); MockServerConnection* mock_server_connection1 = reinterpret_cast<MockServerConnection*>(connection1()); MockServerConnection* mock_server_connection2 = reinterpret_cast<MockServerConnection*>(connection2()); for (int i = 2; i < 10; ++i) { mock_server_connection1->AddNewConnectionId(TestConnectionId(2 * i - 1)); mock_server_connection2->AddNewConnectionId(TestConnectionId(2 * i)); ASSERT_EQ(QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(2 * i - 1)), session1_); ASSERT_EQ(QuicDispatcherPeer::FindSession(dispatcher_.get(), TestConnectionId(2 * i)), session2_); EXPECT_EQ(dispatcher_->NumSessions(), 2u); mock_server_connection1->RetireConnectionId(TestConnectionId(2 * i - 3)); mock_server_connection2->RetireConnectionId(TestConnectionId(2 * i - 2)); } mock_server_connection1->AddNewConnectionId(TestConnectionId(19)); mock_server_connection2->AddNewConnectionId(TestConnectionId(20)); EXPECT_CALL(*connection1(), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); EXPECT_CALL(*connection2(), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); dispatcher_->Shutdown(); } TEST_P(QuicDispatcherSupportMultipleConnectionIdPerConnectionTest, TimeWaitListPoplulateCorrectly) { QuicTimeWaitListManager* time_wait_list_manager = QuicDispatcherPeer::GetTimeWaitListManager(dispatcher_.get()); AddConnection1(); MockServerConnection* mock_server_connection1 = reinterpret_cast<MockServerConnection*>(connection1()); mock_server_connection1->AddNewConnectionId(TestConnectionId(2)); mock_server_connection1->AddNewConnectionId(TestConnectionId(3)); mock_server_connection1->AddNewConnectionId(TestConnectionId(4)); mock_server_connection1->RetireConnectionId(TestConnectionId(1)); mock_server_connection1->RetireConnectionId(TestConnectionId(2)); EXPECT_CALL(*connection1(), CloseConnection(QUIC_PEER_GOING_AWAY, _, _)); connection1()->CloseConnection( QUIC_PEER_GOING_AWAY, "Close for testing", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); EXPECT_FALSE( time_wait_list_manager->IsConnectionIdInTimeWait(TestConnectionId(1))); EXPECT_FALSE( time_wait_list_manager->IsConnectionIdInTimeWait(TestConnectionId(2))); EXPECT_TRUE( time_wait_list_manager->IsConnectionIdInTimeWait(TestConnectionId(3))); EXPECT_TRUE( time_wait_list_manager->IsConnectionIdInTimeWait(TestConnectionId(4))); dispatcher_->Shutdown(); } class BufferedPacketStoreTest : public QuicDispatcherTestBase { public: BufferedPacketStoreTest() : QuicDispatcherTestBase(), client_addr_(QuicIpAddress::Loopback4(), 1234) {} void ProcessFirstFlight(const ParsedQuicVersion& version, const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { QuicDispatcherTestBase::ProcessFirstFlight(version, peer_address, server_connection_id); } void ProcessFirstFlight(const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { ProcessFirstFlight(version_, peer_address, server_connection_id); } void ProcessFirstFlight(const QuicConnectionId& server_connection_id) { ProcessFirstFlight(client_addr_, server_connection_id); } void ProcessFirstFlight(const ParsedQuicVersion& version, const QuicConnectionId& server_connection_id) { ProcessFirstFlight(version, client_addr_, server_connection_id); } void ProcessUndecryptableEarlyPacket( const ParsedQuicVersion& version, const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { QuicDispatcherTestBase::ProcessUndecryptableEarlyPacket( version, peer_address, server_connection_id); } void ProcessUndecryptableEarlyPacket( const QuicSocketAddress& peer_address, const QuicConnectionId& server_connection_id) { ProcessUndecryptableEarlyPacket(version_, peer_address, server_connection_id); } void ProcessUndecryptableEarlyPacket( const QuicConnectionId& server_connection_id) { ProcessUndecryptableEarlyPacket(version_, client_addr_, server_connection_id); } protected: QuicSocketAddress client_addr_; }; INSTANTIATE_TEST_SUITE_P(BufferedPacketStoreTests, BufferedPacketStoreTest, ::testing::ValuesIn(CurrentSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(BufferedPacketStoreTest, ProcessNonChloPacketBeforeChlo) { InSequence s; QuicConnectionId conn_id = TestConnectionId(1); ProcessUndecryptableEarlyPacket(conn_id); EXPECT_EQ(0u, dispatcher_->NumSessions()) << "No session should be created before CHLO arrives."; EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(conn_id, version_)) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*dispatcher_, CreateQuicSession(conn_id, _, client_addr_, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, conn_id, client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(2) .WillRepeatedly( WithArg<2>(Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(conn_id, packet); } }))); expect_generator_is_called_ = false; ProcessFirstFlight(conn_id); } TEST_P(BufferedPacketStoreTest, ProcessNonChloPacketsUptoLimitAndProcessChlo) { InSequence s; QuicConnectionId conn_id = TestConnectionId(1); for (size_t i = 1; i <= kDefaultMaxUndecryptablePackets + 1; ++i) { ProcessUndecryptableEarlyPacket(conn_id); } EXPECT_EQ(0u, dispatcher_->NumSessions()) << "No session should be created before CHLO arrives."; data_connection_map_[conn_id].pop_back(); EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(conn_id, version_)) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*dispatcher_, CreateQuicSession(conn_id, _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, conn_id, client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(kDefaultMaxUndecryptablePackets + 1) .WillRepeatedly( WithArg<2>(Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(conn_id, packet); } }))); expect_generator_is_called_ = false; ProcessFirstFlight(conn_id); } TEST_P(BufferedPacketStoreTest, ProcessNonChloPacketsForDifferentConnectionsUptoLimit) { InSequence s; size_t kNumConnections = kMaxConnectionsWithoutCHLO + 1; for (size_t i = 1; i <= kNumConnections; ++i) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 20000 + i); QuicConnectionId conn_id = TestConnectionId(i); ProcessUndecryptableEarlyPacket(client_address, conn_id); } data_connection_map_[TestConnectionId(kNumConnections)].pop_front(); QuicDispatcherPeer::set_new_sessions_allowed_per_event_loop(dispatcher_.get(), kNumConnections); expect_generator_is_called_ = false; for (size_t i = 1; i <= kNumConnections; ++i) { QuicSocketAddress client_address(QuicIpAddress::Loopback4(), 20000 + i); QuicConnectionId conn_id = TestConnectionId(i); EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(conn_id, version_)) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*dispatcher_, CreateQuicSession(conn_id, _, client_address, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, conn_id, client_address, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); size_t num_packet_to_process = i <= kMaxConnectionsWithoutCHLO ? 2u : 1u; EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, client_address, _)) .Times(num_packet_to_process) .WillRepeatedly(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(conn_id, packet); } }))); ProcessFirstFlight(client_address, conn_id); } } TEST_P(BufferedPacketStoreTest, DeliverEmptyPackets) { QuicConnectionId conn_id = TestConnectionId(1); EXPECT_CALL(*dispatcher_, CreateQuicSession(conn_id, _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, conn_id, client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, client_addr_, _)); ProcessFirstFlight(conn_id); } TEST_P(BufferedPacketStoreTest, ReceiveRetransmittedCHLO) { InSequence s; QuicConnectionId conn_id = TestConnectionId(1); ProcessUndecryptableEarlyPacket(conn_id); EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(conn_id, version_)) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*dispatcher_, CreateQuicSession(conn_id, _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .Times(1) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, conn_id, client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(3) .WillRepeatedly( WithArg<2>(Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(conn_id, packet); } }))); std::vector<std::unique_ptr<QuicReceivedPacket>> packets = GetFirstFlightOfPackets(version_, conn_id); ASSERT_EQ(packets.size(), 1u); ProcessReceivedPacket(packets[0]->Clone(), client_addr_, version_, conn_id); ProcessReceivedPacket(std::move(packets[0]), client_addr_, version_, conn_id); } TEST_P(BufferedPacketStoreTest, ReceiveCHLOAfterExpiration) { InSequence s; CreateTimeWaitListManager(); QuicBufferedPacketStore* store = QuicDispatcherPeer::GetBufferedPackets(dispatcher_.get()); QuicBufferedPacketStorePeer::set_clock(store, mock_helper_.GetClock()); QuicConnectionId conn_id = TestConnectionId(1); ProcessPacket(client_addr_, conn_id, true, absl::StrCat("data packet ", 2), CONNECTION_ID_PRESENT, PACKET_4BYTE_PACKET_NUMBER, 2); mock_helper_.AdvanceTime( QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs)); QuicAlarm* alarm = QuicBufferedPacketStorePeer::expiration_alarm(store); alarm->Cancel(); store->OnExpirationTimeout(); ASSERT_TRUE(time_wait_list_manager_->IsConnectionIdInTimeWait(conn_id)); EXPECT_CALL(*time_wait_list_manager_, ProcessPacket(_, _, conn_id, _, _, _)); expect_generator_is_called_ = false; ProcessFirstFlight(conn_id); } TEST_P(BufferedPacketStoreTest, ProcessCHLOsUptoLimitAndBufferTheRest) { QuicBufferedPacketStore* store = QuicDispatcherPeer::GetBufferedPackets(dispatcher_.get()); const size_t kNumCHLOs = kMaxNumSessionsToCreate + kDefaultMaxConnectionsInStore + 1; for (uint64_t conn_id = 1; conn_id <= kNumCHLOs; ++conn_id) { const bool should_drop = (conn_id > kMaxNumSessionsToCreate + kDefaultMaxConnectionsInStore); if (!should_drop) { EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(TestConnectionId(conn_id), version_)) .WillOnce(Return(std::nullopt)); } if (conn_id <= kMaxNumSessionsToCreate) { EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL( *reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); } expect_generator_is_called_ = false; ProcessFirstFlight(TestConnectionId(conn_id)); if (conn_id <= kMaxNumSessionsToCreate + kDefaultMaxConnectionsInStore && conn_id > kMaxNumSessionsToCreate) { EXPECT_TRUE(store->HasChloForConnection(TestConnectionId(conn_id))); } else { EXPECT_FALSE(store->HasChloForConnection(TestConnectionId(conn_id))); } } for (uint64_t conn_id = kMaxNumSessionsToCreate + 1; conn_id <= kMaxNumSessionsToCreate + kDefaultMaxConnectionsInStore; ++conn_id) { EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); } EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(TestConnectionId(kNumCHLOs), version_)) .Times(0); EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(kNumCHLOs), _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .Times(0); while (store->HasChlosBuffered()) { dispatcher_->ProcessBufferedChlos(kMaxNumSessionsToCreate); } EXPECT_EQ(TestConnectionId(static_cast<size_t>(kMaxNumSessionsToCreate) + kDefaultMaxConnectionsInStore), session1_->connection_id()); } TEST_P(BufferedPacketStoreTest, ProcessCHLOsUptoLimitAndBufferWithDifferentConnectionIdGenerator) { QuicBufferedPacketStore* store = QuicDispatcherPeer::GetBufferedPackets(dispatcher_.get()); const size_t kNumCHLOs = kMaxNumSessionsToCreate + 1; for (uint64_t conn_id = 1; conn_id < kNumCHLOs; ++conn_id) { EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); ProcessFirstFlight(TestConnectionId(conn_id)); } uint64_t conn_id = kNumCHLOs; expect_generator_is_called_ = false; MockConnectionIdGenerator generator2; EXPECT_CALL(*dispatcher_, ConnectionIdGenerator()) .WillRepeatedly(ReturnRef(generator2)); const bool buffered_store_replace_cid = version_.UsesTls(); if (buffered_store_replace_cid) { EXPECT_CALL(generator2, MaybeReplaceConnectionId(TestConnectionId(conn_id), version_)) .WillOnce(Return(std::nullopt)); } ProcessFirstFlight(TestConnectionId(conn_id)); EXPECT_TRUE(store->HasChloForConnection(TestConnectionId(conn_id))); EXPECT_CALL(*dispatcher_, ConnectionIdGenerator()) .WillRepeatedly(ReturnRef(connection_id_generator_)); if (!buffered_store_replace_cid) { EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(TestConnectionId(conn_id), version_)) .WillOnce(Return(std::nullopt)); } EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce( WithArg<2>(Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); while (store->HasChlosBuffered()) { dispatcher_->ProcessBufferedChlos(kMaxNumSessionsToCreate); } } TEST_P(BufferedPacketStoreTest, BufferDuplicatedCHLO) { for (uint64_t conn_id = 1; conn_id <= kMaxNumSessionsToCreate + 1; ++conn_id) { if (conn_id <= kMaxNumSessionsToCreate) { EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL( *reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); } ProcessFirstFlight(TestConnectionId(conn_id)); } QuicConnectionId last_connection = TestConnectionId(kMaxNumSessionsToCreate + 1); expect_generator_is_called_ = false; ProcessFirstFlight(last_connection); size_t packets_buffered = 2; EXPECT_CALL(*dispatcher_, CreateQuicSession(last_connection, _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, last_connection, client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(packets_buffered) .WillRepeatedly(WithArg<2>( Invoke([this, last_connection](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(last_connection, packet); } }))); dispatcher_->ProcessBufferedChlos(kMaxNumSessionsToCreate); } TEST_P(BufferedPacketStoreTest, BufferNonChloPacketsUptoLimitWithChloBuffered) { uint64_t last_conn_id = kMaxNumSessionsToCreate + 1; QuicConnectionId last_connection_id = TestConnectionId(last_conn_id); for (uint64_t conn_id = 1; conn_id <= last_conn_id; ++conn_id) { if (conn_id <= kMaxNumSessionsToCreate) { EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL( *reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillRepeatedly(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); } ProcessFirstFlight(TestConnectionId(conn_id)); } for (uint64_t i = 0; i <= kDefaultMaxUndecryptablePackets; ++i) { ProcessPacket(client_addr_, last_connection_id, false, "data packet"); } EXPECT_CALL(*dispatcher_, CreateQuicSession(last_connection_id, _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, last_connection_id, client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); const QuicBufferedPacketStore* store = QuicDispatcherPeer::GetBufferedPackets(dispatcher_.get()); const QuicBufferedPacketStore::BufferedPacketList* last_connection_buffered_packets = QuicBufferedPacketStorePeer::FindBufferedPackets(store, last_connection_id); ASSERT_NE(last_connection_buffered_packets, nullptr); ASSERT_EQ(last_connection_buffered_packets->buffered_packets.size(), kDefaultMaxUndecryptablePackets); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(last_connection_buffered_packets->buffered_packets.size()) .WillRepeatedly(WithArg<2>( Invoke([this, last_connection_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(last_connection_id, packet); } }))); dispatcher_->ProcessBufferedChlos(kMaxNumSessionsToCreate); } TEST_P(BufferedPacketStoreTest, ReceiveCHLOForBufferedConnection) { QuicBufferedPacketStore* store = QuicDispatcherPeer::GetBufferedPackets(dispatcher_.get()); uint64_t conn_id = 1; ProcessUndecryptableEarlyPacket(TestConnectionId(conn_id)); for (conn_id = 2; conn_id <= kDefaultMaxConnectionsInStore + kMaxNumSessionsToCreate; ++conn_id) { if (conn_id <= kMaxNumSessionsToCreate + 1) { EXPECT_CALL(*dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpn()), _, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL( *reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillOnce(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); } else if (!version_.UsesTls()) { expect_generator_is_called_ = false; } ProcessFirstFlight(TestConnectionId(conn_id)); } EXPECT_FALSE(store->HasChloForConnection( TestConnectionId(1))); ProcessFirstFlight(TestConnectionId(1)); EXPECT_TRUE(store->HasChloForConnection( TestConnectionId(1))); } TEST_P(BufferedPacketStoreTest, ProcessBufferedChloWithDifferentVersion) { QuicDisableVersion(AllSupportedVersions().front()); uint64_t last_connection_id = kMaxNumSessionsToCreate + 5; ParsedQuicVersionVector supported_versions = CurrentSupportedVersions(); for (uint64_t conn_id = 1; conn_id <= last_connection_id; ++conn_id) { ParsedQuicVersion version = supported_versions[(conn_id - 1) % supported_versions.size()]; if (conn_id <= kMaxNumSessionsToCreate) { EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpnForVersion(version)), version, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL( *reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillRepeatedly(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); } ProcessFirstFlight(version, TestConnectionId(conn_id)); } for (uint64_t conn_id = kMaxNumSessionsToCreate + 1; conn_id <= last_connection_id; ++conn_id) { ParsedQuicVersion version = supported_versions[(conn_id - 1) % supported_versions.size()]; EXPECT_CALL( *dispatcher_, CreateQuicSession(TestConnectionId(conn_id), _, client_addr_, Eq(ExpectedAlpnForVersion(version)), version, _, _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, TestConnectionId(conn_id), client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .WillRepeatedly(WithArg<2>( Invoke([this, conn_id](const QuicEncryptedPacket& packet) { if (version_.UsesQuicCrypto()) { ValidatePacket(TestConnectionId(conn_id), packet); } }))); } dispatcher_->ProcessBufferedChlos(kMaxNumSessionsToCreate); } TEST_P(BufferedPacketStoreTest, BufferedChloWithEcn) { if (!version_.HasIetfQuicFrames()) { return; } SetQuicRestartFlag(quic_support_ect1, true); InSequence s; QuicConnectionId conn_id = TestConnectionId(1); std::unique_ptr<QuicEncryptedPacket> encrypted_packet = GetUndecryptableEarlyPacket(version_, conn_id); std::unique_ptr<QuicReceivedPacket> received_packet(ConstructReceivedPacket( *encrypted_packet, mock_helper_.GetClock()->Now(), ECN_ECT1)); ProcessReceivedPacket(std::move(received_packet), client_addr_, version_, conn_id); EXPECT_EQ(0u, dispatcher_->NumSessions()) << "No session should be created before CHLO arrives."; EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(conn_id, version_)) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*dispatcher_, CreateQuicSession(conn_id, _, client_addr_, Eq(ExpectedAlpn()), _, MatchParsedClientHello(), _)) .WillOnce(Return(ByMove(CreateSession( dispatcher_.get(), config_, conn_id, client_addr_, &mock_helper_, &mock_alarm_factory_, &crypto_config_, QuicDispatcherPeer::GetCache(dispatcher_.get()), &session1_)))); bool got_ect1 = false; bool got_ce = false; EXPECT_CALL(*reinterpret_cast<MockQuicConnection*>(session1_->connection()), ProcessUdpPacket(_, _, _)) .Times(2) .WillRepeatedly(WithArg<2>(Invoke([&](const QuicReceivedPacket& packet) { switch (packet.ecn_codepoint()) { case ECN_ECT1: got_ect1 = true; break; case ECN_CE: got_ce = true; break; default: break; } }))); QuicConnectionId client_connection_id = TestConnectionId(2); std::vector<std::unique_ptr<QuicReceivedPacket>> packets = GetFirstFlightOfPackets(version_, DefaultQuicConfig(), conn_id, client_connection_id, TestClientCryptoConfig(), ECN_CE); for (auto&& packet : packets) { ProcessReceivedPacket(std::move(packet), client_addr_, version_, conn_id); } EXPECT_TRUE(got_ect1); EXPECT_TRUE(got_ce); } class DualCIDBufferedPacketStoreTest : public BufferedPacketStoreTest { protected: void SetUp() override { BufferedPacketStoreTest::SetUp(); QuicDispatcherPeer::set_new_sessions_allowed_per_event_loop( dispatcher_.get(), 0); expect_generator_is_called_ = false; EXPECT_CALL(connection_id_generator_, MaybeReplaceConnectionId(_, _)) .WillRepeatedly(Invoke( this, &DualCIDBufferedPacketStoreTest::ReplaceConnectionIdInTest)); } std::optional<QuicConnectionId> ReplaceConnectionIdInTest( const QuicConnectionId& original, const ParsedQuicVersion& version) { auto it = replaced_cid_map_.find(original); if (it == replaced_cid_map_.end()) { ADD_FAILURE() << "Bad test setup: no replacement CID for " << original << ", version " << version; return std::nullopt; } return it->second; } QuicBufferedPacketStore& store() { return *QuicDispatcherPeer::GetBufferedPackets(dispatcher_.get()); } using BufferedPacketList = QuicBufferedPacketStore::BufferedPacketList; const BufferedPacketList* FindBufferedPackets( QuicConnectionId connection_id) { return QuicBufferedPacketStorePeer::FindBufferedPackets(&store(), connection_id); } absl::flat_hash_map<QuicConnectionId, std::optional<QuicConnectionId>> replaced_cid_map_; private: using BufferedPacketStoreTest::expect_generator_is_called_; }; INSTANTIATE_TEST_SUITE_P(DualCIDBufferedPacketStoreTests, DualCIDBufferedPacketStoreTest, ::testing::ValuesIn(CurrentSupportedVersionsWithTls()), ::testing::PrintToStringParamName()); TEST_P(DualCIDBufferedPacketStoreTest, CanLookUpByBothCIDs) { replaced_cid_map_[TestConnectionId(1)] = TestConnectionId(2); ProcessFirstFlight(TestConnectionId(1)); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(1))); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(2))); const BufferedPacketList* packets1 = FindBufferedPackets(TestConnectionId(1)); const BufferedPacketList* packets2 = FindBufferedPackets(TestConnectionId(2)); EXPECT_EQ(packets1, packets2); EXPECT_EQ(packets1->original_connection_id, TestConnectionId(1)); EXPECT_EQ(packets1->replaced_connection_id, TestConnectionId(2)); } TEST_P(DualCIDBufferedPacketStoreTest, DeliverPacketsByOriginalCID) { replaced_cid_map_[TestConnectionId(1)] = TestConnectionId(2); ProcessFirstFlight(TestConnectionId(1)); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(1))); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(2))); ASSERT_TRUE(store().HasChloForConnection(TestConnectionId(1))); ASSERT_TRUE(store().HasChloForConnection(TestConnectionId(2))); ASSERT_TRUE(store().HasChlosBuffered()); BufferedPacketList packets = store().DeliverPackets(TestConnectionId(1)); EXPECT_EQ(packets.original_connection_id, TestConnectionId(1)); EXPECT_EQ(packets.replaced_connection_id, TestConnectionId(2)); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(1))); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(2))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(1))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(2))); EXPECT_FALSE(store().HasChlosBuffered()); } TEST_P(DualCIDBufferedPacketStoreTest, DeliverPacketsByReplacedCID) { replaced_cid_map_[TestConnectionId(1)] = TestConnectionId(2); replaced_cid_map_[TestConnectionId(3)] = TestConnectionId(4); ProcessFirstFlight(TestConnectionId(1)); ProcessFirstFlight(TestConnectionId(3)); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(1))); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(3))); ASSERT_TRUE(store().HasChloForConnection(TestConnectionId(1))); ASSERT_TRUE(store().HasChloForConnection(TestConnectionId(3))); ASSERT_TRUE(store().HasChlosBuffered()); BufferedPacketList packets2 = store().DeliverPackets(TestConnectionId(2)); EXPECT_EQ(packets2.original_connection_id, TestConnectionId(1)); EXPECT_EQ(packets2.replaced_connection_id, TestConnectionId(2)); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(1))); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(2))); EXPECT_TRUE(store().HasBufferedPackets(TestConnectionId(3))); EXPECT_TRUE(store().HasBufferedPackets(TestConnectionId(4))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(1))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(2))); EXPECT_TRUE(store().HasChloForConnection(TestConnectionId(3))); EXPECT_TRUE(store().HasChloForConnection(TestConnectionId(4))); EXPECT_TRUE(store().HasChlosBuffered()); BufferedPacketList packets4 = store().DeliverPackets(TestConnectionId(4)); EXPECT_EQ(packets4.original_connection_id, TestConnectionId(3)); EXPECT_EQ(packets4.replaced_connection_id, TestConnectionId(4)); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(3))); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(4))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(3))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(4))); EXPECT_FALSE(store().HasChlosBuffered()); } TEST_P(DualCIDBufferedPacketStoreTest, DiscardPacketsByOriginalCID) { replaced_cid_map_[TestConnectionId(1)] = TestConnectionId(2); ProcessFirstFlight(TestConnectionId(1)); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(1))); store().DiscardPackets(TestConnectionId(1)); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(1))); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(2))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(1))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(2))); EXPECT_FALSE(store().HasChlosBuffered()); } TEST_P(DualCIDBufferedPacketStoreTest, DiscardPacketsByReplacedCID) { replaced_cid_map_[TestConnectionId(1)] = TestConnectionId(2); replaced_cid_map_[TestConnectionId(3)] = TestConnectionId(4); ProcessFirstFlight(TestConnectionId(1)); ProcessFirstFlight(TestConnectionId(3)); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(2))); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(4))); store().DiscardPackets(TestConnectionId(2)); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(1))); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(2))); EXPECT_TRUE(store().HasBufferedPackets(TestConnectionId(3))); EXPECT_TRUE(store().HasBufferedPackets(TestConnectionId(4))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(1))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(2))); EXPECT_TRUE(store().HasChloForConnection(TestConnectionId(3))); EXPECT_TRUE(store().HasChloForConnection(TestConnectionId(4))); EXPECT_TRUE(store().HasChlosBuffered()); store().DiscardPackets(TestConnectionId(4)); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(3))); EXPECT_FALSE(store().HasBufferedPackets(TestConnectionId(4))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(3))); EXPECT_FALSE(store().HasChloForConnection(TestConnectionId(4))); EXPECT_FALSE(store().HasChlosBuffered()); } TEST_P(DualCIDBufferedPacketStoreTest, CIDCollision) { replaced_cid_map_[TestConnectionId(1)] = TestConnectionId(2); replaced_cid_map_[TestConnectionId(3)] = TestConnectionId(2); ProcessFirstFlight(TestConnectionId(1)); ProcessFirstFlight(TestConnectionId(3)); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(1))); ASSERT_TRUE(store().HasBufferedPackets(TestConnectionId(2))); ASSERT_FALSE(store().HasBufferedPackets(TestConnectionId(3))); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_dispatcher.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_dispatcher_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
568d4113-9530-4715-a653-8c08fbdd2dff
cpp
google/tsl
statusor
tsl/platform/default/statusor.h
tsl/platform/statusor_test.cc
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_STATUSOR_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_STATUSOR_H_ #include "absl/status/statusor.h" #include "tsl/platform/macros.h" #include "tsl/platform/status.h" #define TF_ASSIGN_OR_RETURN(lhs, rexpr) \ TF_ASSIGN_OR_RETURN_IMPL( \ TF_STATUS_MACROS_CONCAT_NAME(_status_or_value, __COUNTER__), lhs, rexpr) #define TF_ASSIGN_OR_RETURN_IMPL(statusor, lhs, rexpr) \ auto statusor = (rexpr); \ if (TF_PREDICT_FALSE(!statusor.ok())) { \ return statusor.status(); \ } \ lhs = std::move(statusor).value() #endif
#include "tsl/platform/statusor.h" #include <memory> #include <type_traits> #include <utility> #include <vector> #include "absl/base/config.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace tsl { namespace { class Base1 { public: virtual ~Base1() {} int pad_; }; class Base2 { public: virtual ~Base2() {} int yetotherpad_; }; class Derived : public Base1, public Base2 { public: ~Derived() override {} int evenmorepad_; }; class CopyNoAssign { public: explicit CopyNoAssign(int value) : foo_(value) {} CopyNoAssign(const CopyNoAssign& other) : foo_(other.foo_) {} int foo_; private: const CopyNoAssign& operator=(const CopyNoAssign&); }; class NoDefaultConstructor { public: explicit NoDefaultConstructor(int foo); }; static_assert(!std::is_default_constructible<NoDefaultConstructor>(), "Should not be default-constructible."); absl::StatusOr<std::unique_ptr<int>> ReturnUniquePtr() { return std::unique_ptr<int>(new int(0)); } TEST(StatusOr, NullPointerStatusOr) { absl::StatusOr<int*> null_status(nullptr); EXPECT_TRUE(null_status.ok()); EXPECT_EQ(null_status.value(), nullptr); } TEST(StatusOr, TestNoDefaultConstructorInitialization) { absl::StatusOr<NoDefaultConstructor> statusor(errors::Cancelled("")); EXPECT_FALSE(statusor.ok()); EXPECT_EQ(statusor.status().code(), absl::StatusCode::kCancelled); absl::StatusOr<NoDefaultConstructor> statusor2; EXPECT_FALSE(statusor2.ok()); EXPECT_EQ(statusor2.status().code(), absl::StatusCode::kUnknown); } TEST(StatusOr, TestMoveOnlyInitialization) { absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr()); ASSERT_TRUE(thing.ok()); EXPECT_EQ(0, *thing.value()); int* previous = thing.value().get(); thing = ReturnUniquePtr(); EXPECT_TRUE(thing.ok()); EXPECT_EQ(0, *thing.value()); EXPECT_NE(previous, thing.value().get()); } TEST(StatusOr, TestMoveOnlyStatusCtr) { absl::StatusOr<std::unique_ptr<int>> thing(errors::Cancelled("")); ASSERT_FALSE(thing.ok()); } TEST(StatusOr, TestMoveOnlyValueExtraction) { absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr()); ASSERT_TRUE(thing.ok()); std::unique_ptr<int> ptr = std::move(thing).value(); EXPECT_EQ(0, *ptr); thing = std::move(ptr); ptr = std::move(thing.value()); EXPECT_EQ(0, *ptr); } TEST(StatusOr, TestMoveOnlyConversion) { absl::StatusOr<std::unique_ptr<const int>> const_thing(ReturnUniquePtr()); EXPECT_TRUE(const_thing.ok()); EXPECT_EQ(0, *const_thing.value()); const int* const_previous = const_thing.value().get(); const_thing = ReturnUniquePtr(); EXPECT_TRUE(const_thing.ok()); EXPECT_EQ(0, *const_thing.value()); EXPECT_NE(const_previous, const_thing.value().get()); } TEST(StatusOr, TestMoveOnlyVector) { std::vector<absl::StatusOr<std::unique_ptr<int>>> vec; vec.push_back(ReturnUniquePtr()); vec.resize(2); auto another_vec = std::move(vec); EXPECT_EQ(0, *another_vec[0].value()); EXPECT_EQ(absl::StatusCode::kUnknown, another_vec[1].status().code()); } TEST(StatusOr, TestMoveWithValuesAndErrors) { absl::StatusOr<std::string> status_or(std::string(1000, '0')); absl::StatusOr<std::string> value1(std::string(1000, '1')); absl::StatusOr<std::string> value2(std::string(1000, '2')); absl::StatusOr<std::string> error1( absl::Status(absl::StatusCode::kUnknown, "error1")); absl::StatusOr<std::string> error2( absl::Status(absl::StatusCode::kUnknown, "error2")); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '0'), status_or.value()); status_or = std::move(value1); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '1'), status_or.value()); status_or = std::move(error1); ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error1", status_or.status().message()); status_or = std::move(error2); ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error2", status_or.status().message()); status_or = std::move(value2); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '2'), status_or.value()); } TEST(StatusOr, TestCopyWithValuesAndErrors) { absl::StatusOr<std::string> status_or(std::string(1000, '0')); absl::StatusOr<std::string> value1(std::string(1000, '1')); absl::StatusOr<std::string> value2(std::string(1000, '2')); absl::StatusOr<std::string> error1( absl::Status(absl::StatusCode::kUnknown, "error1")); absl::StatusOr<std::string> error2( absl::Status(absl::StatusCode::kUnknown, "error2")); ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '0'), status_or.value()); status_or = value1; ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '1'), status_or.value()); status_or = error1; ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error1", status_or.status().message()); status_or = error2; ASSERT_FALSE(status_or.ok()); EXPECT_EQ("error2", status_or.status().message()); status_or = value2; ASSERT_TRUE(status_or.ok()); EXPECT_EQ(std::string(1000, '2'), status_or.value()); EXPECT_EQ(std::string(1000, '1'), value1.value()); EXPECT_EQ("error1", error1.status().message()); EXPECT_EQ("error2", error2.status().message()); EXPECT_EQ(std::string(1000, '2'), value2.value()); } TEST(StatusOr, TestDefaultCtor) { absl::StatusOr<int> thing; EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown); } TEST(StatusOrDeathTest, TestDefaultCtorValue) { absl::StatusOr<int> thing; #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif const absl::StatusOr<int> thing2; #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif } TEST(StatusOr, TestStatusCtor) { absl::StatusOr<int> thing(absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled); } TEST(StatusOr, TestValueCtor) { const int kI = 4; const absl::StatusOr<int> thing(kI); EXPECT_TRUE(thing.ok()); EXPECT_EQ(kI, thing.value()); } TEST(StatusOr, TestCopyCtorStatusOk) { const int kI = 4; const absl::StatusOr<int> original(kI); const absl::StatusOr<int> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(original.value(), copy.value()); } TEST(StatusOr, TestCopyCtorStatusNotOk) { absl::StatusOr<int> original(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestCopyCtorNonAssignable) { const int kI = 4; CopyNoAssign value(kI); absl::StatusOr<CopyNoAssign> original(value); absl::StatusOr<CopyNoAssign> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(original.value().foo_, copy.value().foo_); } TEST(StatusOr, TestCopyCtorStatusOKConverting) { const int kI = 4; absl::StatusOr<int> original(kI); absl::StatusOr<double> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_DOUBLE_EQ(original.value(), copy.value()); } TEST(StatusOr, TestCopyCtorStatusNotOkConverting) { absl::StatusOr<int> original(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<double> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestAssignmentStatusOk) { const int kI = 4; absl::StatusOr<int> source(kI); absl::StatusOr<int> target; target = source; EXPECT_EQ(target.status(), source.status()); EXPECT_EQ(source.value(), target.value()); } TEST(StatusOr, TestAssignmentStatusNotOk) { absl::StatusOr<int> source(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int> target; target = source; EXPECT_EQ(target.status(), source.status()); } TEST(StatusOr, TestStatus) { absl::StatusOr<int> good(4); EXPECT_TRUE(good.ok()); absl::StatusOr<int> bad(absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_FALSE(bad.ok()); EXPECT_EQ(bad.status(), absl::Status(absl::StatusCode::kCancelled, "")); } TEST(StatusOr, TestValue) { const int kI = 4; absl::StatusOr<int> thing(kI); EXPECT_EQ(kI, thing.value()); } TEST(StatusOr, TestValueConst) { const int kI = 4; const absl::StatusOr<int> thing(kI); EXPECT_EQ(kI, thing.value()); } TEST(StatusOrDeathTest, TestValueNotOk) { absl::StatusOr<int> thing( absl::Status(absl::StatusCode::kCancelled, "cancelled")); #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), "cancelled"); #endif } TEST(StatusOrDeathTest, TestValueNotOkConst) { const absl::StatusOr<int> thing(absl::Status(absl::StatusCode::kUnknown, "")); #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif } TEST(StatusOr, TestPointerDefaultCtor) { absl::StatusOr<int*> thing; EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown); } TEST(StatusOrDeathTest, TestPointerDefaultCtorValue) { absl::StatusOr<int*> thing; #ifdef ABSL_HAVE_EXCEPTIONS try { thing.value(); ADD_FAILURE() << "value() returned successfully while the access is illegal"; } catch (absl::BadStatusOrAccess& ex) { } #else EXPECT_DEATH(thing.value(), ""); #endif } TEST(StatusOr, TestPointerStatusCtor) { absl::StatusOr<int*> thing(absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_FALSE(thing.ok()); EXPECT_EQ(thing.status(), absl::Status(absl::StatusCode::kCancelled, "")); } TEST(StatusOr, TestPointerValueCtor) { const int kI = 4; absl::StatusOr<const int*> thing(&kI); EXPECT_TRUE(thing.ok()); EXPECT_EQ(&kI, thing.value()); } TEST(StatusOr, TestPointerCopyCtorStatusOk) { const int kI = 0; absl::StatusOr<const int*> original(&kI); absl::StatusOr<const int*> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(original.value(), copy.value()); } TEST(StatusOr, TestPointerCopyCtorStatusNotOk) { absl::StatusOr<int*> original(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int*> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestPointerCopyCtorStatusOKConverting) { Derived derived; absl::StatusOr<Derived*> original(&derived); absl::StatusOr<Base2*> copy(original); EXPECT_EQ(copy.status(), original.status()); EXPECT_EQ(static_cast<const Base2*>(original.value()), copy.value()); } TEST(StatusOr, TestPointerCopyCtorStatusNotOkConverting) { absl::StatusOr<Derived*> original( absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<Base2*> copy(original); EXPECT_EQ(copy.status(), original.status()); } TEST(StatusOr, TestPointerAssignmentStatusOk) { const int kI = 0; absl::StatusOr<const int*> source(&kI); absl::StatusOr<const int*> target; target = source; EXPECT_EQ(target.status(), source.status()); EXPECT_EQ(source.value(), target.value()); } TEST(StatusOr, TestPointerAssignmentStatusNotOk) { absl::StatusOr<int*> source(absl::Status(absl::StatusCode::kCancelled, "")); absl::StatusOr<int*> target; target = source; EXPECT_EQ(target.status(), source.status()); } TEST(StatusOr, TestPointerStatus) { const int kI = 0; absl::StatusOr<const int*> good(&kI); EXPECT_TRUE(good.ok()); absl::StatusOr<const int*> bad( absl::Status(absl::StatusCode::kCancelled, "")); EXPECT_EQ(bad.status(), absl::Status(absl::StatusCode::kCancelled, "")); } TEST(StatusOr, TestPointerValue) { const int kI = 0; absl::StatusOr<const int*> thing(&kI); EXPECT_EQ(&kI, thing.value()); } TEST(StatusOr, TestPointerValueConst) { const int kI = 0; const absl::StatusOr<const int*> thing(&kI); EXPECT_EQ(&kI, thing.value()); } TEST(StatusOr, TestArrowOperator) { absl::StatusOr<std::unique_ptr<int>> uptr = ReturnUniquePtr(); EXPECT_EQ(*uptr->get(), 0); } TEST(StatusOr, TestStarOperator) { absl::StatusOr<std::unique_ptr<int>> uptr = ReturnUniquePtr(); EXPECT_EQ(**uptr, 0); } TEST(StatusOr, TestStarOperatorDeath) { absl::StatusOr<Base1> error( absl::Status(absl::StatusCode::kCancelled, "cancelled")); EXPECT_DEATH(*error, "cancelled"); } static absl::StatusOr<int> MakeStatus() { return 100; } template <typename T> class BenchmarkFactory { public: BenchmarkFactory() : value_(new T) {} ~BenchmarkFactory() { delete value_; } T* TrivialFactory() TF_ATTRIBUTE_NOINLINE { return value_; } absl::Status ArgumentFactory(T** result) TF_ATTRIBUTE_NOINLINE { *result = value_; return absl::OkStatus(); } absl::Status ArgumentFactoryFail(T** result) TF_ATTRIBUTE_NOINLINE { *result = nullptr; return absl::Status(absl::StatusCode::kCancelled, ""); } absl::Status ArgumentFactoryFailShortMsg(T** result) TF_ATTRIBUTE_NOINLINE { *result = nullptr; return absl::Status(absl::StatusCode::kInternal, ""); } absl::Status ArgumentFactoryFailLongMsg(T** result) TF_ATTRIBUTE_NOINLINE { *result = nullptr; return absl::Status(absl::StatusCode::kInternal, "a big string of message junk that will never be read"); } StatusOr<T*> StatusOrFactory() TF_ATTRIBUTE_NOINLINE { return static_cast<T*>(value_); } StatusOr<T*> StatusOrFactoryFail() TF_ATTRIBUTE_NOINLINE { return absl::Status(absl::StatusCode::kCancelled, ""); } StatusOr<T*> StatusOrFactoryFailShortMsg() TF_ATTRIBUTE_NOINLINE { return absl::Status(absl::StatusCode::kInternal, ""); } StatusOr<T*> StatusOrFactoryFailLongMsg() TF_ATTRIBUTE_NOINLINE { return absl::Status(absl::StatusCode::kInternal, "a big string of message junk that will never be read"); } private: T* volatile value_; BenchmarkFactory(const BenchmarkFactory&) = delete; void operator=(const BenchmarkFactory&) = delete; }; class BenchmarkType { public: BenchmarkType() {} virtual ~BenchmarkType() {} virtual void DoWork() TF_ATTRIBUTE_NOINLINE {} private: BenchmarkType(const BenchmarkType&) = delete; void operator=(const BenchmarkType&) = delete; }; void BM_CalibrateWorkLoop(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; BenchmarkType* result = factory.TrivialFactory(); for (auto s : state) { if (result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_CalibrateWorkLoop); void BM_TrivialFactory(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = factory.TrivialFactory(); if (result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_TrivialFactory); void BM_ArgumentFactory(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactory(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactory); void BM_StatusOrFactory(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactory(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactory); void BM_ArgumentFactoryFail(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactoryFail(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactoryFail); void BM_StatusOrFactoryFail(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFail(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactoryFail); void BM_ArgumentFactoryFailShortMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactoryFailShortMsg(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactoryFailShortMsg); void BM_StatusOrFactoryFailShortMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFailShortMsg(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactoryFailShortMsg); void BM_ArgumentFactoryFailLongMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { BenchmarkType* result = nullptr; absl::Status status = factory.ArgumentFactoryFailLongMsg(&result); if (status.ok() && result != nullptr) { result->DoWork(); } } } BENCHMARK(BM_ArgumentFactoryFailLongMsg); void BM_StatusOrFactoryFailLongMsg(::testing::benchmark::State& state) { BenchmarkFactory<BenchmarkType> factory; for (auto s : state) { absl::StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFailLongMsg(); if (result.ok()) { result.value()->DoWork(); } } } BENCHMARK(BM_StatusOrFactoryFailLongMsg); #if defined(PLATFORM_GOOGLE) absl::StatusOr<int> GetError() { return absl::InvalidArgumentError("An invalid argument error"); } absl::StatusOr<int> PropagateError() { TF_ASSIGN_OR_RETURN(int a, GetError()); return a; } absl::StatusOr<int> PropagateError2() { TF_ASSIGN_OR_RETURN(int a, PropagateError()); return a; } TEST(Status, StackTracePropagation) { absl::StatusOr<int> s = PropagateError2(); auto sources = s.status().GetSourceLocations(); ASSERT_EQ(sources.size(), 3); for (int i = 0; i < 3; ++i) { ASSERT_EQ(sources[i].file_name(), "third_party/tensorflow/tsl/platform/statusor_test.cc"); } } #endif } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/default/statusor.h
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/statusor_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
9686cbe2-1b68-4171-9e71-4db9ddcde1c8
cpp
tensorflow/tensorflow
matchers
tensorflow/lite/testing/matchers.h
tensorflow/lite/testing/matchers_test.cc
#ifndef TENSORFLOW_LITE_TESTING_MATCHERS_H_ #define TENSORFLOW_LITE_TESTING_MATCHERS_H_ #include <algorithm> #include <cfloat> #include <cmath> #include <cstring> #include <iomanip> #include <iostream> #include <limits> #include <sstream> #include <string> #include <string_view> #include <vector> #include <gtest/gtest.h> #include "absl/base/casts.h" #include "absl/log/absl_check.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" inline void PrintTo(const TfLiteTensor& tensor, std::ostream* os) { *os << "\n" << ::tflite::GetTensorDebugString(&tensor); } namespace testing { namespace tflite { namespace internal { enum class FloatComparison { kExact, kApproximate }; struct TensorComparison { FloatComparison float_comp = FloatComparison::kExact; bool custom_margin = false; bool custom_fraction = false; double margin = 0.0; double fraction = 0.0; }; class TensorMatcher { public: TensorMatcher(const TensorComparison& comp, const TfLiteTensor& expected) : comp_(comp), expected_(expected) {} bool MatchAndExplain(const TfLiteTensor& actual, MatchResultListener* listener) const { const bool match = Match(actual); if (listener->IsInterested() && !match) *listener << DescribeDiff(actual); return match; } void DescribeTo(std::ostream* os) const { Describe(os, "is "); } void DescribeNegationTo(std::ostream* os) const { Describe(os, "is not "); } void SetCompareApproximately() { comp_.float_comp = FloatComparison::kApproximate; } void SetMargin(double margin) { ABSL_QCHECK_GE(margin, 0.0) << "Using a negative margin for Approximately"; comp_.custom_margin = true; comp_.margin = margin; } void SetFraction(double fraction) { ABSL_QCHECK(0.0 <= fraction && fraction < 1.0) << "Fraction for Approximately must be >= 0.0 and < 1.0"; comp_.custom_fraction = true; comp_.fraction = fraction; } private: static std::string TensorIndex(int index, const TfLiteIntArray* dims) { if (!dims->size) return ""; std::vector<int> index_nd(dims->size); for (int i = dims->size - 1; i >= 0; --i) { index_nd[i] = index % dims->data[i]; index /= dims->data[i]; } return absl::StrCat("[", absl::StrJoin(index_nd, "]["), "]"); } bool CompareFloat(float x, float y) const { switch (comp_.float_comp) { case FloatComparison::kExact: return x == y; case FloatComparison::kApproximate: if (x == y) return true; float fraction, margin; if (comp_.custom_margin || comp_.custom_fraction) { fraction = comp_.fraction; margin = comp_.margin; } else { constexpr float kEpsilon = 32 * FLT_EPSILON; if (std::fabs(x) <= kEpsilon && std::fabs(y) <= kEpsilon) return true; fraction = kEpsilon; margin = kEpsilon; } if (!std::isfinite(x) || !std::isfinite(y)) return false; float relative_margin = fraction * std::max(std::fabs(x), std::fabs(y)); return std::fabs(x - y) <= std::max(margin, relative_margin); } return false; } void Describe(std::ostream* os, std::string_view prefix) const { *os << prefix; if (comp_.float_comp == FloatComparison::kApproximate) { *os << "approximately "; if (comp_.custom_margin || comp_.custom_fraction) { *os << "("; if (comp_.custom_margin) { std::stringstream ss; ss << std::setprecision(std::numeric_limits<double>::digits10 + 2) << comp_.margin; *os << "absolute error of float values <= " << ss.str(); } if (comp_.custom_margin && comp_.custom_fraction) { *os << " or "; } if (comp_.custom_fraction) { std::stringstream ss; ss << std::setprecision(std::numeric_limits<double>::digits10 + 2) << comp_.fraction; *os << "relative error of float values <= " << ss.str(); } *os << ") "; } } *os << "equal to "; PrintTo(expected_, os); } std::string DescribeDiff(const TfLiteTensor& actual) const { if (actual.type != expected_.type) { return absl::StrCat( "dtypes don't match: ", TfLiteTypeGetName(actual.type), " vs ", TfLiteTypeGetName(expected_.type)); } if (!actual.dims) return "actual.dims is null."; if (!expected_.dims) return "expected.dims is null."; if (actual.dims->size != expected_.dims->size) { return absl::StrCat("dims don't match: ", actual.dims->size, "D vs ", expected_.dims->size, "D"); } if (int n = actual.dims->size; std::memcmp(actual.dims->data, expected_.dims->data, n * sizeof(int))) { return absl::StrCat( "shapes don't match: ", ::tflite::GetShapeDebugString(actual.dims), " vs ", ::tflite::GetShapeDebugString(expected_.dims)); } if (!actual.data.raw) return "actual.data is null."; if (!expected_.data.raw) return "expected.data is null."; if (actual.bytes != expected_.bytes) { return absl::StrCat("bytes don't match: ", actual.bytes, " vs ", expected_.bytes); } std::string error = "\n"; TfLiteIntArray* dims = actual.dims; int n = ::tflite::NumElements(dims); constexpr int kMaxMismatches = 20; for (int i = 0, j = 0; i < n; ++i) { if (!CompareFloat(actual.data.f[i], expected_.data.f[i])) { absl::StrAppend(&error, "data", TensorIndex(i, dims), " don't match: ", actual.data.f[i], " vs ", expected_.data.f[i], "\n"); ++j; } if (j == kMaxMismatches) { absl::StrAppend(&error, "Too many mismatches; stopping after ", j, ".\n"); break; } } return error; } bool Match(const TfLiteTensor& actual) const { if (actual.type != expected_.type) return false; if (!actual.dims) return false; if (!expected_.dims) return false; if (actual.dims->size != expected_.dims->size) return false; if (int n = actual.dims->size; std::memcmp(actual.dims->data, expected_.dims->data, n * sizeof(int))) { return false; } if (!actual.data.raw) return false; if (!expected_.data.raw) return false; if (actual.bytes != expected_.bytes) return false; switch (comp_.float_comp) { case FloatComparison::kExact: if (int n = actual.bytes; std::memcmp(actual.data.raw, expected_.data.raw, n)) { return false; } break; case FloatComparison::kApproximate: for (int i = 0, n = ::tflite::NumElements(actual.dims); i < n; ++i) { if (!CompareFloat(actual.data.f[i], expected_.data.f[i])) { return false; } } break; }; return true; } TensorComparison comp_; TfLiteTensor expected_; }; } struct SimpleConstTensor : public TfLiteTensor { template <typename T> SimpleConstTensor(TfLiteType dtype, const std::vector<int>& shape, absl::Span<T> buf) { type = dtype; dims = TfLiteIntArrayCreate(shape.size()); std::memcpy(dims->data, shape.data(), shape.size() * sizeof(int)); data = {.data = buf.data()}; bytes = buf.size() * sizeof(T); sparsity = nullptr; } ~SimpleConstTensor() { TfLiteIntArrayFree(dims); } }; inline void PrintTo(const SimpleConstTensor& tensor, std::ostream* os) { PrintTo(absl::implicit_cast<const TfLiteTensor&>(tensor), os); } inline PolymorphicMatcher<internal::TensorMatcher> EqualsTensor( const TfLiteTensor& expected) { internal::TensorComparison comp; return MakePolymorphicMatcher(internal::TensorMatcher(comp, expected)); } template <class InnerTensorMatcherT> inline InnerTensorMatcherT Approximately(InnerTensorMatcherT m) { m.mutable_impl().SetCompareApproximately(); return m; } template <class InnerTensorMatcherT> inline InnerTensorMatcherT Approximately(InnerTensorMatcherT m, double margin) { m.mutable_impl().SetCompareApproximately(); m.mutable_impl().SetMargin(margin); return m; } template <class InnerTensorMatcherT> inline InnerTensorMatcherT Approximately(InnerTensorMatcherT m, double margin, double fraction) { m.mutable_impl().SetCompareApproximately(); m.mutable_impl().SetMargin(margin); m.mutable_impl().SetFraction(fraction); return m; } } } #endif
#include "tensorflow/lite/testing/matchers.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace { using ::testing::tflite::Approximately; using ::testing::tflite::EqualsTensor; using ::testing::tflite::SimpleConstTensor; TEST(TensorMatcherTest, ExactlyEqualsSelf) { float data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(data)); EXPECT_THAT(a, EqualsTensor(a)); } TEST(TensorMatcherTest, ExactlyEqualsSame) { float a_data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(a_data)); float b_data[] = {2.71828f, 3.14159f}; SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(b_data)); EXPECT_THAT(a, EqualsTensor(b)); } TEST(TensorMatcherTest, DoesNotExactlyEqualDifferentType) { float data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(data)); SimpleConstTensor b(TfLiteType::kTfLiteInt32, {1, 2}, absl::MakeSpan(data)); EXPECT_THAT(a, Not(EqualsTensor(b))); } TEST(TensorMatcherTest, DoesNotExactlyEqualDifferentDims) { float data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(data)); SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {2, 1}, absl::MakeSpan(data)); EXPECT_THAT(a, Not(EqualsTensor(b))); } TEST(TensorMatcherTest, DoesNotExactlyEqualDifferentData) { float a_data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(a_data)); float b_data[] = {3.14159f, 2.71828f}; SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(b_data)); EXPECT_THAT(a, Not(EqualsTensor(b))); } TEST(TensorMatcherTest, ApproximatelyEqualsDefaultMargin) { float a_data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(a_data)); float b_data[] = {2.718277f, 3.141593f}; SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(b_data)); EXPECT_THAT(a, Approximately(EqualsTensor(b))); } TEST(TensorMatcherTest, ApproximatelyEqualsWithLooseMargin) { float a_data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(a_data)); float b_data[] = {2.72f, 3.14f}; SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(b_data)); EXPECT_THAT(a, Approximately(EqualsTensor(b), 0.01)); } TEST(TensorMatcherTest, DoesNotApproximatelyEqualWithTightMargin) { float a_data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(a_data)); float b_data[] = {2.72f, 3.14f}; SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(b_data)); EXPECT_THAT(a, Not(Approximately(EqualsTensor(b), 0.001))); } TEST(TensorMatcherTest, ApproximatelyEqualsWithLooseFraction) { float a_data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(a_data)); float b_data[] = {2.72f, 3.14f}; SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(b_data)); EXPECT_THAT( a, Approximately(EqualsTensor(b), 0.0, 0.999)); } TEST(TensorMatcherTest, DoesNotApproximatelyEqualWithTightFraction) { float a_data[] = {2.71828f, 3.14159f}; SimpleConstTensor a(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(a_data)); float b_data[] = {2.72f, 3.14f}; SimpleConstTensor b(TfLiteType::kTfLiteFloat32, {1, 2}, absl::MakeSpan(b_data)); EXPECT_THAT(a, Not(Approximately(EqualsTensor(b), 0.0, 0.0001))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/matchers.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/matchers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1560fb68-ac27-4a30-ae6c-29abc590bc38
cpp
google/cel-cpp
create_list_step
eval/eval/create_list_step.cc
eval/eval/create_list_step_test.cc
#include "eval/eval/create_list_step.h" #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/optional.h" #include "base/ast_internal/expr.h" #include "common/casting.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/attribute_utility.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "internal/status_macros.h" #include "runtime/internal/mutable_list_impl.h" namespace google::api::expr::runtime { namespace { using ::cel::Cast; using ::cel::ErrorValue; using ::cel::InstanceOf; using ::cel::ListValueBuilderInterface; using ::cel::UnknownValue; using ::cel::Value; using ::cel::runtime_internal::MutableListValue; class CreateListStep : public ExpressionStepBase { public: CreateListStep(int64_t expr_id, int list_size, absl::flat_hash_set<int> optional_indices) : ExpressionStepBase(expr_id), list_size_(list_size), optional_indices_(std::move(optional_indices)) {} absl::Status Evaluate(ExecutionFrame* frame) const override; private: int list_size_; absl::flat_hash_set<int32_t> optional_indices_; }; absl::Status CreateListStep::Evaluate(ExecutionFrame* frame) const { if (list_size_ < 0) { return absl::Status(absl::StatusCode::kInternal, "CreateListStep: list size is <0"); } if (!frame->value_stack().HasEnough(list_size_)) { return absl::Status(absl::StatusCode::kInternal, "CreateListStep: stack underflow"); } auto args = frame->value_stack().GetSpan(list_size_); cel::Value result; for (const auto& arg : args) { if (arg->Is<cel::ErrorValue>()) { result = arg; frame->value_stack().Pop(list_size_); frame->value_stack().Push(std::move(result)); return absl::OkStatus(); } } if (frame->enable_unknowns()) { absl::optional<UnknownValue> unknown_set = frame->attribute_utility().IdentifyAndMergeUnknowns( args, frame->value_stack().GetAttributeSpan(list_size_), true); if (unknown_set.has_value()) { frame->value_stack().Pop(list_size_); frame->value_stack().Push(std::move(unknown_set).value()); return absl::OkStatus(); } } CEL_ASSIGN_OR_RETURN(auto builder, frame->value_manager().NewListValueBuilder( frame->value_manager().GetDynListType())); builder->Reserve(args.size()); for (size_t i = 0; i < args.size(); ++i) { auto& arg = args[i]; if (optional_indices_.contains(static_cast<int32_t>(i))) { if (auto optional_arg = cel::As<cel::OptionalValue>(arg); optional_arg) { if (!optional_arg->HasValue()) { continue; } CEL_RETURN_IF_ERROR(builder->Add(optional_arg->Value())); } else { return cel::TypeConversionError(arg.GetTypeName(), "optional_type") .NativeValue(); } } else { CEL_RETURN_IF_ERROR(builder->Add(std::move(arg))); } } frame->value_stack().PopAndPush(list_size_, std::move(*builder).Build()); return absl::OkStatus(); } absl::flat_hash_set<int32_t> MakeOptionalIndicesSet( const cel::ast_internal::CreateList& create_list_expr) { absl::flat_hash_set<int32_t> optional_indices; for (size_t i = 0; i < create_list_expr.elements().size(); ++i) { if (create_list_expr.elements()[i].optional()) { optional_indices.insert(static_cast<int32_t>(i)); } } return optional_indices; } class CreateListDirectStep : public DirectExpressionStep { public: CreateListDirectStep( std::vector<std::unique_ptr<DirectExpressionStep>> elements, absl::flat_hash_set<int32_t> optional_indices, int64_t expr_id) : DirectExpressionStep(expr_id), elements_(std::move(elements)), optional_indices_(std::move(optional_indices)) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute_trail) const override { CEL_ASSIGN_OR_RETURN(auto builder, frame.value_manager().NewListValueBuilder( frame.value_manager().GetDynListType())); builder->Reserve(elements_.size()); AttributeUtility::Accumulator unknowns = frame.attribute_utility().CreateAccumulator(); AttributeTrail tmp_attr; for (size_t i = 0; i < elements_.size(); ++i) { const auto& element = elements_[i]; CEL_RETURN_IF_ERROR(element->Evaluate(frame, result, tmp_attr)); if (cel::InstanceOf<ErrorValue>(result)) return absl::OkStatus(); if (frame.attribute_tracking_enabled()) { if (frame.missing_attribute_errors_enabled()) { if (frame.attribute_utility().CheckForMissingAttribute(tmp_attr)) { CEL_ASSIGN_OR_RETURN( result, frame.attribute_utility().CreateMissingAttributeError( tmp_attr.attribute())); return absl::OkStatus(); } } if (frame.unknown_processing_enabled()) { if (InstanceOf<UnknownValue>(result)) { unknowns.Add(Cast<UnknownValue>(result)); } if (frame.attribute_utility().CheckForUnknown(tmp_attr, true)) { unknowns.Add(tmp_attr); } } } if (optional_indices_.contains(static_cast<int32_t>(i))) { if (auto optional_arg = cel::As<cel::OptionalValue>(static_cast<const Value&>(result)); optional_arg) { if (!optional_arg->HasValue()) { continue; } CEL_RETURN_IF_ERROR(builder->Add(optional_arg->Value())); continue; } return cel::TypeConversionError(result.GetTypeName(), "optional_type") .NativeValue(); } CEL_RETURN_IF_ERROR(builder->Add(std::move(result))); } if (!unknowns.IsEmpty()) { result = std::move(unknowns).Build(); return absl::OkStatus(); } result = std::move(*builder).Build(); return absl::OkStatus(); } private: std::vector<std::unique_ptr<DirectExpressionStep>> elements_; absl::flat_hash_set<int32_t> optional_indices_; }; class MutableListStep : public ExpressionStepBase { public: explicit MutableListStep(int64_t expr_id) : ExpressionStepBase(expr_id) {} absl::Status Evaluate(ExecutionFrame* frame) const override; }; absl::Status MutableListStep::Evaluate(ExecutionFrame* frame) const { CEL_ASSIGN_OR_RETURN(auto builder, frame->value_manager().NewListValueBuilder( frame->value_manager().GetDynListType())); frame->value_stack().Push(cel::OpaqueValue{ frame->value_manager().GetMemoryManager().MakeShared<MutableListValue>( std::move(builder))}); return absl::OkStatus(); } class DirectMutableListStep : public DirectExpressionStep { public: explicit DirectMutableListStep(int64_t expr_id) : DirectExpressionStep(expr_id) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const override; }; absl::Status DirectMutableListStep::Evaluate( ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute_trail) const { CEL_ASSIGN_OR_RETURN(auto builder, frame.value_manager().NewListValueBuilder( frame.value_manager().GetDynListType())); result = cel::OpaqueValue{ frame.value_manager().GetMemoryManager().MakeShared<MutableListValue>( std::move(builder))}; return absl::OkStatus(); } } std::unique_ptr<DirectExpressionStep> CreateDirectListStep( std::vector<std::unique_ptr<DirectExpressionStep>> deps, absl::flat_hash_set<int32_t> optional_indices, int64_t expr_id) { return std::make_unique<CreateListDirectStep>( std::move(deps), std::move(optional_indices), expr_id); } absl::StatusOr<std::unique_ptr<ExpressionStep>> CreateCreateListStep( const cel::ast_internal::CreateList& create_list_expr, int64_t expr_id) { return std::make_unique<CreateListStep>( expr_id, create_list_expr.elements().size(), MakeOptionalIndicesSet(create_list_expr)); } std::unique_ptr<ExpressionStep> CreateMutableListStep(int64_t expr_id) { return std::make_unique<MutableListStep>(expr_id); } std::unique_ptr<DirectExpressionStep> CreateDirectMutableListStep( int64_t expr_id) { return std::make_unique<DirectMutableListStep>(expr_id); } }
#include "eval/eval/create_list_step.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "base/ast_internal/expr.h" #include "base/attribute.h" #include "base/attribute_set.h" #include "base/type_provider.h" #include "common/casting.h" #include "common/memory.h" #include "common/value.h" #include "common/value_testing.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/cel_expression_flat_impl.h" #include "eval/eval/const_value_step.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/ident_step.h" #include "eval/internal/interop.h" #include "eval/public/activation.h" #include "eval/public/cel_attribute.h" #include "eval/public/testing/matchers.h" #include "eval/public/unknown_attribute_set.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "runtime/activation.h" #include "runtime/managed_value_factory.h" #include "runtime/runtime_options.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::IsOk; using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::cel::Attribute; using ::cel::AttributeQualifier; using ::cel::AttributeSet; using ::cel::Cast; using ::cel::ErrorValue; using ::cel::InstanceOf; using ::cel::IntValue; using ::cel::ListValue; using ::cel::TypeProvider; using ::cel::UnknownValue; using ::cel::Value; using ::cel::ast_internal::Expr; using ::cel::test::IntValueIs; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::Not; using ::testing::UnorderedElementsAre; absl::StatusOr<CelValue> RunExpression(const std::vector<int64_t>& values, google::protobuf::Arena* arena, bool enable_unknowns) { ExecutionPath path; Expr dummy_expr; auto& create_list = dummy_expr.mutable_list_expr(); for (auto value : values) { auto& expr0 = create_list.mutable_elements().emplace_back().mutable_expr(); expr0.mutable_const_expr().set_int64_value(value); CEL_ASSIGN_OR_RETURN( auto const_step, CreateConstValueStep(cel::interop_internal::CreateIntValue(value), -1)); path.push_back(std::move(const_step)); } CEL_ASSIGN_OR_RETURN(auto step, CreateCreateListStep(create_list, dummy_expr.id())); path.push_back(std::move(step)); cel::RuntimeOptions options; if (enable_unknowns) { options.unknown_processing = cel::UnknownProcessingOptions::kAttributeOnly; } CelExpressionFlatImpl cel_expr( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), options)); Activation activation; return cel_expr.Evaluate(activation, arena); } absl::StatusOr<CelValue> RunExpressionWithCelValues( const std::vector<CelValue>& values, google::protobuf::Arena* arena, bool enable_unknowns) { ExecutionPath path; Expr dummy_expr; Activation activation; auto& create_list = dummy_expr.mutable_list_expr(); int ind = 0; for (auto value : values) { std::string var_name = absl::StrCat("name_", ind++); auto& expr0 = create_list.mutable_elements().emplace_back().mutable_expr(); expr0.set_id(ind); expr0.mutable_ident_expr().set_name(var_name); CEL_ASSIGN_OR_RETURN(auto ident_step, CreateIdentStep(expr0.ident_expr(), expr0.id())); path.push_back(std::move(ident_step)); activation.InsertValue(var_name, value); } CEL_ASSIGN_OR_RETURN(auto step0, CreateCreateListStep(create_list, dummy_expr.id())); path.push_back(std::move(step0)); cel::RuntimeOptions options; if (enable_unknowns) { options.unknown_processing = cel::UnknownProcessingOptions::kAttributeOnly; } CelExpressionFlatImpl cel_expr( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), options)); return cel_expr.Evaluate(activation, arena); } class CreateListStepTest : public testing::TestWithParam<bool> {}; TEST(CreateListStepTest, TestCreateListStackUnderflow) { ExecutionPath path; Expr dummy_expr; auto& create_list = dummy_expr.mutable_list_expr(); auto& expr0 = create_list.mutable_elements().emplace_back().mutable_expr(); expr0.mutable_const_expr().set_int64_value(1); ASSERT_OK_AND_ASSIGN(auto step0, CreateCreateListStep(create_list, dummy_expr.id())); path.push_back(std::move(step0)); CelExpressionFlatImpl cel_expr( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), cel::RuntimeOptions{})); Activation activation; google::protobuf::Arena arena; auto status = cel_expr.Evaluate(activation, &arena); ASSERT_THAT(status, Not(IsOk())); } TEST_P(CreateListStepTest, CreateListEmpty) { google::protobuf::Arena arena; ASSERT_OK_AND_ASSIGN(CelValue result, RunExpression({}, &arena, GetParam())); ASSERT_TRUE(result.IsList()); EXPECT_THAT(result.ListOrDie()->size(), Eq(0)); } TEST_P(CreateListStepTest, CreateListOne) { google::protobuf::Arena arena; ASSERT_OK_AND_ASSIGN(CelValue result, RunExpression({100}, &arena, GetParam())); ASSERT_TRUE(result.IsList()); const auto& list = *result.ListOrDie(); ASSERT_THAT(list.size(), Eq(1)); const CelValue& value = list.Get(&arena, 0); EXPECT_THAT(value, test::IsCelInt64(100)); } TEST_P(CreateListStepTest, CreateListWithError) { google::protobuf::Arena arena; std::vector<CelValue> values; CelError error = absl::InvalidArgumentError("bad arg"); values.push_back(CelValue::CreateError(&error)); ASSERT_OK_AND_ASSIGN(CelValue result, RunExpressionWithCelValues(values, &arena, GetParam())); ASSERT_TRUE(result.IsError()); EXPECT_THAT(*result.ErrorOrDie(), Eq(absl::InvalidArgumentError("bad arg"))); } TEST_P(CreateListStepTest, CreateListWithErrorAndUnknown) { google::protobuf::Arena arena; std::vector<CelValue> values; Expr expr0; expr0.mutable_ident_expr().set_name("name0"); CelAttribute attr0(expr0.ident_expr().name(), {}); UnknownSet unknown_set0(UnknownAttributeSet({attr0})); values.push_back(CelValue::CreateUnknownSet(&unknown_set0)); CelError error = absl::InvalidArgumentError("bad arg"); values.push_back(CelValue::CreateError(&error)); ASSERT_OK_AND_ASSIGN(CelValue result, RunExpressionWithCelValues(values, &arena, GetParam())); ASSERT_TRUE(result.IsError()); EXPECT_THAT(*result.ErrorOrDie(), Eq(absl::InvalidArgumentError("bad arg"))); } TEST_P(CreateListStepTest, CreateListHundred) { google::protobuf::Arena arena; std::vector<int64_t> values; for (size_t i = 0; i < 100; i++) { values.push_back(i); } ASSERT_OK_AND_ASSIGN(CelValue result, RunExpression(values, &arena, GetParam())); ASSERT_TRUE(result.IsList()); const auto& list = *result.ListOrDie(); EXPECT_THAT(list.size(), Eq(static_cast<int>(values.size()))); for (size_t i = 0; i < values.size(); i++) { EXPECT_THAT(list.Get(&arena, i), test::IsCelInt64(values[i])); } } INSTANTIATE_TEST_SUITE_P(CombinedCreateListTest, CreateListStepTest, testing::Bool()); TEST(CreateListStepTest, CreateListHundredAnd2Unknowns) { google::protobuf::Arena arena; std::vector<CelValue> values; Expr expr0; expr0.mutable_ident_expr().set_name("name0"); CelAttribute attr0(expr0.ident_expr().name(), {}); Expr expr1; expr1.mutable_ident_expr().set_name("name1"); CelAttribute attr1(expr1.ident_expr().name(), {}); UnknownSet unknown_set0(UnknownAttributeSet({attr0})); UnknownSet unknown_set1(UnknownAttributeSet({attr1})); for (size_t i = 0; i < 100; i++) { values.push_back(CelValue::CreateInt64(i)); } values.push_back(CelValue::CreateUnknownSet(&unknown_set0)); values.push_back(CelValue::CreateUnknownSet(&unknown_set1)); ASSERT_OK_AND_ASSIGN(CelValue result, RunExpressionWithCelValues(values, &arena, true)); ASSERT_TRUE(result.IsUnknownSet()); const UnknownSet* result_set = result.UnknownSetOrDie(); EXPECT_THAT(result_set->unknown_attributes().size(), Eq(2)); } TEST(CreateDirectListStep, Basic) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; ExecutionFrameBase frame(activation, options, value_factory.get()); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back(CreateConstValueDirectStep(IntValue(1), -1)); deps.push_back(CreateConstValueDirectStep(IntValue(2), -1)); auto step = CreateDirectListStep(std::move(deps), {}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<ListValue>(result)); EXPECT_THAT(Cast<ListValue>(result).Size(), IsOkAndHolds(2)); } TEST(CreateDirectListStep, ForwardFirstError) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; ExecutionFrameBase frame(activation, options, value_factory.get()); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back(CreateConstValueDirectStep( value_factory.get().CreateErrorValue(absl::InternalError("test1")), -1)); deps.push_back(CreateConstValueDirectStep( value_factory.get().CreateErrorValue(absl::InternalError("test2")), -1)); auto step = CreateDirectListStep(std::move(deps), {}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<ErrorValue>(result)); EXPECT_THAT(Cast<ErrorValue>(result).NativeValue(), StatusIs(absl::StatusCode::kInternal, "test1")); } std::vector<std::string> UnknownAttrNames(const UnknownValue& v) { std::vector<std::string> names; names.reserve(v.attribute_set().size()); for (const auto& attr : v.attribute_set()) { EXPECT_OK(attr.AsString().status()); names.push_back(attr.AsString().value_or("<empty>")); } return names; } TEST(CreateDirectListStep, MergeUnknowns) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kAttributeOnly; ExecutionFrameBase frame(activation, options, value_factory.get()); AttributeSet attr_set1({Attribute("var1")}); AttributeSet attr_set2({Attribute("var2")}); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back(CreateConstValueDirectStep( value_factory.get().CreateUnknownValue(std::move(attr_set1)), -1)); deps.push_back(CreateConstValueDirectStep( value_factory.get().CreateUnknownValue(std::move(attr_set2)), -1)); auto step = CreateDirectListStep(std::move(deps), {}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<UnknownValue>(result)); EXPECT_THAT(UnknownAttrNames(Cast<UnknownValue>(result)), UnorderedElementsAre("var1", "var2")); } TEST(CreateDirectListStep, ErrorBeforeUnknown) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; ExecutionFrameBase frame(activation, options, value_factory.get()); AttributeSet attr_set1({Attribute("var1")}); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back(CreateConstValueDirectStep( value_factory.get().CreateErrorValue(absl::InternalError("test1")), -1)); deps.push_back(CreateConstValueDirectStep( value_factory.get().CreateErrorValue(absl::InternalError("test2")), -1)); auto step = CreateDirectListStep(std::move(deps), {}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<ErrorValue>(result)); EXPECT_THAT(Cast<ErrorValue>(result).NativeValue(), StatusIs(absl::StatusCode::kInternal, "test1")); } class SetAttrDirectStep : public DirectExpressionStep { public: explicit SetAttrDirectStep(Attribute attr) : DirectExpressionStep(-1), attr_(std::move(attr)) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attr) const override { result = frame.value_manager().GetNullValue(); attr = AttributeTrail(attr_); return absl::OkStatus(); } private: cel::Attribute attr_; }; TEST(CreateDirectListStep, MissingAttribute) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; options.enable_missing_attribute_errors = true; activation.SetMissingPatterns({cel::AttributePattern( "var1", {cel::AttributeQualifierPattern::OfString("field1")})}); ExecutionFrameBase frame(activation, options, value_factory.get()); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back( CreateConstValueDirectStep(value_factory.get().GetNullValue(), -1)); deps.push_back(std::make_unique<SetAttrDirectStep>( Attribute("var1", {AttributeQualifier::OfString("field1")}))); auto step = CreateDirectListStep(std::move(deps), {}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<ErrorValue>(result)); EXPECT_THAT( Cast<ErrorValue>(result).NativeValue(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("var1.field1"))); } TEST(CreateDirectListStep, OptionalPresentSet) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; ExecutionFrameBase frame(activation, options, value_factory.get()); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back(CreateConstValueDirectStep(IntValue(1), -1)); deps.push_back(CreateConstValueDirectStep( cel::OptionalValue::Of(value_factory.get().GetMemoryManager(), IntValue(2)), -1)); auto step = CreateDirectListStep(std::move(deps), {1}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<ListValue>(result)); auto list = Cast<ListValue>(result); EXPECT_THAT(list.Size(), IsOkAndHolds(2)); EXPECT_THAT(list.Get(value_factory.get(), 0), IsOkAndHolds(IntValueIs(1))); EXPECT_THAT(list.Get(value_factory.get(), 1), IsOkAndHolds(IntValueIs(2))); } TEST(CreateDirectListStep, OptionalAbsentNotSet) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; ExecutionFrameBase frame(activation, options, value_factory.get()); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back(CreateConstValueDirectStep(IntValue(1), -1)); deps.push_back(CreateConstValueDirectStep(cel::OptionalValue::None(), -1)); auto step = CreateDirectListStep(std::move(deps), {1}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<ListValue>(result)); auto list = Cast<ListValue>(result); EXPECT_THAT(list.Size(), IsOkAndHolds(1)); EXPECT_THAT(list.Get(value_factory.get(), 0), IsOkAndHolds(IntValueIs(1))); } TEST(CreateDirectListStep, PartialUnknown) { cel::ManagedValueFactory value_factory( cel::TypeProvider::Builtin(), cel::MemoryManagerRef::ReferenceCounting()); cel::Activation activation; cel::RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kAttributeOnly; activation.SetUnknownPatterns({cel::AttributePattern( "var1", {cel::AttributeQualifierPattern::OfString("field1")})}); ExecutionFrameBase frame(activation, options, value_factory.get()); std::vector<std::unique_ptr<DirectExpressionStep>> deps; deps.push_back( CreateConstValueDirectStep(value_factory.get().CreateIntValue(1), -1)); deps.push_back(std::make_unique<SetAttrDirectStep>(Attribute("var1", {}))); auto step = CreateDirectListStep(std::move(deps), {}, -1); cel::Value result; AttributeTrail attr; ASSERT_OK(step->Evaluate(frame, result, attr)); ASSERT_TRUE(InstanceOf<UnknownValue>(result)); EXPECT_THAT(UnknownAttrNames(Cast<UnknownValue>(result)), UnorderedElementsAre("var1")); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/create_list_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/create_list_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
d43e90d3-982d-493d-b392-cc60f915b654
cpp
tensorflow/tensorflow
sparsify_model
tensorflow/compiler/mlir/lite/sparsity/sparsify_model.cc
tensorflow/compiler/mlir/lite/sparsity/sparsify_model_test.cc
#include "tensorflow/compiler/mlir/lite/sparsity/sparsify_model.h" #include <cstdint> #include <string> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/lite/flatbuffer_export.h" #include "tensorflow/compiler/mlir/lite/flatbuffer_import.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" #include "tensorflow/compiler/mlir/lite/tools/optimize/reduced_precision_metadata.h" #include "tensorflow/compiler/mlir/lite/transforms/dense_to_sparse_pass.h" #include "tensorflow/compiler/mlir/lite/transforms/pass_registry_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/core/framework/types.pb.h" namespace mlir { namespace lite { absl::Status SparsifyModel(const tflite::ModelT& input_model, flatbuffers::FlatBufferBuilder* builder) { MLIRContext context; StatusScopedDiagnosticHandler statusHandler(&context, true); flatbuffers::FlatBufferBuilder input_builder; flatbuffers::Offset<tflite::Model> input_model_location = tflite::Model::Pack(input_builder, &input_model); tflite::FinishModelBuffer(input_builder, input_model_location); std::string serialized_model( reinterpret_cast<const char*>(input_builder.GetBufferPointer()), input_builder.GetSize()); OwningOpRef<mlir::ModuleOp> module = tflite::FlatBufferToMlir( serialized_model, &context, UnknownLoc::get(&context)); if (!module) { LOG(ERROR) << "Couldn't import flatbuffer to MLIR."; return absl::InternalError("Couldn't import flatbuffer to MLIR."); } PassManager pm((*module)->getName(), OpPassManager::Nesting::Implicit); pm.addPass(TFL::Create<TFL::DenseToSparsePass>()); if (failed(pm.run(module.get()))) { LOG(ERROR) << "Failed to sparsify: " << statusHandler.ConsumeStatus().message(); return absl::InternalError(absl::StrCat( "Failed to sparsify: ", statusHandler.ConsumeStatus().message())); } std::string result; tflite::FlatbufferExportOptions options; options.converter_flags.set_force_select_tf_ops(false); options.converter_flags.set_enable_select_tf_ops(true); options.converter_flags.set_allow_custom_ops(true); for (const auto& metadata : input_model.metadata) { if (metadata->name != tflite::optimize::kTfLiteReducedPrecisionKey) { continue; } const auto& data = input_model.buffers[metadata->buffer]->data; options.metadata[metadata->name] = std::string(data.begin(), data.end()); break; } if (!tflite::MlirToFlatBufferTranslateFunction(module.get(), options, &result)) { LOG(ERROR) << "Failed to export MLIR to flatbuffer."; return absl::InternalError("Failed to export MLIR to flatbuffer."); } builder->PushFlatBuffer(reinterpret_cast<const uint8_t*>(result.data()), result.size()); return absl::OkStatus(); } } }
#include "tensorflow/compiler/mlir/lite/sparsity/sparsify_model.h" #include <stdint.h> #include <cstdarg> #include <map> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/core/absl_error_model_builder.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" #include "tensorflow/compiler/mlir/lite/tools/optimize/reduced_precision_metadata.h" namespace mlir { namespace lite { namespace { TEST(SparsifyModelTest, MetadataIsAddedToOutputModel) { std::string expected_key = tflite::optimize::kTfLiteReducedPrecisionKey; std::string expected_value = "test_data"; auto input_fbm = mlir::TFL::FlatBufferModelAbslError::BuildFromFile( "tensorflow/compiler/mlir/lite/sparsity/testdata/" "sparse_tensor.bin"); tflite::ModelT input_model; input_fbm->GetModel()->UnPackTo(&input_model); auto model_metadata_buffer = std::make_unique<tflite::BufferT>(); model_metadata_buffer->data = std::vector<uint8_t>(expected_value.begin(), expected_value.end()); input_model.buffers.push_back(std::move(model_metadata_buffer)); auto metadata_t = std::make_unique<tflite::MetadataT>(); metadata_t->name = tflite::optimize::kTfLiteReducedPrecisionKey; metadata_t->buffer = input_model.buffers.size() - 1; input_model.metadata.push_back(std::move(metadata_t)); flatbuffers::FlatBufferBuilder output_builder; ASSERT_TRUE(SparsifyModel(input_model, &output_builder).ok()); auto output_fbm = mlir::TFL::FlatBufferModelAbslError::BuildFromBuffer( reinterpret_cast<const char*>(output_builder.GetCurrentBufferPointer()), output_builder.GetSize()); tflite::ModelT output_model; output_fbm->GetModel()->UnPackTo(&output_model); std::map<std::string, std::string> output_metadata; for (const auto& metadata : output_model.metadata) { const auto& data = output_model.buffers[metadata->buffer]->data; output_metadata[metadata->name] = std::string(data.begin(), data.end()); } EXPECT_THAT(output_metadata, testing::Contains(testing::Pair(expected_key, expected_value))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/sparsity/sparsify_model.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/sparsity/sparsify_model_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5302a1e6-ab88-4a50-a323-5dace045e104
cpp
tensorflow/tensorflow
input_lowering_metrics_pass
tensorflow/compiler/mlir/tf2xla/internal/passes/input_lowering_metrics_pass.cc
tensorflow/compiler/mlir/tf2xla/internal/passes/input_lowering_metrics_pass_test.cc
#include <memory> #include "llvm/ADT/DenseSet.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Visitors.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/TypeID.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/legalization_op_config.h" #include "tensorflow/core/lib/monitoring/counter.h" namespace tensorflow { namespace tf2xla { namespace internal { namespace { using mlir::Operation; using mlir::WalkResult; #define GEN_PASS_DEF_INPUTLOWERINGMETRICSPASS #include "tensorflow/compiler/mlir/tf2xla/internal/passes/lowering_passes.h.inc" auto* dynamism_op_counter = tensorflow::monitoring::Counter<1>::New( "/tensorflow/core/tf2xla/api/v2/dynamism_op_counter", "Counts how many ops are dynamic", "op_name"); auto* dynamism_function_counter = tensorflow::monitoring::Counter<1>::New( "/tensorflow/core/tf2xla/api/v2/dynamism_function_counter", "Counts how many functions are dynamic", "has_dynamism"); constexpr char kNotDynamicFunctionName[] = "kNotDynamicFunction"; constexpr char kDynamicFunctionName[] = "kDynamicFunction"; class InputMetricsLoweringPass : public impl::InputLoweringMetricsPassBase<InputMetricsLoweringPass> { public: void runOnOperation() override; }; void InputMetricsLoweringPass::runOnOperation() { bool has_dynamic_op = false; Operation* func_op = getOperation(); func_op->walk([&](Operation* op) { auto abstractOp = op->getRegisteredInfo(); if (!abstractOp) return WalkResult::advance(); if (mlir::mhlo::IsDynamicPadderOp(abstractOp->getTypeID())) { has_dynamic_op = true; dynamism_op_counter->GetCell(op->getName().getStringRef().str()) ->IncrementBy(1); } return WalkResult::advance(); }); if (has_dynamic_op) { dynamism_function_counter->GetCell(kDynamicFunctionName)->IncrementBy(1); } else { dynamism_function_counter->GetCell(kNotDynamicFunctionName)->IncrementBy(1); } } } std::unique_ptr<mlir::OperationPass<mlir::func::FuncOp>> CreateInputLoweringMetricsPass() { return std::make_unique<InputMetricsLoweringPass>(); } } } }
#include <cstdint> #include <memory> #include <gtest/gtest.h> #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tf2xla/internal/passes/lowering_passes.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/test_utils.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tf2xla { namespace internal { namespace { using ::mlir::LogicalResult; using ::mlir::ModuleOp; using ::mlir::mhlo::test::GetMlirModuleFromString; using ::tensorflow::monitoring::testing::CellReader; constexpr char kNotDynamicFunctionName[] = "kNotDynamicFunction"; constexpr char kDynamicFunctionName[] = "kDynamicFunction"; static constexpr char kDynamismOpCounterStreamzName[] = "/tensorflow/core/tf2xla/api/v2/dynamism_op_counter"; static constexpr char kDynamismFunctionCounterStreamzName[] = "/tensorflow/core/tf2xla/api/v2/dynamism_function_counter"; class InputLoweringMetricsPassTest : public testing::Test { protected: void CreateModule(const char* module_string) { TF_ASSERT_OK_AND_ASSIGN(module_, GetMlirModuleFromString(module_string, &context_)); pm_ = std::make_unique<mlir::PassManager>(&context_); pm_->addNestedPass<mlir::func::FuncOp>(CreateInputLoweringMetricsPass()); } bool ModulesEqual(const ModuleOp& module_before, const ModuleOp& module_after) { return mlir::OperationEquivalence::isEquivalentTo( module_before, module_after, mlir::OperationEquivalence::None); } mlir::LogicalResult Run() { mlir::OwningOpRef<mlir::ModuleOp> module_before = module_->clone(); LogicalResult run_result = pm_->run(module_.get()); EXPECT_TRUE(ModulesEqual(*module_before, *module_)); return run_result; } private: mlir::MLIRContext context_; mlir::OwningOpRef<ModuleOp> module_; std::unique_ptr<mlir::PassManager> pm_; }; TEST_F(InputLoweringMetricsPassTest, CountsNoDynamicOps) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<1xi32> { %0 = "tf.Const"() {value = dense<1000> : tensor<1xi32>} : () -> tensor<1xi32> return %0 : tensor<1xi32> } })"; CellReader<int64_t> dynamism_op_counter(kDynamismOpCounterStreamzName); CellReader<int64_t> dynamism_function_counter( kDynamismFunctionCounterStreamzName); CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.succeeded()); EXPECT_EQ(dynamism_function_counter.Delta(kNotDynamicFunctionName), 1); } TEST_F(InputLoweringMetricsPassTest, CountsDynamicOps) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { %cst0 = "tf.Const"(){ value = dense<0> : tensor<3x5xi1>} : () -> tensor<3x5xi1> %0 = "tf.Where"(%cst0) : (tensor<3x5xi1>) -> tensor<?x2xi64> func.return } })"; CellReader<int64_t> dynamism_counter(kDynamismOpCounterStreamzName); CellReader<int64_t> dynamism_function_counter( kDynamismFunctionCounterStreamzName); CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.succeeded()); EXPECT_EQ(dynamism_counter.Delta("tf.Where"), 1); EXPECT_EQ(dynamism_function_counter.Delta(kDynamicFunctionName), 1); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/passes/input_lowering_metrics_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/passes/input_lowering_metrics_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
868102d5-3fce-4df6-ae58-7cc321b9294f
cpp
google/leveldb
bloom
util/bloom.cc
util/bloom_test.cc
#include "leveldb/filter_policy.h" #include "leveldb/slice.h" #include "util/hash.h" namespace leveldb { namespace { static uint32_t BloomHash(const Slice& key) { return Hash(key.data(), key.size(), 0xbc9f1d34); } class BloomFilterPolicy : public FilterPolicy { public: explicit BloomFilterPolicy(int bits_per_key) : bits_per_key_(bits_per_key) { k_ = static_cast<size_t>(bits_per_key * 0.69); if (k_ < 1) k_ = 1; if (k_ > 30) k_ = 30; } const char* Name() const override { return "leveldb.BuiltinBloomFilter2"; } void CreateFilter(const Slice* keys, int n, std::string* dst) const override { size_t bits = n * bits_per_key_; if (bits < 64) bits = 64; size_t bytes = (bits + 7) / 8; bits = bytes * 8; const size_t init_size = dst->size(); dst->resize(init_size + bytes, 0); dst->push_back(static_cast<char>(k_)); char* array = &(*dst)[init_size]; for (int i = 0; i < n; i++) { uint32_t h = BloomHash(keys[i]); const uint32_t delta = (h >> 17) | (h << 15); for (size_t j = 0; j < k_; j++) { const uint32_t bitpos = h % bits; array[bitpos / 8] |= (1 << (bitpos % 8)); h += delta; } } } bool KeyMayMatch(const Slice& key, const Slice& bloom_filter) const override { const size_t len = bloom_filter.size(); if (len < 2) return false; const char* array = bloom_filter.data(); const size_t bits = (len - 1) * 8; const size_t k = array[len - 1]; if (k > 30) { return true; } uint32_t h = BloomHash(key); const uint32_t delta = (h >> 17) | (h << 15); for (size_t j = 0; j < k; j++) { const uint32_t bitpos = h % bits; if ((array[bitpos / 8] & (1 << (bitpos % 8))) == 0) return false; h += delta; } return true; } private: size_t bits_per_key_; size_t k_; }; } const FilterPolicy* NewBloomFilterPolicy(int bits_per_key) { return new BloomFilterPolicy(bits_per_key); } }
#include "gtest/gtest.h" #include "leveldb/filter_policy.h" #include "util/coding.h" #include "util/logging.h" #include "util/testutil.h" namespace leveldb { static const int kVerbose = 1; static Slice Key(int i, char* buffer) { EncodeFixed32(buffer, i); return Slice(buffer, sizeof(uint32_t)); } class BloomTest : public testing::Test { public: BloomTest() : policy_(NewBloomFilterPolicy(10)) {} ~BloomTest() { delete policy_; } void Reset() { keys_.clear(); filter_.clear(); } void Add(const Slice& s) { keys_.push_back(s.ToString()); } void Build() { std::vector<Slice> key_slices; for (size_t i = 0; i < keys_.size(); i++) { key_slices.push_back(Slice(keys_[i])); } filter_.clear(); policy_->CreateFilter(&key_slices[0], static_cast<int>(key_slices.size()), &filter_); keys_.clear(); if (kVerbose >= 2) DumpFilter(); } size_t FilterSize() const { return filter_.size(); } void DumpFilter() { std::fprintf(stderr, "F("); for (size_t i = 0; i + 1 < filter_.size(); i++) { const unsigned int c = static_cast<unsigned int>(filter_[i]); for (int j = 0; j < 8; j++) { std::fprintf(stderr, "%c", (c & (1 << j)) ? '1' : '.'); } } std::fprintf(stderr, ")\n"); } bool Matches(const Slice& s) { if (!keys_.empty()) { Build(); } return policy_->KeyMayMatch(s, filter_); } double FalsePositiveRate() { char buffer[sizeof(int)]; int result = 0; for (int i = 0; i < 10000; i++) { if (Matches(Key(i + 1000000000, buffer))) { result++; } } return result / 10000.0; } private: const FilterPolicy* policy_; std::string filter_; std::vector<std::string> keys_; }; TEST_F(BloomTest, EmptyFilter) { ASSERT_TRUE(!Matches("hello")); ASSERT_TRUE(!Matches("world")); } TEST_F(BloomTest, Small) { Add("hello"); Add("world"); ASSERT_TRUE(Matches("hello")); ASSERT_TRUE(Matches("world")); ASSERT_TRUE(!Matches("x")); ASSERT_TRUE(!Matches("foo")); } static int NextLength(int length) { if (length < 10) { length += 1; } else if (length < 100) { length += 10; } else if (length < 1000) { length += 100; } else { length += 1000; } return length; } TEST_F(BloomTest, VaryingLengths) { char buffer[sizeof(int)]; int mediocre_filters = 0; int good_filters = 0; for (int length = 1; length <= 10000; length = NextLength(length)) { Reset(); for (int i = 0; i < length; i++) { Add(Key(i, buffer)); } Build(); ASSERT_LE(FilterSize(), static_cast<size_t>((length * 10 / 8) + 40)) << length; for (int i = 0; i < length; i++) { ASSERT_TRUE(Matches(Key(i, buffer))) << "Length " << length << "; key " << i; } double rate = FalsePositiveRate(); if (kVerbose >= 1) { std::fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n", rate * 100.0, length, static_cast<int>(FilterSize())); } ASSERT_LE(rate, 0.02); if (rate > 0.0125) mediocre_filters++; else good_filters++; } if (kVerbose >= 1) { std::fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters, mediocre_filters); } ASSERT_LE(mediocre_filters, good_filters / 5); } }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/bloom.cc
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/bloom_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
7fc752cb-3193-459f-b0df-3863c1908434
cpp
tensorflow/tensorflow
threadpool
third_party/xla/third_party/tsl/tsl/platform/threadpool.cc
tensorflow/core/lib/core/threadpool_test.cc
#include "tsl/platform/threadpool.h" #define EIGEN_USE_THREADS #include "absl/types/optional.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/context.h" #include "tsl/platform/denormal.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numa.h" #include "tsl/platform/setround.h" #include "tsl/platform/tracing.h" #ifdef DNNL_AARCH64_USE_ACL #include "tsl/platform/cpu_info.h" #endif #ifdef TENSORFLOW_THREADSCALING_EXPERIMENTAL ABSL_FLAG(float, tensorflow_num_threads_scale_factor, 1.0, "Allows to scale all Tensorflow ThreadPools. Total number of threads " "in a given ThreadPool equals to num_threads * " "tensorflow_num_threads_scale_factor. Default scale factor of 1 is a " "no-op."); #endif namespace tsl { namespace thread { struct EigenEnvironment { typedef Thread EnvThread; struct TaskImpl { std::function<void()> f; Context context; uint64 trace_id; }; struct Task { std::unique_ptr<TaskImpl> f; }; Env* const env_; const ThreadOptions thread_options_; const string name_; EigenEnvironment(Env* env, const ThreadOptions& thread_options, const string& name) : env_(env), thread_options_(thread_options), name_(name) {} EnvThread* CreateThread(std::function<void()> f) { return env_->StartThread(thread_options_, name_, [=]() { port::ScopedFlushDenormal flush; tsl::port::ScopedSetRound round(FE_TONEAREST); if (thread_options_.numa_node != port::kNUMANoAffinity) { port::NUMASetThreadNodeAffinity(thread_options_.numa_node); } f(); }); } Task CreateTask(std::function<void()> f) { uint64 id = 0; if (tracing::EventCollector::IsEnabled()) { id = tracing::GetUniqueArg(); tracing::RecordEvent(tracing::EventCategory::kScheduleClosure, id); } return Task{ std::unique_ptr<TaskImpl>(new TaskImpl{ std::move(f), Context(ContextKind::kThread), id, }), }; } void ExecuteTask(const Task& t) { WithContext wc(t.f->context); tracing::ScopedRegion region(tracing::EventCategory::kRunClosure, t.f->trace_id); t.f->f(); } }; ThreadPool::ThreadPool(Env* env, const string& name, int num_threads) : ThreadPool(env, ThreadOptions(), name, num_threads, true, nullptr) {} ThreadPool::ThreadPool(Env* env, const ThreadOptions& thread_options, const string& name, int num_threads) : ThreadPool(env, thread_options, name, num_threads, true, nullptr) {} ThreadPool::ThreadPool(Env* env, const ThreadOptions& thread_options, const string& name, int num_threads, bool low_latency_hint, Eigen::Allocator* allocator) { CHECK_GE(num_threads, 1); #ifdef DNNL_AARCH64_USE_ACL if (num_threads == tsl::port::NumTotalCPUs() && num_threads >= 16) { num_threads = num_threads - 1; } #endif #ifdef TENSORFLOW_THREADSCALING_EXPERIMENTAL CHECK_GT(absl::GetFlag(FLAGS_tensorflow_num_threads_scale_factor), 0); num_threads *= absl::GetFlag(FLAGS_tensorflow_num_threads_scale_factor); if (num_threads < 1) num_threads = 1; #endif eigen_threadpool_.reset(new Eigen::ThreadPoolTempl<EigenEnvironment>( num_threads, low_latency_hint, EigenEnvironment(env, thread_options, "tf_" + name))); underlying_threadpool_ = eigen_threadpool_.get(); threadpool_device_.reset(new Eigen::ThreadPoolDevice(underlying_threadpool_, num_threads, allocator)); } ThreadPool::ThreadPool(thread::ThreadPoolInterface* user_threadpool) { underlying_threadpool_ = user_threadpool; threadpool_device_.reset(new Eigen::ThreadPoolDevice( underlying_threadpool_, underlying_threadpool_->NumThreads(), nullptr)); } ThreadPool::~ThreadPool() {} void ThreadPool::Schedule(std::function<void()> fn) { CHECK(fn != nullptr); underlying_threadpool_->Schedule(std::move(fn)); } int ThreadPool::NumShardsUsedByFixedBlockSizeScheduling( const int64_t total, const int64_t block_size) { if (block_size <= 0 || total <= 1 || total <= block_size || NumThreads() == 1) { return 1; } return (total + block_size - 1) / block_size; } int ThreadPool::NumShardsUsedByTransformRangeConcurrently( const int64_t block_size, const int64_t total) { return NumShardsUsedByFixedBlockSizeScheduling(total, block_size); } void ThreadPool::ParallelFor(int64_t total, const SchedulingParams& scheduling_params, const std::function<void(int64_t, int64_t)>& fn) { switch (scheduling_params.strategy()) { case SchedulingStrategy::kAdaptive: { if (scheduling_params.cost_per_unit().has_value()) { ParallelFor(total, *scheduling_params.cost_per_unit(), fn); } break; } case SchedulingStrategy::kFixedBlockSize: { if (scheduling_params.block_size().has_value()) { ParallelForFixedBlockSizeScheduling( total, *scheduling_params.block_size(), fn); } break; } } } void ThreadPool::TransformRangeConcurrently( const int64_t block_size, const int64_t total, const std::function<void(int64_t, int64_t)>& fn) { ParallelFor(total, SchedulingParams(SchedulingStrategy::kFixedBlockSize, absl::nullopt , block_size), fn); } void ThreadPool::ParallelForFixedBlockSizeScheduling( const int64_t total, const int64_t block_size, const std::function<void(int64_t, int64_t)>& fn) { const int num_shards_used = NumShardsUsedByFixedBlockSizeScheduling(total, block_size); if (num_shards_used == 1) { fn(0, total); return; } BlockingCounter counter(num_shards_used); std::function<void(int64_t, int64_t)> handle_range = [=, &handle_range, &counter, &fn](int64_t first, int64_t last) { while (last - first > block_size) { const int64_t mid = first + ((last - first) / 2 + block_size - 1) / block_size * block_size; Schedule([=, &handle_range]() { handle_range(mid, last); }); last = mid; } fn(first, last); counter.DecrementCount(); }; if (num_shards_used <= NumThreads()) { handle_range(0, total); } else { Schedule([=, &handle_range]() { handle_range(0, total); }); } counter.Wait(); } void ThreadPool::ParallelFor(int64_t total, int64_t cost_per_unit, const std::function<void(int64_t, int64_t)>& fn) { CHECK_GE(total, 0); CHECK_EQ(total, (int64_t)(Eigen::Index)total); threadpool_device_->parallelFor( total, Eigen::TensorOpCost(0, 0, cost_per_unit), [&fn](Eigen::Index first, Eigen::Index last) { fn(first, last); }); } void ThreadPool::ParallelForWithWorkerId( int64_t total, int64_t cost_per_unit, const std::function<void(int64_t, int64_t, int)>& fn) { CHECK_GE(total, 0); CHECK_EQ(total, (int64_t)(Eigen::Index)total); threadpool_device_->parallelFor(total, Eigen::TensorOpCost(0, 0, cost_per_unit), [this, &fn](int64_t start, int64_t limit) { int id = CurrentThreadId() + 1; fn(start, limit, id); }); } void ThreadPool::ParallelForWithWorkerId( int64_t total, const SchedulingParams& scheduling_params, const std::function<void(int64_t, int64_t, int)>& fn) { ParallelFor(total, scheduling_params, [this, &fn](int64_t start, int64_t limit) { int id = CurrentThreadId() + 1; fn(start, limit, id); }); } int ThreadPool::NumThreads() const { return underlying_threadpool_->NumThreads(); } int ThreadPool::CurrentThreadId() const { return underlying_threadpool_->CurrentThreadId(); } void ThreadPool::ScheduleWithHint(std::function<void()> fn, int start, int limit) { underlying_threadpool_->ScheduleWithHint(std::move(fn), start, limit); } void ThreadPool::SetStealPartitions( const std::vector<std::pair<unsigned, unsigned>>& partitions) { DCHECK(eigen_threadpool_ != nullptr); eigen_threadpool_->SetStealPartitions(partitions); } Eigen::ThreadPoolInterface* ThreadPool::AsEigenThreadPool() const { DCHECK(underlying_threadpool_ != nullptr); return underlying_threadpool_; } } }
#include "tensorflow/core/lib/core/threadpool.h" #include <atomic> #include <optional> #include "absl/synchronization/barrier.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/optional.h" #include "tensorflow/core/platform/context.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace thread { static const int kNumThreads = 30; TEST(ThreadPool, Empty) { for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); ThreadPool pool(Env::Default(), "test", num_threads); } } TEST(ThreadPool, DoWork) { Context outer_context(ContextKind::kThread); for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; for (int i = 0; i < kWorkItems; i++) { work[i] = false; } { ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { pool.Schedule([&outer_context, &work, i]() { Context inner_context(ContextKind::kThread); ASSERT_EQ(outer_context, inner_context); ASSERT_FALSE(work[i].exchange(true)); }); } } for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } } } void RunWithFixedBlockSize(int64_t block_size, int64_t total, ThreadPool* threads) { mutex mu; int64_t num_shards = 0; int64_t num_done_work = 0; std::vector<std::atomic<bool>> work(total); for (int i = 0; i < total; i++) { work[i] = false; } threads->ParallelFor( total, ThreadPool::SchedulingParams( ThreadPool::SchedulingStrategy::kFixedBlockSize , std::nullopt , block_size ), [=, &mu, &num_shards, &num_done_work, &work](int64_t start, int64_t end) { VLOG(1) << "Shard [" << start << "," << end << ")"; EXPECT_GE(start, 0); EXPECT_LE(end, total); mutex_lock l(mu); ++num_shards; for (; start < end; ++start) { EXPECT_FALSE(work[start].exchange(true)); ++num_done_work; } }); EXPECT_EQ(num_done_work, total); for (int i = 0; i < total; i++) { ASSERT_TRUE(work[i]); } const int64_t num_workers = (total + block_size - 1) / block_size; if (num_workers < threads->NumThreads()) { EXPECT_LE(num_shards, 1 + num_workers); } } TEST(ThreadPoolTest, ParallelForFixedBlockSizeScheduling) { ThreadPool threads(Env::Default(), "test", 16); for (auto block_size : {1, 7, 10, 64, 100, 256, 1000, 9999}) { for (auto diff : {0, 1, 11, 102, 1003, 10005, 1000007}) { const int64_t total = block_size + diff; RunWithFixedBlockSize(block_size, total, &threads); } } } void RunWithFixedBlockSizeTransformRangeConcurrently(int64_t block_size, int64_t total, ThreadPool* threads) { mutex mu; int64_t num_shards = 0; int64_t num_done_work = 0; std::vector<std::atomic<bool>> work(total); for (int i = 0; i < total; i++) { work[i] = false; } threads->TransformRangeConcurrently( block_size, total, [=, &mu, &num_shards, &num_done_work, &work](int64_t start, int64_t end) { VLOG(1) << "Shard [" << start << "," << end << ")"; EXPECT_GE(start, 0); EXPECT_LE(end, total); mutex_lock l(mu); ++num_shards; for (; start < end; ++start) { EXPECT_FALSE(work[start].exchange(true)); ++num_done_work; } }); EXPECT_EQ(num_done_work, total); for (int i = 0; i < total; i++) { ASSERT_TRUE(work[i]); } const int64_t num_workers = (total + block_size - 1) / block_size; if (num_workers < threads->NumThreads()) { EXPECT_LE(num_shards, 1 + num_workers); } } TEST(ThreadPoolTest, TransformRangeConcurrently) { ThreadPool threads(Env::Default(), "test", 16); for (auto block_size : {1, 7, 10, 64, 100, 256, 1000, 9999}) { for (auto diff : {0, 1, 11, 102, 1003, 10005, 1000007}) { const int64_t total = block_size + diff; RunWithFixedBlockSizeTransformRangeConcurrently(block_size, total, &threads); } } } TEST(ThreadPoolTest, NumShardsUsedByFixedBlockSizeScheduling) { ThreadPool threads(Env::Default(), "test", 16); EXPECT_EQ(1, threads.NumShardsUsedByFixedBlockSizeScheduling( 3 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByFixedBlockSizeScheduling( 4 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByFixedBlockSizeScheduling( 5 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByFixedBlockSizeScheduling( 6 , 3 )); EXPECT_EQ(3, threads.NumShardsUsedByFixedBlockSizeScheduling( 7 , 3 )); EXPECT_EQ(7, threads.NumShardsUsedByFixedBlockSizeScheduling( 7 , 1 )); EXPECT_EQ(1, threads.NumShardsUsedByFixedBlockSizeScheduling( 7 , 0 )); } TEST(ThreadPoolTest, NumShardsUsedByTransformRangeConcurrently) { ThreadPool threads(Env::Default(), "test", 16); EXPECT_EQ(1, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 3 )); EXPECT_EQ(2, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 4 )); EXPECT_EQ(2, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 5 )); EXPECT_EQ(2, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 6 )); EXPECT_EQ(3, threads.NumShardsUsedByTransformRangeConcurrently( 3 , 7 )); EXPECT_EQ(7, threads.NumShardsUsedByTransformRangeConcurrently( 1 , 7 )); EXPECT_EQ(1, threads.NumShardsUsedByTransformRangeConcurrently( 0 , 7 )); } void RunFixedBlockSizeShardingWithWorkerId(int64_t block_size, int64_t total, ThreadPool* threads) { mutex mu; int64_t num_done_work = 0; std::vector<std::atomic<bool>> work(total); for (int i = 0; i < total; i++) { work[i] = false; } const int64_t num_threads = threads->NumThreads(); std::vector<std::atomic<bool>> threads_running(num_threads + 1); for (int i = 0; i < num_threads + 1; i++) { threads_running[i] = false; } threads->ParallelForWithWorkerId( total, ThreadPool::SchedulingParams( ThreadPool::SchedulingStrategy::kFixedBlockSize , std::nullopt , block_size ), [=, &mu, &num_done_work, &work, &threads_running](int64_t start, int64_t end, int id) { VLOG(1) << "Shard [" << start << "," << end << ")"; EXPECT_GE(start, 0); EXPECT_LE(end, total); EXPECT_GE(id, 0); EXPECT_LE(id, num_threads); EXPECT_FALSE(threads_running[id].exchange(true)); mutex_lock l(mu); for (; start < end; ++start) { EXPECT_FALSE(work[start].exchange(true)); ++num_done_work; } EXPECT_TRUE(threads_running[id].exchange(false)); }); EXPECT_EQ(num_done_work, total); for (int i = 0; i < total; i++) { EXPECT_TRUE(work[i]); } } TEST(ThreadPoolTest, ParallelForFixedBlockSizeSchedulingWithWorkerId) { for (int32_t num_threads : {1, 2, 3, 9, 16, 31}) { ThreadPool threads(Env::Default(), "test", num_threads); for (int64_t block_size : {1, 7, 10, 64, 100, 256, 1000}) { for (int64_t diff : {0, 1, 11, 102, 1003}) { const int64_t total = block_size + diff; RunFixedBlockSizeShardingWithWorkerId(block_size, total, &threads); } } } } TEST(ThreadPool, ParallelFor) { Context outer_context(ContextKind::kThread); int64_t kHugeCost = 1 << 30; for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { work[i] = false; } pool.ParallelFor(kWorkItems, kHugeCost, [&outer_context, &work](int64_t begin, int64_t end) { Context inner_context(ContextKind::kThread); ASSERT_EQ(outer_context, inner_context); for (int64_t i = begin; i < end; ++i) { ASSERT_FALSE(work[i].exchange(true)); } }); for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } } } TEST(ThreadPool, ParallelForWithAdaptiveSchedulingStrategy) { Context outer_context(ContextKind::kThread); int64_t kHugeCost = 1 << 30; for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { work[i] = false; } pool.ParallelFor( kWorkItems, ThreadPool::SchedulingParams( ThreadPool::SchedulingStrategy::kAdaptive , kHugeCost , std::nullopt ), [&outer_context, &work](int64_t begin, int64_t end) { Context inner_context(ContextKind::kThread); ASSERT_EQ(outer_context, inner_context); for (int64_t i = begin; i < end; ++i) { ASSERT_FALSE(work[i].exchange(true)); } }); for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } } } TEST(ThreadPool, ParallelForWithWorkerId) { int64_t kHugeCost = 1 << 30; for (int num_threads = 1; num_threads < kNumThreads; num_threads++) { fprintf(stderr, "Testing with %d threads\n", num_threads); const int kWorkItems = 15; std::atomic<bool> work[kWorkItems]; ThreadPool pool(Env::Default(), "test", num_threads); for (int i = 0; i < kWorkItems; i++) { work[i] = false; } std::atomic<bool> threads_running[kNumThreads + 1]; for (int i = 0; i < num_threads + 1; i++) { threads_running[i] = false; } pool.ParallelForWithWorkerId( kWorkItems, kHugeCost, [&threads_running, &work](int64_t begin, int64_t end, int64_t id) { ASSERT_LE(0, id); ASSERT_LE(id, kNumThreads); ASSERT_FALSE(threads_running[id].exchange(true)); for (int64_t i = begin; i < end; ++i) { ASSERT_FALSE(work[i].exchange(true)); } ASSERT_TRUE(threads_running[id].exchange(false)); threads_running[id] = false; }); for (int i = 0; i < kWorkItems; i++) { ASSERT_TRUE(work[i]); } for (int i = 0; i < num_threads + 1; i++) { ASSERT_FALSE(threads_running[i]); } } } TEST(ThreadPool, Parallelism) { ThreadPool pool(Env::Default(), "test", kNumThreads); for (int iter = 0; iter < 2000; iter++) { absl::Barrier barrier(kNumThreads); absl::BlockingCounter counter(kNumThreads); for (int t = 0; t < kNumThreads; ++t) { pool.Schedule([&]() { barrier.Block(); counter.DecrementCount(); }); } counter.Wait(); } } static void BM_Sequential(::testing::benchmark::State& state) { for (auto s : state) { state.PauseTiming(); ThreadPool pool(Env::Default(), "test", kNumThreads); int count = state.range(0); mutex done_lock; bool done_flag = false; std::function<void()> work = [&pool, &count, &done_lock, &done_flag, &work]() { if (count--) { pool.Schedule(work); } else { mutex_lock l(done_lock); done_flag = true; } }; state.ResumeTiming(); work(); mutex_lock l(done_lock); done_lock.Await(Condition(&done_flag)); } } BENCHMARK(BM_Sequential)->Arg(200)->Arg(300); static void BM_Parallel(::testing::benchmark::State& state) { ThreadPool pool(Env::Default(), "test", kNumThreads); std::atomic_int_fast32_t count(state.max_iterations); mutex done_lock; bool done_flag = false; for (auto s : state) { pool.Schedule([&count, &done_lock, &done_flag]() { if (count.fetch_sub(1) == 1) { mutex_lock l(done_lock); done_flag = true; } }); } mutex_lock l(done_lock); done_lock.Await(Condition(&done_flag)); } BENCHMARK(BM_Parallel); static void BM_ParallelFor(::testing::benchmark::State& state) { int total = state.range(0); int cost_per_unit = state.range(1); ThreadPool pool(Env::Default(), "test", kNumThreads); std::atomic_int_fast32_t count(state.max_iterations); mutex done_lock; bool done_flag = false; for (auto s : state) { pool.ParallelFor( total, cost_per_unit, [&count, &done_lock, &done_flag](int64_t begin, int64_t end) { for (int64_t i = begin; i < end; ++i) { if (count.fetch_sub(1) == 1) { mutex_lock l(done_lock); done_flag = true; } } }); mutex_lock l(done_lock); done_lock.Await(Condition(&done_flag)); } } BENCHMARK(BM_ParallelFor) ->ArgPair(1 << 10, 1) ->ArgPair(1 << 20, 1) ->ArgPair(1 << 10, 1 << 10) ->ArgPair(1 << 20, 1 << 10) ->ArgPair(1 << 10, 1 << 20) ->ArgPair(1 << 20, 1 << 20) ->ArgPair(1 << 10, 1 << 30) ->ArgPair(1 << 20, 1 << 30); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/threadpool.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/threadpool_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
be58cc48-cadb-4691-a6e1-36be63a06a34
cpp
tensorflow/tensorflow
test_matchers
tensorflow/compiler/mlir/tf2xla/internal/test_matchers.h
tensorflow/compiler/mlir/tf2xla/internal/test_matchers_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_TF2XLA_INTERNAL_TEST_MATCHERS_H_ #define TENSORFLOW_COMPILER_MLIR_TF2XLA_INTERNAL_TEST_MATCHERS_H_ #include <gmock/gmock.h> #include "absl/status/statusor.h" #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include "tsl/platform/statusor.h" template <typename T> bool WasGraphAnalysisFailure(const absl::StatusOr<T>& status) { return (status.status() == tensorflow::CompileToHloGraphAnalysisFailedError()); } MATCHER(IsOkOrFiltered, "Status was OK or equal to the Graph Analysis failure") { bool is_ok = arg.ok(); auto graph_analysis_failure = WasGraphAnalysisFailure(arg); return testing::ExplainMatchResult( testing::IsTrue(), is_ok || graph_analysis_failure, result_listener); } MATCHER_P2(IncrementedOrFiltered, metric, value, "Metric was incremented by value or Status equal to the Graph " "Analysis failure") { auto graph_analysis_failure = WasGraphAnalysisFailure(arg); if (graph_analysis_failure) { return testing::ExplainMatchResult(testing::IsTrue(), graph_analysis_failure, result_listener); } return testing::ExplainMatchResult(testing::Eq(metric), value, result_listener); } MATCHER_P(ComputationProtoContains, regex, "If not a Graph Analysis failure then matches the computation result " "with the regex") { auto graph_analysis_failure = WasGraphAnalysisFailure(arg); if (graph_analysis_failure) { return testing::ExplainMatchResult(testing::IsTrue(), graph_analysis_failure, result_listener); } auto proto = arg.value().computation->proto().DebugString(); return testing::ExplainMatchResult(testing::ContainsRegex(regex), proto, result_listener); } MATCHER_P(XlaComputationProtoContains, regex, "If not a Graph Analysis failure then matches the computation result " "with the regex") { auto graph_analysis_failure = WasGraphAnalysisFailure(arg); if (graph_analysis_failure) { return testing::ExplainMatchResult(testing::IsTrue(), graph_analysis_failure, result_listener); } auto proto = arg.value().proto().DebugString(); return testing::ExplainMatchResult(testing::ContainsRegex(regex), proto, result_listener); } MATCHER_P( HasMlirModuleWith, expected, "If not a Graph Analysis failure then matches the mlir module result") { auto graph_analysis_failure = WasGraphAnalysisFailure(arg); if (graph_analysis_failure) { return testing::ExplainMatchResult(testing::IsTrue(), graph_analysis_failure, result_listener); } auto actual = arg.value(); return testing::ExplainMatchResult(testing::ContainsRegex(expected), actual, result_listener); } #endif
#include "tensorflow/compiler/mlir/tf2xla/internal/test_matchers.h" #include <cstdint> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/xla_computation.h" #include "xla/service/hlo.pb.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/lib/monitoring/counter.h" #include "tsl/platform/statusor.h" namespace { using ::tensorflow::monitoring::testing::CellReader; using ::testing::Not; constexpr char kMetric[] = "/tensorflow/metric"; auto* counter = tensorflow::monitoring::Counter<1>::New(kMetric, "description", "status"); constexpr char kOkStatus[] = "ok"; const int kArbitraryIntResult = 37; template <typename T> tsl::StatusOr<T> success(T t) { return t; } absl::StatusOr<int> success() { return kArbitraryIntResult; } template <typename T> tsl::StatusOr<T> filtered(T t) { return tsl::StatusOr<T>(tensorflow::CompileToHloGraphAnalysisFailedError()); } absl::StatusOr<int> filtered() { return filtered(kArbitraryIntResult); } absl::StatusOr<int> failed() { return absl::StatusOr<int>(absl::InternalError("fail")); } TEST(TestUtil, MatchesOk) { ASSERT_THAT(success(), IsOkOrFiltered()); } TEST(TestUtil, DoesntMatchesFailure) { ASSERT_THAT(failed(), Not(IsOkOrFiltered())); } TEST(TestUtil, MatchesFiltered) { ASSERT_THAT(filtered(), IsOkOrFiltered()); } TEST(TestUtil, IncrementsOk) { CellReader<int64_t> reader(kMetric); counter->GetCell(kOkStatus)->IncrementBy(1); ASSERT_THAT(success(), IncrementedOrFiltered(reader.Delta(kOkStatus), 1)); } TEST(TestUtil, FilteredDoesntIncrementsOk) { CellReader<int64_t> reader(kMetric); ASSERT_THAT(filtered(), IncrementedOrFiltered(reader.Delta(kOkStatus), 1)); } TEST(TestUtil, FailureDoesntMatchIncrement) { CellReader<int64_t> reader(kMetric); ASSERT_THAT(failed(), Not(IncrementedOrFiltered(reader.Delta(kOkStatus), 1))); } tensorflow::XlaCompilationResult CreateXlaComputationResult( const char* hlo_name) { auto result = tensorflow::XlaCompilationResult(); xla::HloModuleProto hlo; hlo.set_name(hlo_name); result.computation = std::make_shared<xla::XlaComputation>(hlo); return result; } TEST(TestUtil, ComputationContainsOk) { constexpr char arbitrary_hlo[] = "arbitrary_hlo"; auto result = CreateXlaComputationResult(arbitrary_hlo); ASSERT_THAT(success(result), ComputationProtoContains(arbitrary_hlo)); } TEST(TestUtil, ComputationDoesNotContain) { constexpr char arbitrary_hlo[] = "arbitrary_hlo"; constexpr char bad_hlo[] = "bad_hlo"; auto result = CreateXlaComputationResult(arbitrary_hlo); ASSERT_THAT(success(result), Not(ComputationProtoContains(bad_hlo))); } TEST(TestUtil, ComputationDoesNotContainFiltered) { constexpr char arbitrary_hlo[] = "arbitrary_hlo"; constexpr char bad_hlo[] = "bad_hlo"; auto result = CreateXlaComputationResult(arbitrary_hlo); ASSERT_THAT(filtered(result), ComputationProtoContains(bad_hlo)); } TEST(TestUtil, MlirModuleHas) { constexpr char arbirary_mlir[] = "arbirary_mlir"; ASSERT_THAT(success(arbirary_mlir), HasMlirModuleWith(arbirary_mlir)); } TEST(TestUtil, MlirModuleDoesNotHave) { constexpr char arbirary_mlir[] = "arbirary_mlir"; constexpr char bad_mlir[] = "bad_mlir"; ASSERT_THAT(success(arbirary_mlir), Not(HasMlirModuleWith(bad_mlir))); } TEST(TestUtil, MlirModuleDoesNotHaveFiltered) { constexpr char arbirary_mlir[] = "arbirary_mlir"; constexpr char bad_mlir[] = "bad_mlir"; ASSERT_THAT(filtered(arbirary_mlir), HasMlirModuleWith(bad_mlir)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/test_matchers.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/test_matchers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
24c0b822-8f7f-46ea-8ca8-f947c4705560
cpp
tensorflow/tensorflow
manual_constructor
tensorflow/core/lib/gtl/manual_constructor.h
tensorflow/core/lib/gtl/manual_constructor_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_MANUAL_CONSTRUCTOR_H_ #define TENSORFLOW_CORE_LIB_GTL_MANUAL_CONSTRUCTOR_H_ #include <stddef.h> #include <new> #include <utility> #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mem.h" namespace tensorflow { namespace gtl { namespace internal { #ifndef SWIG template <int alignment, int size> struct AlignType {}; template <int size> struct AlignType<0, size> { typedef char result[size]; }; #if defined(_MSC_VER) #define TF_LIB_GTL_ALIGN_ATTRIBUTE(X) __declspec(align(X)) #define TF_LIB_GTL_ALIGN_OF(T) __alignof(T) #else #define TF_LIB_GTL_ALIGN_ATTRIBUTE(X) __attribute__((aligned(X))) #define TF_LIB_GTL_ALIGN_OF(T) __alignof__(T) #endif #if defined(TF_LIB_GTL_ALIGN_ATTRIBUTE) #define TF_LIB_GTL_ALIGNTYPE_TEMPLATE(X) \ template <int size> \ struct AlignType<X, size> { \ typedef TF_LIB_GTL_ALIGN_ATTRIBUTE(X) char result[size]; \ } TF_LIB_GTL_ALIGNTYPE_TEMPLATE(1); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(2); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(4); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(8); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(16); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(32); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(64); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(128); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(256); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(512); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(1024); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(2048); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(4096); TF_LIB_GTL_ALIGNTYPE_TEMPLATE(8192); #define TF_LIB_GTL_ALIGNED_CHAR_ARRAY(T, Size) \ typename tensorflow::gtl::internal::AlignType<TF_LIB_GTL_ALIGN_OF(T), \ sizeof(T) * Size>::result #undef TF_LIB_GTL_ALIGNTYPE_TEMPLATE #undef TF_LIB_GTL_ALIGN_ATTRIBUTE #else #error "You must define TF_LIB_GTL_ALIGNED_CHAR_ARRAY for your compiler." #endif #else template <typename Size> struct AlignType { typedef char result[Size]; }; #define TF_LIB_GTL_ALIGNED_CHAR_ARRAY(T, Size) \ tensorflow::gtl::internal::AlignType<Size * sizeof(T)>::result #define TF_LIB_GTL_ALIGN_OF(Type) 16 #endif } } template <typename Type> class ManualConstructor { public: static void* operator new[](size_t size) { return port::AlignedMalloc(size, TF_LIB_GTL_ALIGN_OF(Type)); } static void operator delete[](void* mem) { port::AlignedFree(mem); } inline Type* get() { return reinterpret_cast<Type*>(space_); } inline const Type* get() const { return reinterpret_cast<const Type*>(space_); } inline Type* operator->() { return get(); } inline const Type* operator->() const { return get(); } inline Type& operator*() { return *get(); } inline const Type& operator*() const { return *get(); } inline void Init() { new (space_) Type; } #ifdef LANG_CXX11 template <typename... Ts> inline void Init(Ts&&... args) { new (space_) Type(std::forward<Ts>(args)...); } #else template <typename T1> inline void Init(const T1& p1) { new (space_) Type(p1); } template <typename T1, typename T2> inline void Init(const T1& p1, const T2& p2) { new (space_) Type(p1, p2); } template <typename T1, typename T2, typename T3> inline void Init(const T1& p1, const T2& p2, const T3& p3) { new (space_) Type(p1, p2, p3); } template <typename T1, typename T2, typename T3, typename T4> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4) { new (space_) Type(p1, p2, p3, p4); } template <typename T1, typename T2, typename T3, typename T4, typename T5> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4, const T5& p5) { new (space_) Type(p1, p2, p3, p4, p5); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4, const T5& p5, const T6& p6) { new (space_) Type(p1, p2, p3, p4, p5, p6); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4, const T5& p5, const T6& p6, const T7& p7) { new (space_) Type(p1, p2, p3, p4, p5, p6, p7); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4, const T5& p5, const T6& p6, const T7& p7, const T8& p8) { new (space_) Type(p1, p2, p3, p4, p5, p6, p7, p8); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4, const T5& p5, const T6& p6, const T7& p7, const T8& p8, const T9& p9) { new (space_) Type(p1, p2, p3, p4, p5, p6, p7, p8, p9); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4, const T5& p5, const T6& p6, const T7& p7, const T8& p8, const T9& p9, const T10& p10) { new (space_) Type(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10, typename T11> inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4, const T5& p5, const T6& p6, const T7& p7, const T8& p8, const T9& p9, const T10& p10, const T11& p11) { new (space_) Type(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11); } #endif inline void Destroy() { get()->~Type(); } private: TF_LIB_GTL_ALIGNED_CHAR_ARRAY(Type, 1) space_; }; #undef TF_LIB_GTL_ALIGNED_CHAR_ARRAY #undef TF_LIB_GTL_ALIGN_OF } #endif
#include "tensorflow/core/lib/gtl/manual_constructor.h" #include <stdint.h> #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static int constructor_count_ = 0; template <int kSize> struct TestN { TestN() { ++constructor_count_; } ~TestN() { --constructor_count_; } char a[kSize]; }; typedef TestN<1> Test1; typedef TestN<2> Test2; typedef TestN<3> Test3; typedef TestN<4> Test4; typedef TestN<5> Test5; typedef TestN<9> Test9; typedef TestN<15> Test15; } namespace { TEST(ManualConstructorTest, Sizeof) { CHECK_EQ(sizeof(ManualConstructor<Test1>), sizeof(Test1)); CHECK_EQ(sizeof(ManualConstructor<Test2>), sizeof(Test2)); CHECK_EQ(sizeof(ManualConstructor<Test3>), sizeof(Test3)); CHECK_EQ(sizeof(ManualConstructor<Test4>), sizeof(Test4)); CHECK_EQ(sizeof(ManualConstructor<Test5>), sizeof(Test5)); CHECK_EQ(sizeof(ManualConstructor<Test9>), sizeof(Test9)); CHECK_EQ(sizeof(ManualConstructor<Test15>), sizeof(Test15)); CHECK_EQ(constructor_count_, 0); ManualConstructor<Test1> mt[4]; CHECK_EQ(sizeof(mt), 4); CHECK_EQ(constructor_count_, 0); mt[0].Init(); CHECK_EQ(constructor_count_, 1); mt[0].Destroy(); } TEST(ManualConstructorTest, Alignment) { struct { char a; ManualConstructor<void*> b; } test1; struct { char a; void* b; } control1; EXPECT_EQ(reinterpret_cast<char*>(test1.b.get()) - &test1.a, reinterpret_cast<char*>(&control1.b) - &control1.a); EXPECT_EQ(reinterpret_cast<intptr_t>(test1.b.get()) % sizeof(control1.b), 0); struct { char a; ManualConstructor<long double> b; } test2; struct { char a; long double b; } control2; EXPECT_EQ(reinterpret_cast<char*>(test2.b.get()) - &test2.a, reinterpret_cast<char*>(&control2.b) - &control2.a); EXPECT_EQ(reinterpret_cast<intptr_t>(test2.b.get()) % alignof(long double), 0); } TEST(ManualConstructorTest, DefaultInitialize) { struct X { X() : x(123) {} int x; }; union { ManualConstructor<X> x; ManualConstructor<int> y; } u; *u.y = -1; u.x.Init(); EXPECT_EQ(123, u.x->x); } TEST(ManualConstructorTest, ZeroInitializePOD) { union { ManualConstructor<int> x; ManualConstructor<int> y; } u; *u.y = -1; u.x.Init(); EXPECT_EQ(-1, *u.y); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/manual_constructor.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/manual_constructor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e1e05b95-3168-49b8-bae6-0e35ebebf454
cpp
tensorflow/tensorflow
ptx_compiler
third_party/xla/xla/stream_executor/cuda/ptx_compiler.h
third_party/xla/xla/stream_executor/cuda/ptx_compiler_test.cc
#ifndef XLA_STREAM_EXECUTOR_CUDA_PTX_COMPILER_H_ #define XLA_STREAM_EXECUTOR_CUDA_PTX_COMPILER_H_ #include <cstdint> #include <vector> #include "absl/status/statusor.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/semantic_version.h" namespace stream_executor { absl::StatusOr<std::vector<uint8_t>> CompileGpuAsmUsingLibNvPtxCompiler( int cc_major, int cc_minor, const char* ptx_contents, GpuAsmOpts options, bool cancel_if_reg_spill); absl::StatusOr<SemanticVersion> GetLibNvPtxCompilerVersion(); } #endif
#include "xla/stream_executor/cuda/ptx_compiler.h" #include <sys/types.h> #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/stream_executor/cuda/ptx_compiler_support.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/semantic_version.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace { constexpr const char kSpillingPtx[] = R"( .version 8.0 .target sm_52 .address_size 64 .visible .entry _Z6kernelPi( .param .u64 _Z6kernelPi_param_0 ) .maxnreg 16 { .reg .b32 %r<33>; .reg .b64 %rd<3>; ld.param.u64 %rd1, [_Z6kernelPi_param_0]; cvta.to.global.u64 %rd2, %rd1; ld.global.u32 %r1, [%rd2+4]; ld.global.u32 %r2, [%rd2+8]; ld.global.u32 %r3, [%rd2+12]; ld.global.u32 %r4, [%rd2+16]; ld.global.u32 %r5, [%rd2+20]; ld.global.u32 %r6, [%rd2+24]; ld.global.u32 %r7, [%rd2+28]; ld.global.u32 %r8, [%rd2+32]; ld.global.u32 %r9, [%rd2+36]; ld.global.u32 %r10, [%rd2+40]; ld.global.u32 %r11, [%rd2+44]; ld.global.u32 %r12, [%rd2+48]; ld.global.u32 %r13, [%rd2+52]; ld.global.u32 %r14, [%rd2+56]; ld.global.u32 %r15, [%rd2+60]; add.s32 %r16, %r15, 15; st.global.u32 [%rd2+60], %r16; add.s32 %r17, %r14, 15; st.global.u32 [%rd2+56], %r17; add.s32 %r18, %r13, 15; st.global.u32 [%rd2+52], %r18; add.s32 %r19, %r12, 15; st.global.u32 [%rd2+48], %r19; add.s32 %r20, %r11, 15; st.global.u32 [%rd2+44], %r20; add.s32 %r21, %r10, 15; st.global.u32 [%rd2+40], %r21; add.s32 %r22, %r9, 15; st.global.u32 [%rd2+36], %r22; add.s32 %r23, %r8, 15; st.global.u32 [%rd2+32], %r23; add.s32 %r24, %r7, 15; st.global.u32 [%rd2+28], %r24; add.s32 %r25, %r6, 15; st.global.u32 [%rd2+24], %r25; add.s32 %r26, %r5, 15; st.global.u32 [%rd2+20], %r26; add.s32 %r27, %r4, 15; st.global.u32 [%rd2+16], %r27; add.s32 %r28, %r3, 15; st.global.u32 [%rd2+12], %r28; add.s32 %r29, %r2, 15; st.global.u32 [%rd2+8], %r29; add.s32 %r30, %r1, 15; st.global.u32 [%rd2+4], %r30; ld.global.u32 %r31, [%rd2]; add.s32 %r32, %r31, 15; st.global.u32 [%rd2], %r32; ret; } )"; constexpr const char kSimplePtx[] = R"( .version 8.0 .target sm_52 .address_size 64 .visible .entry _Z6kernelPi ( .param .u64 _Z6kernelPi_param_0 ) { .reg .b32 %r<16>; .reg .b64 %rd<3>; ld.param.u64 %rd1, [_Z6kernelPi_param_0]; cvta.to.global.u64 %rd2, %rd1; mov.u32 %r1, 42; st.global.u32 [%rd2], %r15; ret; })"; constexpr stream_executor::CudaComputeCapability kDefaultComputeCapability{5, 2}; absl::StatusOr<std::vector<uint8_t>> CompileHelper( stream_executor::CudaComputeCapability cc, const char* const ptx_input, bool disable_gpuasm_optimizations = false, bool cancel_if_reg_spill = false, std::vector<std::string> extra_flags = {}) { stream_executor::GpuAsmOpts options(disable_gpuasm_optimizations, "", extra_flags); return stream_executor::CompileGpuAsmUsingLibNvPtxCompiler( cc.major, cc.minor, ptx_input, options, cancel_if_reg_spill); } class PtxCompilerTest : public ::testing::Test { void SetUp() override { if (!stream_executor::IsLibNvPtxCompilerSupported()) { GTEST_SKIP(); } } }; TEST_F(PtxCompilerTest, IdentifiesUnsupportedArchitecture) { EXPECT_THAT( CompileHelper(stream_executor::CudaComputeCapability{100, 0}, kSimplePtx), tsl::testing::StatusIs(absl::StatusCode::kUnimplemented)); } TEST_F(PtxCompilerTest, CanCompileSingleCompilationUnit) { EXPECT_THAT(CompileHelper(kDefaultComputeCapability, kSimplePtx), tsl::testing::IsOk()); } TEST_F(PtxCompilerTest, CancelsOnRegSpill) { EXPECT_THAT(CompileHelper(kDefaultComputeCapability, kSpillingPtx, true, true), tsl::testing::StatusIs(absl::StatusCode::kCancelled)); EXPECT_THAT(CompileHelper(kDefaultComputeCapability, kSpillingPtx, true, false), tsl::testing::IsOk()); } TEST_F(PtxCompilerTest, AcceptsExtraArguments) { auto reference_cubin = CompileHelper(kDefaultComputeCapability, kSimplePtx, false, false, {}); auto cubin_with_line_info = CompileHelper(kDefaultComputeCapability, kSimplePtx, false, false, {"--generate-line-info"}); EXPECT_THAT(reference_cubin, tsl::testing::IsOk()); EXPECT_THAT(cubin_with_line_info, tsl::testing::IsOk()); EXPECT_GT(cubin_with_line_info->size(), reference_cubin->size()); EXPECT_THAT( CompileHelper(kDefaultComputeCapability, kSimplePtx, false, false, {"--flag-does-not-exist"}), tsl::testing::StatusIs(absl::StatusCode::kInternal)); } TEST_F(PtxCompilerTest, ReturnsReasonableVersion) { constexpr stream_executor::SemanticVersion kMinSupportedVersion = {12, 0, 0}; EXPECT_THAT(stream_executor::GetLibNvPtxCompilerVersion(), tsl::testing::IsOkAndHolds(testing::Ge(kMinSupportedVersion))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/ptx_compiler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/ptx_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
379c40f5-6a9c-41ec-aaa3-7c8015cd1416
cpp
tensorflow/tensorflow
quantized_add_op
tensorflow/core/kernels/quantized_add_op.cc
tensorflow/core/kernels/quantized_add_op_test.cc
#define EIGEN_USE_THREADS #if defined(__ARM_NEON__) || defined(__ARM_NEON) #define USE_NEON #define QUANTIZED_ADD_USE_NEON #include <arm_neon.h> #endif #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/kernels/meta_support.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/util/bcast.h" namespace tensorflow { namespace { template <class T, class Toutput> void ScalarAddition(OpKernelContext* context, const T* full_input, float full_input_min, float full_input_max, int64_t num_elements, T scalar_input, float scalar_input_min, float scalar_input_max, float output_min, float output_max, Toutput* output) { const Toutput scalar_in_output_range = RequantizeInNewRange<T, Toutput>( scalar_input, scalar_input_min, scalar_input_max, output_min, output_max); for (int i = 0; i < num_elements; ++i) { const Toutput full_input_in_output_range = RequantizeInNewRange<T, Toutput>( full_input[i], full_input_min, full_input_max, output_min, output_max); output[i] = full_input_in_output_range + scalar_in_output_range; } } #ifdef QUANTIZED_ADD_USE_NEON template <> void ScalarAddition(OpKernelContext* context, const quint8* full_input, float full_input_min, float full_input_max, int64 num_elements, quint8 scalar_input, float scalar_input_min, float scalar_input_max, float output_min, float output_max, qint32* output) { const int32 scalar_in_output_range = RequantizeInNewRange<quint8, qint32>( scalar_input, scalar_input_min, scalar_input_max, output_min, output_max); const float input_0_float = QuantizedToFloat<quint8>(0, full_input_min, full_input_max); const float input_1_float = QuantizedToFloat<quint8>(1, full_input_min, full_input_max); const int64 input_0_int64 = FloatToQuantizedUnclamped<qint32>(input_0_float, output_min, output_max); const int64 input_1_int64 = FloatToQuantizedUnclamped<qint32>(input_1_float, output_min, output_max); const int32 input_mult_int32 = input_1_int64 - input_0_int64; const int64 lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64 highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); const int64x2_t input_0_64x2 = vmovq_n_s64(input_0_int64); const int32x2_t input_mult_32x2 = vmov_n_s32(input_mult_int32); const int32x4_t scalar_in_output_range_32x4 = vmovq_n_s32(scalar_in_output_range); int64 i = 0; for (; i < (num_elements - 7); i += 8) { const uint8* full_input_ptr = &(full_input->value) + i; const std::array<int32x4_t, 2> output_value = Requantize8x8To32Neon(full_input_ptr, input_0_64x2, input_mult_32x2); const int32x4_t result_low_32x4 = vaddq_s32(output_value[0], scalar_in_output_range_32x4); const int32x4_t result_high_32x4 = vaddq_s32(output_value[1], scalar_in_output_range_32x4); int32* output_ptr = &(output->value) + i; vst1q_s32(output_ptr + 0, result_low_32x4); vst1q_s32(output_ptr + 4, result_high_32x4); } for (; i < num_elements; ++i) { const int64 full_input_value = static_cast<int64_t>(full_input[i]); int64 full_input_in_output_range_64 = input_0_int64 + (full_input_value * input_mult_int32); full_input_in_output_range_64 = std::max(full_input_in_output_range_64, lowest_quantized); full_input_in_output_range_64 = std::min(full_input_in_output_range_64, highest_quantized); const int32 full_input_in_output_range = static_cast<int32>(full_input_in_output_range_64); output[i] = full_input_in_output_range + scalar_in_output_range; } } #else template <> void ScalarAddition(OpKernelContext* context, const quint8* full_input, float full_input_min, float full_input_max, int64_t num_elements, quint8 scalar_input, float scalar_input_min, float scalar_input_max, float output_min, float output_max, qint32* output) { const int32_t scalar_in_output_range = RequantizeInNewRange<quint8, qint32>( scalar_input, scalar_input_min, scalar_input_max, output_min, output_max); const float input_0_float = QuantizedToFloat<quint8>(0, full_input_min, full_input_max); const float input_1_float = QuantizedToFloat<quint8>(1, full_input_min, full_input_max); const int64_t input_0_int64 = FloatToQuantizedUnclamped<qint32>(input_0_float, output_min, output_max); const int64_t input_1_int64 = FloatToQuantizedUnclamped<qint32>(input_1_float, output_min, output_max); const int32_t input_mult_int32 = input_1_int64 - input_0_int64; const int64_t lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64_t highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); for (int i = 0; i < num_elements; ++i) { const int64_t full_input_value = static_cast<int64_t>(full_input[i]); int64_t full_input_in_output_range_64 = input_0_int64 + (full_input_value * input_mult_int32); full_input_in_output_range_64 = std::max(full_input_in_output_range_64, lowest_quantized); full_input_in_output_range_64 = std::min(full_input_in_output_range_64, highest_quantized); const int32_t full_input_in_output_range = static_cast<int32>(full_input_in_output_range_64); output[i] = full_input_in_output_range + scalar_in_output_range; } } #endif template <class T, class Toutput> void VectorAddition(OpKernelContext* context, const T* x_data, float min_x, float max_x, const T* y_data, float min_y, float max_y, int64_t num_elements, float output_min, float output_max, Toutput* output) { for (int i = 0; i < num_elements; ++i) { const Toutput x_in_output_range = RequantizeInNewRange<T, Toutput>( x_data[i], min_x, max_x, output_min, output_max); const Toutput y_in_output_range = RequantizeInNewRange<T, Toutput>( y_data[i], min_y, max_y, output_min, output_max); output[i] = x_in_output_range + y_in_output_range; } } #ifdef QUANTIZED_ADD_USE_NEON template <> void VectorAddition(OpKernelContext* context, const quint8* x_data, float min_x, float max_x, const quint8* y_data, float min_y, float max_y, int64 num_elements, float output_min, float output_max, qint32* output) { const float x_0_float = QuantizedToFloat<quint8>(0, min_x, max_x); const float x_1_float = QuantizedToFloat<quint8>(1, min_x, max_x); const int64 x_0_int64 = FloatToQuantizedUnclamped<qint32>(x_0_float, output_min, output_max); const int64 x_1_int64 = FloatToQuantizedUnclamped<qint32>(x_1_float, output_min, output_max); const int32 x_mult_int32 = x_1_int64 - x_0_int64; const float y_0_float = QuantizedToFloat<quint8>(0, min_y, max_y); const float y_1_float = QuantizedToFloat<quint8>(1, min_y, max_y); const int64 y_0_int64 = FloatToQuantizedUnclamped<qint32>(y_0_float, output_min, output_max); const int64 y_1_int64 = FloatToQuantizedUnclamped<qint32>(y_1_float, output_min, output_max); const int32 y_mult_int32 = y_1_int64 - y_0_int64; const int64 lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64 highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); const int64x2_t x_0_64x2 = vmovq_n_s64(x_0_int64); const int32x2_t x_mult_32x2 = vmov_n_s32(x_mult_int32); const int64x2_t y_0_64x2 = vmovq_n_s64(y_0_int64); const int32x2_t y_mult_32x2 = vmov_n_s32(y_mult_int32); int64 i = 0; for (; i < (num_elements - 7); i += 8) { const uint8* x_ptr = &(x_data->value) + i; const std::array<int32x4_t, 2> x_output_value = Requantize8x8To32Neon(x_ptr, x_0_64x2, x_mult_32x2); const uint8* y_ptr = &(y_data->value) + i; const std::array<int32x4_t, 2> y_output_value = Requantize8x8To32Neon(y_ptr, y_0_64x2, y_mult_32x2); const int32x4_t result_low_32x4 = vaddq_s32(x_output_value[0], y_output_value[0]); const int32x4_t result_high_32x4 = vaddq_s32(x_output_value[1], y_output_value[1]); int32* output_ptr = &(output->value) + i; vst1q_s32(output_ptr + 0, result_low_32x4); vst1q_s32(output_ptr + 4, result_high_32x4); } for (; i < num_elements; ++i) { const int64 x_value = static_cast<int64_t>(x_data[i]); int64 x_in_output_range_64 = x_0_int64 + (x_value * x_mult_int32); x_in_output_range_64 = std::max(x_in_output_range_64, lowest_quantized); x_in_output_range_64 = std::min(x_in_output_range_64, highest_quantized); const int32 x_in_output_range = static_cast<int32>(x_in_output_range_64); const int64 y_value = static_cast<int64_t>(y_data[i]); int64 y_in_output_range_64 = y_0_int64 + (y_value * y_mult_int32); y_in_output_range_64 = std::max(y_in_output_range_64, lowest_quantized); y_in_output_range_64 = std::min(y_in_output_range_64, highest_quantized); const int32 y_in_output_range = static_cast<int32>(y_in_output_range_64); output[i] = x_in_output_range + y_in_output_range; } } #else template <> void VectorAddition(OpKernelContext* context, const quint8* x_data, float min_x, float max_x, const quint8* y_data, float min_y, float max_y, int64_t num_elements, float output_min, float output_max, qint32* output) { const float x_0_float = QuantizedToFloat<quint8>(0, min_x, max_x); const float x_1_float = QuantizedToFloat<quint8>(1, min_x, max_x); const int64_t x_0_int64 = FloatToQuantizedUnclamped<qint32>(x_0_float, output_min, output_max); const int64_t x_1_int64 = FloatToQuantizedUnclamped<qint32>(x_1_float, output_min, output_max); const int32_t x_mult_int32 = x_1_int64 - x_0_int64; const float y_0_float = QuantizedToFloat<quint8>(0, min_y, max_y); const float y_1_float = QuantizedToFloat<quint8>(1, min_y, max_y); const int64_t y_0_int64 = FloatToQuantizedUnclamped<qint32>(y_0_float, output_min, output_max); const int64_t y_1_int64 = FloatToQuantizedUnclamped<qint32>(y_1_float, output_min, output_max); const int32_t y_mult_int32 = y_1_int64 - y_0_int64; const int64_t lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64_t highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); for (int i = 0; i < num_elements; ++i) { const int64_t x_value = static_cast<int64_t>(x_data[i]); int64_t x_in_output_range_64 = x_0_int64 + (x_value * x_mult_int32); x_in_output_range_64 = std::max(x_in_output_range_64, lowest_quantized); x_in_output_range_64 = std::min(x_in_output_range_64, highest_quantized); const int32_t x_in_output_range = static_cast<int32>(x_in_output_range_64); const int64_t y_value = static_cast<int64_t>(y_data[i]); int64_t y_in_output_range_64 = y_0_int64 + (y_value * y_mult_int32); y_in_output_range_64 = std::max(y_in_output_range_64, lowest_quantized); y_in_output_range_64 = std::min(y_in_output_range_64, highest_quantized); const int32_t y_in_output_range = static_cast<int32>(y_in_output_range_64); output[i] = x_in_output_range + y_in_output_range; } } #endif template <class T, class Toutput> void VectorTensorAddition(const T* vector_data, float min_vector, float max_vector, int64_t vector_num_elements, const T* tensor_data, float min_tensor, float max_tensor, int64_t tensor_num_elements, float output_min, float output_max, Toutput* output) { for (int i = 0; i < tensor_num_elements; ++i) { const int64_t vector_i = i % vector_num_elements; const Toutput vector_in_output_range = RequantizeInNewRange<T, Toutput>( vector_data[vector_i], min_vector, max_vector, output_min, output_max); const Toutput tensor_in_output_range = RequantizeInNewRange<T, Toutput>( tensor_data[i], min_tensor, max_tensor, output_min, output_max); output[i] = vector_in_output_range + tensor_in_output_range; } } #ifdef QUANTIZED_ADD_USE_NEON template <> void VectorTensorAddition(const quint8* vector_data, float min_vector, float max_vector, int64 vector_num_elements, const quint8* tensor_data, float min_tensor, float max_tensor, int64 tensor_num_elements, float output_min, float output_max, qint32* output) { const float vector_0_float = QuantizedToFloat<quint8>(0, min_vector, max_vector); const float vector_1_float = QuantizedToFloat<quint8>(1, min_vector, max_vector); const int64 vector_0_int64 = FloatToQuantizedUnclamped<qint32>(vector_0_float, output_min, output_max); const int64 vector_1_int64 = FloatToQuantizedUnclamped<qint32>(vector_1_float, output_min, output_max); const int32 vector_mult_int32 = vector_1_int64 - vector_0_int64; const float tensor_0_float = QuantizedToFloat<quint8>(0, min_tensor, max_tensor); const float tensor_1_float = QuantizedToFloat<quint8>(1, min_tensor, max_tensor); const int64 tensor_0_int64 = FloatToQuantizedUnclamped<qint32>(tensor_0_float, output_min, output_max); const int64 tensor_1_int64 = FloatToQuantizedUnclamped<qint32>(tensor_1_float, output_min, output_max); const int32 tensor_mult_int32 = tensor_1_int64 - tensor_0_int64; const int64 lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64 highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); const int64x2_t vector_0_64x2 = vmovq_n_s64(vector_0_int64); const int32x2_t vector_mult_32x2 = vmov_n_s32(vector_mult_int32); const int64x2_t tensor_0_64x2 = vmovq_n_s64(tensor_0_int64); const int32x2_t tensor_mult_32x2 = vmov_n_s32(tensor_mult_int32); for (int64 base_i = 0; base_i < tensor_num_elements; base_i += vector_num_elements) { int64 i = base_i; int64 vector_i = 0; for (; vector_i < (vector_num_elements - 7); vector_i += 8, i += 8) { const uint8* vector_ptr = &(vector_data->value) + vector_i; const std::array<int32x4_t, 2> vector_output_value = Requantize8x8To32Neon(vector_ptr, vector_0_64x2, vector_mult_32x2); const uint8* tensor_ptr = &(tensor_data->value) + i; const std::array<int32x4_t, 2> tensor_output_value = Requantize8x8To32Neon(tensor_ptr, tensor_0_64x2, tensor_mult_32x2); const int32x4_t result_low_32x4 = vaddq_s32(vector_output_value[0], tensor_output_value[0]); const int32x4_t result_high_32x4 = vaddq_s32(vector_output_value[1], tensor_output_value[1]); int32* output_ptr = &(output->value) + i; vst1q_s32(output_ptr + 0, result_low_32x4); vst1q_s32(output_ptr + 4, result_high_32x4); } for (; vector_i < vector_num_elements; ++vector_i, ++i) { const int64 vector_value = static_cast<int64_t>(vector_data[vector_i]); int64 vector_in_output_range_64 = vector_0_int64 + (vector_value * vector_mult_int32); vector_in_output_range_64 = std::max(vector_in_output_range_64, lowest_quantized); vector_in_output_range_64 = std::min(vector_in_output_range_64, highest_quantized); const int32 vector_in_output_range = static_cast<int32>(vector_in_output_range_64); const int64 tensor_value = static_cast<int64_t>(tensor_data[i]); int64 tensor_in_output_range_64 = tensor_0_int64 + (tensor_value * tensor_mult_int32); tensor_in_output_range_64 = std::max(tensor_in_output_range_64, lowest_quantized); tensor_in_output_range_64 = std::min(tensor_in_output_range_64, highest_quantized); const int32 tensor_in_output_range = static_cast<int32>(tensor_in_output_range_64); output[i] = vector_in_output_range + tensor_in_output_range; } } } #else template <> void VectorTensorAddition(const quint8* vector_data, float min_vector, float max_vector, int64_t vector_num_elements, const quint8* tensor_data, float min_tensor, float max_tensor, int64_t tensor_num_elements, float output_min, float output_max, qint32* output) { const float vector_0_float = QuantizedToFloat<quint8>(0, min_vector, max_vector); const float vector_1_float = QuantizedToFloat<quint8>(1, min_vector, max_vector); const int64_t vector_0_int64 = FloatToQuantizedUnclamped<qint32>(vector_0_float, output_min, output_max); const int64_t vector_1_int64 = FloatToQuantizedUnclamped<qint32>(vector_1_float, output_min, output_max); const int32_t vector_mult_int32 = vector_1_int64 - vector_0_int64; const float tensor_0_float = QuantizedToFloat<quint8>(0, min_tensor, max_tensor); const float tensor_1_float = QuantizedToFloat<quint8>(1, min_tensor, max_tensor); const int64_t tensor_0_int64 = FloatToQuantizedUnclamped<qint32>(tensor_0_float, output_min, output_max); const int64_t tensor_1_int64 = FloatToQuantizedUnclamped<qint32>(tensor_1_float, output_min, output_max); const int32_t tensor_mult_int32 = tensor_1_int64 - tensor_0_int64; const int64_t lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64_t highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); for (int i = 0; i < tensor_num_elements; ++i) { const int64_t vector_i = i % vector_num_elements; const int64_t vector_value = static_cast<int64_t>(vector_data[vector_i]); int64_t vector_in_output_range_64 = vector_0_int64 + (vector_value * vector_mult_int32); vector_in_output_range_64 = std::max(vector_in_output_range_64, lowest_quantized); vector_in_output_range_64 = std::min(vector_in_output_range_64, highest_quantized); const int32_t vector_in_output_range = static_cast<int32>(vector_in_output_range_64); const int64_t tensor_value = static_cast<int64_t>(tensor_data[i]); int64_t tensor_in_output_range_64 = tensor_0_int64 + (tensor_value * tensor_mult_int32); tensor_in_output_range_64 = std::max(tensor_in_output_range_64, lowest_quantized); tensor_in_output_range_64 = std::min(tensor_in_output_range_64, highest_quantized); const int32_t tensor_in_output_range = static_cast<int32>(tensor_in_output_range_64); output[i] = vector_in_output_range + tensor_in_output_range; } } #endif } template <class T, class Toutput> class QuantizedAddOp : public OpKernel { public: explicit QuantizedAddOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { const Tensor& x = context->input(0); const Tensor& y = context->input(1); const Tensor& min_x_tensor = context->input(2); const Tensor& max_x_tensor = context->input(3); const Tensor& min_y_tensor = context->input(4); const Tensor& max_y_tensor = context->input(5); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_x_tensor.shape()), errors::InvalidArgument("`min_x` must be rank 0 but is rank ", min_x_tensor.dims())); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_x_tensor.shape()), errors::InvalidArgument("`max_x` must be rank 0 but is rank ", max_x_tensor.dims())); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_y_tensor.shape()), errors::InvalidArgument("`min_y` must be rank 0 but is rank ", min_y_tensor.dims())); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_y_tensor.shape()), errors::InvalidArgument("`max_y` must be rank 0 but is rank ", max_y_tensor.dims())); const float min_x = min_x_tensor.scalar<float>()(); const float max_x = max_x_tensor.scalar<float>()(); const float min_y = min_y_tensor.scalar<float>()(); const float max_y = max_y_tensor.scalar<float>()(); BCast bcast(BCast::FromShape(x.shape()), BCast::FromShape(y.shape())); if (!bcast.IsValid()) { context->SetStatus(errors::InvalidArgument( "Incompatible shapes: ", x.shape().DebugString(), " vs. ", y.shape().DebugString())); return; } Tensor* z; OP_REQUIRES_OK(context, context->allocate_output( 0, BCast::ToShape(bcast.output_shape()), &z)); OP_REQUIRES(context, (max_x > min_x), errors::InvalidArgument("max_x must be larger than min_x.")); OP_REQUIRES(context, (max_y > min_y), errors::InvalidArgument("max_y must be larger than min_y.")); const T* x_data = x.flat<T>().data(); const T* y_data = y.flat<T>().data(); Toutput* z_data = z->flat<Toutput>().data(); const float smallest_min = std::min(min_x, min_y); const float largest_max = std::max(max_x, max_y); const float biggest_range = std::max(std::abs(smallest_min), std::abs(largest_max)); const float output_range = (biggest_range * (1 << 14)); const float min_z_value = -output_range; const float max_z_value = output_range; const int ndims = bcast.x_reshape().size(); if (ndims <= 1) { if (x.NumElements() == 1) { ScalarAddition<T, Toutput>(context, y_data, min_y, max_y, y.NumElements(), x_data[0], min_x, max_x, min_z_value, max_z_value, z_data); } else if (y.NumElements() == 1) { ScalarAddition<T, Toutput>(context, x_data, min_x, max_x, x.NumElements(), y_data[0], min_y, max_y, min_z_value, max_z_value, z_data); } else { VectorAddition<T, Toutput>(context, x_data, min_x, max_x, y_data, min_y, max_y, x.NumElements(), min_z_value, max_z_value, z_data); } } else if (ndims == 2) { const T* vector_data; int64_t vector_num_elements; float vector_min; float vector_max; const T* tensor_data; int64_t tensor_num_elements; float tensor_min; float tensor_max; if (x.NumElements() < y.NumElements()) { vector_data = x_data; vector_num_elements = x.NumElements(); vector_min = min_x; vector_max = max_x; tensor_data = y_data; tensor_num_elements = y.NumElements(); tensor_min = min_y; tensor_max = max_y; } else { vector_data = y_data; vector_num_elements = y.NumElements(); vector_min = min_y; vector_max = max_y; tensor_data = x_data; tensor_num_elements = x.NumElements(); tensor_min = min_x; tensor_max = max_x; } OP_REQUIRES(context, vector_num_elements > 0, errors::InvalidArgument("Must have some elements to add")); VectorTensorAddition<T, Toutput>( vector_data, vector_min, vector_max, vector_num_elements, tensor_data, tensor_min, tensor_max, tensor_num_elements, min_z_value, max_z_value, z_data); } else { LOG(INFO) << "ndims=" << ndims; LOG(INFO) << "bcast.x_reshape()=" << TensorShape(bcast.x_reshape()).DebugString(); LOG(INFO) << "bcast.y_reshape()=" << TensorShape(bcast.y_reshape()).DebugString(); LOG(INFO) << "bcast.x_bcast()=" << TensorShape(bcast.x_bcast()).DebugString(); LOG(INFO) << "bcast.y_bcast()=" << TensorShape(bcast.y_bcast()).DebugString(); context->SetStatus(errors::Unimplemented( "Broadcast between ", context->input(0).shape().DebugString(), " and ", context->input(1).shape().DebugString(), " is not supported yet.")); return; } Tensor* z_min = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, {}, &z_min)); z_min->flat<float>()(0) = min_z_value; Tensor* z_max = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, {}, &z_max)); z_max->flat<float>()(0) = max_z_value; } }; REGISTER_KERNEL_BUILDER(Name("QuantizedAdd") .Device(DEVICE_CPU) .TypeConstraint<quint8>("T1") .TypeConstraint<quint8>("T2") .TypeConstraint<qint32>("Toutput"), QuantizedAddOp<quint8, qint32>); }
#define EIGEN_USE_THREADS #include <functional> #include <memory> #include <vector> #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace ops { namespace { void TestAdd(const std::vector<int64_t>& x_shape, const std::vector<float>& x_values, float x_min_value, float x_max_value, const std::vector<int64_t>& y_shape, const std::vector<float>& y_values, float y_min_value, float y_max_value, const std::vector<int64_t>& expected_shape, const std::vector<float>& expected_values, double tolerance) { Scope root = Scope::NewRootScope(); Tensor x_float_tensor(DT_FLOAT, TensorShape(x_shape)); test::FillValues<float>(&x_float_tensor, x_values); Tensor x_quantized_tensor(DT_QUINT8, x_float_tensor.shape()); FloatTensorToQuantizedInPlace<quint8>(x_float_tensor, x_min_value, x_max_value, &x_quantized_tensor); Output x = Const(root.WithOpName("x"), Input::Initializer(x_quantized_tensor)); Output x_min = Const(root.WithOpName("x_min"), x_min_value); Output x_max = Const(root.WithOpName("x_max"), x_max_value); Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); test::FillValues<float>(&y_float_tensor, y_values); Tensor y_quantized_tensor(DT_QUINT8, y_float_tensor.shape()); FloatTensorToQuantizedInPlace<quint8>(y_float_tensor, y_min_value, y_max_value, &y_quantized_tensor); Output y = Const(root.WithOpName("y"), Input::Initializer(y_quantized_tensor)); Output y_min = Const(root.WithOpName("y_min"), y_min_value); Output y_max = Const(root.WithOpName("y_max"), y_max_value); ops::QuantizedAdd add = ops::QuantizedAdd(root.WithOpName("add"), x, y, x_min, x_max, y_min, y_max); TF_EXPECT_OK(root.status()); ClientSession session(root); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run(ClientSession::FeedType(), {add.z, add.min_z, add.max_z}, &outputs)); const Tensor& z_quantized = outputs[0]; const float z_min = outputs[1].flat<float>()(0); const float z_max = outputs[2].flat<float>()(0); Tensor z_float = QuantizedTensorToFloat<qint32>(z_quantized, z_min, z_max); Tensor expected_z_float(DT_FLOAT, TensorShape(expected_shape)); test::FillValues<float>(&expected_z_float, expected_values); test::ExpectTensorNear<float>(expected_z_float, z_float, tolerance); } void TestAddShape(const std::vector<int64_t>& x_shape, const std::vector<int64_t>& y_shape) { const size_t x_num_elements = TensorShape(x_shape).num_elements(); std::vector<float> x_values(x_num_elements); for (int i = 0; i < x_num_elements; ++i) { x_values[i] = i % 256; } const float x_min_value = 0.0f; const float x_max_value = 256.0f; const size_t y_num_elements = TensorShape(y_shape).num_elements(); std::vector<float> y_values(y_num_elements); for (int i = 0; i < y_num_elements; ++i) { y_values[i] = ((i + 23) % 123) - 50; } const float y_min_value = -150.0f; const float y_max_value = 150.0f; Scope root = Scope::NewRootScope(); Tensor x_float_tensor(DT_FLOAT, TensorShape(x_shape)); test::FillValues<float>(&x_float_tensor, x_values); Output x = Const(root.WithOpName("x"), Input::Initializer(x_float_tensor)); Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); test::FillValues<float>(&y_float_tensor, y_values); Output y = Const(root.WithOpName("y"), Input::Initializer(y_float_tensor)); Add add = Add(root.WithOpName("add"), x, y); TF_EXPECT_OK(root.status()); ClientSession session(root); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run(ClientSession::FeedType(), {add.z}, &outputs)); const Tensor& expected_values_tensor = outputs[0]; const float* expected_values_data = expected_values_tensor.flat<float>().data(); std::vector<float> expected_values( expected_values_data, expected_values_data + expected_values_tensor.NumElements()); std::vector<int64_t> expected_shape; for (const int64_t dim : expected_values_tensor.shape().dim_sizes()) { expected_shape.push_back(dim); } TestAdd(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, y_min_value, y_max_value, expected_shape, expected_values, 256.0); } void TimeAdd(const std::vector<int64_t>& x_shape, const std::vector<int64_t>& y_shape, int64_t iterations) { TestAddShape(x_shape, y_shape); Scope root = Scope::NewRootScope(); Tensor x_quantized_tensor(DT_QUINT8, TensorShape(x_shape)); Output placeholder = Placeholder(root.WithOpName("placeholder"), DT_QUINT8); Output x_min = Const(root.WithOpName("x_min"), 0.0f); Output x_max = Const(root.WithOpName("x_max"), 1.0f); Tensor y_quantized_tensor(DT_QUINT8, TensorShape(y_shape)); Output y = Const(root.WithOpName("y"), Input::Initializer(y_quantized_tensor)); Output y_min = Const(root.WithOpName("y_min"), 0.0f); Output y_max = Const(root.WithOpName("y_max"), 1.0f); ops::QuantizedAdd add = ops::QuantizedAdd(root.WithOpName("add"), placeholder, y, x_min, x_max, y_min, y_max); TF_EXPECT_OK(root.status()); ClientSession session(root); std::vector<Tensor> outputs; int64_t total_duration = 0; for (int i = 0; i < iterations; ++i) { const int64_t start_time = Env::Default()->NowMicros(); TF_EXPECT_OK(session.Run({{placeholder, x_quantized_tensor}}, {add.z, add.min_z, add.max_z}, &outputs)); const int64_t end_time = Env::Default()->NowMicros(); total_duration += end_time - start_time; } const int64_t one_run_duration = total_duration / iterations; const int64_t num_ops = outputs[0].NumElements(); const double million_ops_per_second = (iterations * num_ops) / static_cast<double>(total_duration); LOG(INFO) << "TimeAdd: " << TensorShape(x_shape).DebugString() << " * " << TensorShape(y_shape).DebugString() << ": iterations=" << iterations << ", MOps/s=" << million_ops_per_second << ", one_run_duration=" << one_run_duration << ", total_duration=" << total_duration; } void TestManualScalar() { TestAdd( {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {1}, {10.0f}, -100.0f, 100.0f, {10}, {11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 1.0f); TestAdd( {1}, {10.0f}, -100.0f, 100.0f, {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {10}, {11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 1.0f); } void TestScalar() { TestAddShape({100}, {1}); TestAddShape({1}, {100}); } void TestManualVector() { TestAdd({10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {10}, {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f, 14.0f, 16.0f, 18.0f, 20.0f}, 1.0f); } void TestVector() { TestAddShape({100}, {100}); } void TestManualVectorPlusTensor() { TestAdd( {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 0.0f, 20.0f, {2, 10}, {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f, 14.0f, 16.0f, 18.0f, 20.0f, 12.0f, 14.0f, 16.0f, 18.0f, 20.0f, 22.0f, 24.0f, 26.0f, 28.0f, 30.0f}, 1.0f); TestAdd({2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 0.0f, 20.0f, {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {2, 10}, {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f, 14.0f, 16.0f, 18.0f, 20.0f, 12.0f, 14.0f, 16.0f, 18.0f, 20.0f, 22.0f, 24.0f, 26.0f, 28.0f, 30.0f}, 1.0f); TestAdd( {5, 2}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {2, 5, 2}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 0.0f, 20.0f, {2, 5, 2}, {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f, 14.0f, 16.0f, 18.0f, 20.0f, 12.0f, 14.0f, 16.0f, 18.0f, 20.0f, 22.0f, 24.0f, 26.0f, 28.0f, 30.0f}, 1.0f); } void TestVectorPlusTensor() { TestAddShape({100}, {2, 100}); TestAddShape({2, 100}, {100}); TestAddShape({5, 2}, {2, 5, 2}); } void BenchmarkTensorScalar() { TimeAdd({200}, {1}, 1000); TimeAdd({10000}, {1}, 100); TimeAdd({1000000}, {1}, 10); TimeAdd({10000000}, {1}, 1); } void BenchmarkVector() { TimeAdd({200}, {200}, 1000); TimeAdd({10000}, {10000}, 100); TimeAdd({1000000}, {1000000}, 10); TimeAdd({10000000}, {10000000}, 1); } void BenchmarkVectorPlusTensor() { TimeAdd({10, 20}, {20}, 100); TimeAdd({10, 1000}, {1000}, 10); TimeAdd({1000, 1000}, {1000}, 1); TimeAdd({10000, 1000}, {1000}, 1); TimeAdd({100, 100}, {100}, 10); TimeAdd({10000, 100}, {100}, 1); TimeAdd({100000, 100}, {100}, 1); } } } } #define RUN_TEST(t) \ TEST(QuantizedAddOpTest, t) { tensorflow::ops::t(); } RUN_TEST(TestManualScalar); RUN_TEST(TestManualVector); RUN_TEST(TestManualVectorPlusTensor); RUN_TEST(TestScalar); RUN_TEST(TestVector); RUN_TEST(TestVectorPlusTensor); #if defined(__ANDROID__) RUN_TEST(BenchmarkTensorScalar); RUN_TEST(BenchmarkVector); RUN_TEST(BenchmarkVectorPlusTensor); #endif int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_add_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_add_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c4d93f8c-26b9-4357-95af-c244f2433a63
cpp
tensorflow/tensorflow
simple_planner
tensorflow/lite/simple_planner.cc
tensorflow/lite/simple_planner_test.cc
#include "tensorflow/lite/simple_planner.h" #include <cstdint> #include <limits> #include <memory> #include <utility> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/graph_info.h" namespace tflite { namespace { constexpr int32_t kNodeNotAssigned = std::numeric_limits<int32_t>::max(); } SimplePlanner::SimplePlanner(TfLiteContext* context, std::unique_ptr<GraphInfo> graph_info) : context_(context), graph_info_(std::move(graph_info)) {} SimplePlanner::~SimplePlanner() { FreeAllAllocations(); } void SimplePlanner::FreeAllAllocations() { for (int i = 0; i < static_cast<int>(allocs_.size()); ++i) { allocs_[i].free(); } } TfLiteStatus SimplePlanner::ResetAllocations() { FreeAllAllocations(); allocs_.clear(); allocs_.resize(graph_info_->num_tensors()); return kTfLiteOk; } TfLiteStatus SimplePlanner::ResetAllocationsAfter(int node) { TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < static_cast<int>(allocs_.size()); ++i) { if (allocs_[i].node > node && allocs_[i].size > 0) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { allocs_[i].free(); tensor.data.raw = nullptr; } } } return kTfLiteOk; } TfLiteStatus SimplePlanner::PlanAllocations() { TF_LITE_ENSURE_STATUS(ResetAllocations()); alloc_node_.assign(graph_info_->num_tensors(), kNodeNotAssigned); dealloc_node_.assign(graph_info_->num_tensors(), kNodeNotAssigned); std::vector<int> refcounts(graph_info_->num_tensors(), 0); auto allocate = [this](int node, int tensor) -> TfLiteStatus { if (alloc_node_[tensor] != kNodeNotAssigned) { return kTfLiteOk; } TF_LITE_ENSURE(context_, dealloc_node_[tensor] == kNodeNotAssigned); alloc_node_[tensor] = node; return kTfLiteOk; }; auto deallocate = [this](int node, int tensor) -> TfLiteStatus { if (alloc_node_[tensor] == kNodeNotAssigned) { return kTfLiteOk; } TF_LITE_ENSURE(context_, dealloc_node_[tensor] == kNodeNotAssigned); dealloc_node_[tensor] = node; return kTfLiteOk; }; for (int tensor_index : graph_info_->outputs()) { if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]++; } } for (int tensor_index : graph_info_->variables()) { refcounts[tensor_index]++; TF_LITE_ENSURE(context_, tensor_index != kTfLiteOptionalTensor); TF_LITE_ENSURE_STATUS(allocate(0, tensor_index)); } for (int tensor_index : graph_info_->inputs()) { if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]++; TF_LITE_ENSURE_STATUS(allocate(0, tensor_index)); } } const size_t num_execution_nodes = graph_info_->num_execution_nodes(); for (size_t i = 0; i < num_execution_nodes; ++i) { const TfLiteNode& node = graph_info_->node(i); TfLiteIntArray* node_inputs = node.inputs; for (int j = 0; j < node_inputs->size; ++j) { int tensor_index = node_inputs->data[j]; if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]++; } } } for (size_t i = 0; i < num_execution_nodes; ++i) { const TfLiteNode& node = graph_info_->node(i); TfLiteIntArray* node_outputs = node.outputs; for (int j = 0; j < node_outputs->size; ++j) { int tensor_index = node_outputs->data[j]; TF_LITE_ENSURE_STATUS(allocate(i, tensor_index)); } TfLiteIntArray* node_inputs = node.inputs; for (int j = 0; j < node_inputs->size; ++j) { int tensor_index = node_inputs->data[j]; if (tensor_index != kTfLiteOptionalTensor) { refcounts[tensor_index]--; if (refcounts[tensor_index] == 0) { TF_LITE_ENSURE_STATUS(deallocate(i, tensor_index)); } } } } return kTfLiteOk; } TfLiteStatus SimplePlanner::ExecuteAllocations(int first_node, int last_node) { alloc_node_.resize(graph_info_->num_tensors(), kNodeNotAssigned); dealloc_node_.resize(graph_info_->num_tensors(), kNodeNotAssigned); allocs_.resize(graph_info_->num_tensors()); const size_t num_execution_nodes = graph_info_->num_execution_nodes(); for (size_t i = first_node; i <= static_cast<size_t>(last_node) && i < num_execution_nodes; ++i) { const TfLiteNode& node = graph_info_->node(i); TfLiteIntArray* node_temporaries = node.temporaries; for (int j = 0; j < node_temporaries->size; ++j) { int tensor_index = node_temporaries->data[j]; alloc_node_[tensor_index] = i; dealloc_node_[tensor_index] = i; } } const int num_tensors = static_cast<int>(graph_info_->num_tensors()); TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < num_tensors; ++i) { bool allocated = false; if (alloc_node_[i] >= first_node && alloc_node_[i] <= last_node) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { if (allocs_[i].size != 0) { allocs_[i].free(); } allocated = allocs_[i].alloc(tensor.bytes, alloc_node_[i]); } else if (tensor.allocation_type == kTfLiteArenaRwPersistent && allocs_[i].size == 0) { allocated = allocs_[i].alloc(tensor.bytes, alloc_node_[i]); } } if (allocated) { TF_LITE_ENSURE_STATUS(ResolveTensorAllocation(i)); } } return kTfLiteOk; } TfLiteStatus SimplePlanner::ReleaseNonPersistentMemory() { const int num_tensors = static_cast<int>(graph_info_->num_tensors()); TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < num_tensors; ++i) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { allocs_[i].free(); tensor.data.raw = nullptr; } } return kTfLiteOk; } TfLiteStatus SimplePlanner::AcquireNonPersistentMemory() { const int num_tensors = static_cast<int>(graph_info_->num_tensors()); TfLiteTensor* tensors = graph_info_->tensors(); for (int i = 0; i < num_tensors; ++i) { TfLiteTensor& tensor = tensors[i]; if (tensor.allocation_type == kTfLiteArenaRw) { TF_LITE_ENSURE_STATUS(ResolveTensorAllocation(i)); } } return kTfLiteOk; } TfLiteStatus SimplePlanner::ResolveTensorAllocation(int tensor_index) { TfLiteTensor& tensor = *graph_info_->tensor(tensor_index); if (tensor.allocation_type == kTfLiteArenaRw) { if (allocs_[tensor_index].size != 0) { tensor.data.raw = allocs_[tensor_index].ptr; } } if (tensor.allocation_type == kTfLiteArenaRwPersistent) { tensor.data.raw = allocs_[tensor_index].ptr; } return kTfLiteOk; } }
#include "tensorflow/lite/simple_planner.h" #include <algorithm> #include <cstdarg> #include <initializer_list> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/graph_info.h" namespace tflite { namespace { class TestOp { public: TestOp(std::initializer_list<int> inputs, std::initializer_list<int> outputs, std::initializer_list<int> temporaries) : inputs_(inputs), outputs_(outputs), temporaries_(temporaries) {} const std::vector<int>& inputs() const { return inputs_; } const std::vector<int>& outputs() const { return outputs_; } const std::vector<int>& temporaries() const { return temporaries_; } const TfLiteRegistration& registration() const { return registration_; } private: std::vector<int> inputs_; std::vector<int> outputs_; std::vector<int> temporaries_; TfLiteRegistration registration_{}; }; class TestGraph { public: TestGraph(std::initializer_list<int> inputs, std::initializer_list<TestOp> nodes, std::initializer_list<int> outputs) : inputs_(inputs), outputs_(outputs) { int max_tensor_index = 0; for (int t : inputs) { max_tensor_index = std::max(max_tensor_index, t); } for (int t : outputs) { max_tensor_index = std::max(max_tensor_index, t); } for (const auto& node : nodes) { auto int_array = [](const std::vector<int>& x) { TfLiteIntArray* lite = TfLiteIntArrayCreate(x.size()); for (size_t i = 0; i < x.size(); i++) lite->data[i] = x[i]; return lite; }; registrations_.push_back(node.registration()); nodes_.push_back(TfLiteNode()); nodes_.back().inputs = int_array(node.inputs()); for (int t : node.inputs()) { max_tensor_index = std::max(max_tensor_index, t); } nodes_.back().outputs = int_array(node.outputs()); for (int t : node.outputs()) { max_tensor_index = std::max(max_tensor_index, t); } nodes_.back().temporaries = int_array(node.temporaries()); for (int t : node.temporaries()) { max_tensor_index = std::max(max_tensor_index, t); } } for (int i = 0; i <= max_tensor_index; ++i) { tensors_.push_back(TfLiteTensor()); tensors_.back().allocation_type = kTfLiteArenaRw; tensors_.back().bytes = (i + 1) * 3; } } ~TestGraph() { for (auto node : nodes_) { TfLiteIntArrayFree(node.inputs); TfLiteIntArrayFree(node.outputs); TfLiteIntArrayFree(node.temporaries); } } const std::vector<TfLiteNode>& nodes() { return nodes_; } std::vector<TfLiteTensor>* tensors() { return &tensors_; } const std::vector<int>& inputs() { return inputs_; } const std::vector<int>& outputs() { return outputs_; } const std::vector<int>& variables() { return variables_; } const std::vector<TfLiteRegistration>& registrations() { return registrations_; } void SetVariables(const std::vector<int>& variables) { variables_ = variables; } void Swap(TestGraph* other) { std::swap(nodes_, other->nodes_); std::swap(tensors_, other->tensors_); std::swap(inputs_, other->inputs_); std::swap(outputs_, other->outputs_); std::swap(variables_, other->variables_); } private: std::vector<TfLiteNode> nodes_; std::vector<TfLiteTensor> tensors_; std::vector<TfLiteRegistration> registrations_; std::vector<int> inputs_; std::vector<int> outputs_; std::vector<int> variables_; }; class TestGraphInfo : public GraphInfo { public: explicit TestGraphInfo(TestGraph* graph) : graph_(graph) {} size_t num_tensors() const override { return graph_->tensors()->size(); } const TfLiteRegistration& registration(size_t index) const override { return graph_->registrations()[index]; } TfLiteTensor* tensor(size_t index) override { return &graph_->tensors()->at(index); } TfLiteTensor* tensors() override { return graph_->tensors()->data(); } size_t num_execution_nodes() const override { return graph_->nodes().size(); } size_t num_total_nodes() const override { return graph_->nodes().size(); } const TfLiteNode& node(size_t index) const override { return graph_->nodes()[index]; } size_t node_index(size_t index) const override { return index; } const std::vector<int>& inputs() const override { return graph_->inputs(); } const std::vector<int>& outputs() const override { return graph_->outputs(); } const std::vector<int>& variables() const override { return graph_->variables(); } private: TestGraph* graph_; }; void ReportError(TfLiteContext* context, const char* format, ...) { const size_t kBufferSize = 1024; char temp_buffer[kBufferSize]; va_list args; va_start(args, format); vsnprintf(temp_buffer, kBufferSize, format, args); va_end(args); LOG(INFO) << temp_buffer; } class SimplePlannerTest : public ::testing::Test { protected: void SetGraph(TestGraph* graph, bool preserve_all_tensors = false) { graph_ = graph; context_.ReportError = ReportError; planner_ = std::make_unique<SimplePlanner>( &context_, std::unique_ptr<GraphInfo>(new TestGraphInfo(graph))); CHECK(planner_->ResetAllocations() == kTfLiteOk); CHECK(planner_->PlanAllocations() == kTfLiteOk); } void SwapGraph(TestGraph* graph) { graph_->Swap(graph); CHECK(planner_->PlanAllocations() == kTfLiteOk); } void Execute(int start, int end) { CHECK(planner_->ExecuteAllocations(start, end) == kTfLiteOk); } void ReleaseNonPersistentMemory() { CHECK(planner_->ReleaseNonPersistentMemory() == kTfLiteOk); } void AcquireNonPersistentMemory() { CHECK(planner_->AcquireNonPersistentMemory() == kTfLiteOk); } void ResetAllocationsAfter(int node) { CHECK(planner_->ResetAllocationsAfter(node) == kTfLiteOk); } bool HasNonPersistentMemory() { return planner_ && planner_->HasNonPersistentMemory(); } bool IsAllocated(int tensor_index) { return (*graph_->tensors())[tensor_index].data.raw != nullptr; } TfLiteContext context_; TestGraph* graph_; std::unique_ptr<SimplePlanner> planner_; }; TEST_F(SimplePlannerTest, EmptyGraph) { TestGraph graph({}, {}, {}); SetGraph(&graph); Execute(0, 10); } TEST_F(SimplePlannerTest, GraphWithNoOps) { TestGraph graph({0, 10}, {}, {5, 11}); SetGraph(&graph); Execute(0, 10); EXPECT_FALSE(IsAllocated(5)); EXPECT_FALSE(IsAllocated(11)); } TEST_F(SimplePlannerTest, ZeroSizedTensors) { TestGraph graph({1}, {{{1}, {2}, {}}}, {2}); (*graph.tensors())[1].bytes = 0; SetGraph(&graph); ASSERT_EQ(planner_->ExecuteAllocations(0, 10), kTfLiteOk); EXPECT_FALSE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); } TEST_F(SimplePlannerTest, SimpleGraph) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4, 5}, {}}, {{4, 5}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphInputsPreserved) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4, 5}, {}}, {{4, 5}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphWithTemporary) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4}, {5}}, {{4}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphWithResetAllocationsAfter) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4}, {5}}, {{4}, {3}, {}} }, {3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); ResetAllocationsAfter(0); EXPECT_TRUE(IsAllocated(0)); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_FALSE(IsAllocated(3)); EXPECT_FALSE(IsAllocated(4)); EXPECT_FALSE(IsAllocated(5)); } TEST_F(SimplePlannerTest, SimpleGraphWithPersistentResetAllocationsAfter) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4}, {5}}, {{4}, {3}, {}} }, {3}); (*graph.tensors())[5].allocation_type = kTfLiteArenaRwPersistent; SetGraph(&graph); Execute(0, 10); void* tensor5_ptr = (*graph.tensors())[5].data.raw; ResetAllocationsAfter(0); EXPECT_TRUE(IsAllocated(0)); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_FALSE(IsAllocated(3)); EXPECT_FALSE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); Execute(0, 10); EXPECT_TRUE(tensor5_ptr == (*graph.tensors())[5].data.raw); } TEST_F(SimplePlannerTest, SimpleGraphOptionalOutput) { TestGraph graph({0, 1}, { {{0, 1}, {2}, {}}, {{2, 0}, {4, 5}, {}}, {{4, 5}, {3}, {}} }, {-1, 3}); SetGraph(&graph); Execute(0, 10); EXPECT_TRUE(IsAllocated(1)); EXPECT_TRUE(IsAllocated(2)); EXPECT_TRUE(IsAllocated(3)); EXPECT_TRUE(IsAllocated(4)); EXPECT_TRUE(IsAllocated(5)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/simple_planner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/simple_planner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9b2eab20-5371-4a38-8c1d-c212f158648d
cpp
tensorflow/tensorflow
alias_passthrough_params
third_party/xla/xla/service/gpu/transforms/alias_passthrough_params.cc
third_party/xla/xla/service/gpu/transforms/alias_passthrough_params_test.cc
#include "xla/service/gpu/transforms/alias_passthrough_params.h" #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { absl::StatusOr<bool> AliasPassthroughParams::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { const HloInstruction* root = module->entry_computation()->root_instruction(); if (module->entry_computation()->num_parameters() == 0 || root->opcode() != HloOpcode::kTuple) { return false; } bool changed = false; absl::flat_hash_set<int64_t> used_params; for (int64_t i = 0; i < root->operand_count(); ++i) { if (root->operand(i)->opcode() == HloOpcode::kParameter && used_params.count(root->operand(i)->parameter_number()) == 0) { VLOG(2) << "Parameter " << root->operand(i)->parameter_number() << " with shape " << root->operand(i)->shape().ToString() << " in module " << module->name() << " is passed-through to root tuple element " << i << ": " << root->shape().ToString(); if (module->input_output_alias_config().OutputHasAlias({i}) || module->input_output_alias_config().ParameterHasAlias( root->operand(i)->parameter_number(), {})) { VLOG(2) << "Skip setting the above pass-through alias as an alias may" << " have been set up for alising resource update."; continue; } TF_RETURN_IF_ERROR(module->input_output_alias_config().SetUpAlias( {i}, root->operand(i)->parameter_number(), {})); used_params.insert(root->operand(i)->parameter_number()); changed = true; } } return changed; } } }
#include "xla/service/gpu/transforms/alias_passthrough_params.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { class AliasPassthroughParamsTest : public HloTestBase {}; TEST_F(AliasPassthroughParamsTest, AliasPassThroughParams) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) sum = f16[2048,1024] add(p0, p1) ROOT root = (f16[2048,1024], f16[2048,1024], f16[2048,1024]) tuple(p0, sum, p1) })") .value(); EXPECT_TRUE(AliasPassthroughParams().Run(module.get()).value()); const auto& alias_config = module->input_output_alias_config(); EXPECT_EQ(0, alias_config.GetAliasedParameter({0})->parameter_number); EXPECT_FALSE(alias_config.OutputHasAlias({1})); EXPECT_EQ(1, alias_config.GetAliasedParameter({2})->parameter_number); } TEST_F(AliasPassthroughParamsTest, DoNotAliasPassThroughParamsMoreThanOnce) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p0) })") .value(); EXPECT_TRUE(AliasPassthroughParams().Run(module.get()).value()); const auto& alias_config = module->input_output_alias_config(); EXPECT_EQ(0, alias_config.GetAliasedParameter({0})->parameter_number); EXPECT_FALSE(alias_config.OutputHasAlias({1})); } TEST_F(AliasPassthroughParamsTest, PresetAliases) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) sum = f16[2048,1024] add(p0, p1) ROOT root = (f16[2048,1024], f16[2048,1024], f16[2048,1024]) tuple(p0, sum, p1) })") .value(); auto& preset_alias = module->input_output_alias_config(); TF_EXPECT_OK(preset_alias.SetUpAlias({1}, 0, {})); EXPECT_TRUE(AliasPassthroughParams().Run(module.get()).value()); const auto& alias_result = module->input_output_alias_config(); EXPECT_EQ(1, alias_result.GetAliasedParameter({2})->parameter_number); EXPECT_FALSE(alias_result.OutputHasAlias({0})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/alias_passthrough_params.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/alias_passthrough_params_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8bb040b7-ee6d-4626-b127-24058237c255
cpp
tensorflow/tensorflow
string_util
tensorflow/compiler/mlir/tensorflow/utils/string_util.cc
tensorflow/lite/string_util_test.cc
#include "tensorflow/compiler/mlir/tensorflow/utils/string_util.h" #include <ostream> #include <string> #include "llvm/Support/raw_ostream.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Operation.h" namespace tensorflow { std::string OpAsString(mlir::Operation& op) { std::string out; llvm::raw_string_ostream op_stream(out); op.print(op_stream, mlir::OpPrintingFlags() .elideLargeElementsAttrs() .assumeVerified() .skipRegions() .printGenericOpForm()); return out; } std::string AttrAsString(mlir::Attribute& attr) { std::string out; llvm::raw_string_ostream attr_stream(out); attr.print(attr_stream); return out; } std::ostream& operator<<(std::ostream& o, const LoggableOperation& op) { return o << OpAsString(op.v); } std::ostream& operator<<(std::ostream& o, const LoggableAttribute& attr) { return o << AttrAsString(attr.v); } std::ostream& operator<<(std::ostream& o, const LoggableStringRef& ref) { return o << ref.v.str(); } }
#include "tensorflow/lite/string_util.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/string_type.h" namespace tflite { TEST(StringUtil, TestStringUtil) { Interpreter interpreter; interpreter.AddTensors(3); TfLiteTensor* t0 = interpreter.tensor(0); t0->type = kTfLiteString; t0->allocation_type = kTfLiteDynamic; TfLiteTensor* t1 = interpreter.tensor(1); t1->type = kTfLiteString; t1->allocation_type = kTfLiteDynamic; union { char raw_bytes[15]; struct { int32_t num_strs; int32_t offsets[2]; char str_data[3]; } tensor_data; } data; data.tensor_data = {1, {12, 15}, {'X', 'Y', 'Z'}}; TfLiteQuantization quant; quant.type = kTfLiteNoQuantization; quant.params = nullptr; interpreter.SetTensorParametersReadOnly( 2, kTfLiteString, "", {1}, quant, data.raw_bytes, sizeof(data.raw_bytes)); TfLiteTensor* t2 = interpreter.tensor(2); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); char s0[] = "ABC"; string s1 = "DEFG"; char s2[] = ""; DynamicBuffer buf0; ASSERT_EQ(buf0.AddString(s0, 3), kTfLiteOk); DynamicBuffer buf1; ASSERT_EQ(buf1.AddString(s1.data(), s1.length()), kTfLiteOk); ASSERT_EQ(buf0.AddString(s2, 0), kTfLiteOk); auto new_shape = TfLiteIntArrayCreate(2); new_shape->data[0] = 2; new_shape->data[1] = 1; buf0.WriteToTensor(t0, new_shape); buf1.WriteToTensorAsVector(t1); EXPECT_EQ(t0->dims->size, 2); EXPECT_EQ(t0->dims->data[0], 2); EXPECT_EQ(t0->dims->data[1], 1); EXPECT_EQ(t1->dims->size, 1); EXPECT_EQ(t1->dims->data[0], 1); ASSERT_EQ(GetStringCount(t0), 2); StringRef str_ref; str_ref = GetString(t0, 0); ASSERT_EQ(string(str_ref.str, str_ref.len), "ABC"); str_ref = GetString(t0, 1); ASSERT_EQ(string(str_ref.str, str_ref.len), ""); ASSERT_EQ(t0->bytes, 19); ASSERT_EQ(GetStringCount(t1), 1); str_ref = GetString(t1, 0); ASSERT_EQ(string(str_ref.str, str_ref.len), "DEFG"); ASSERT_EQ(t1->bytes, 16); ASSERT_EQ(GetStringCount(t2), 1); str_ref = GetString(t2, 0); ASSERT_EQ(string(str_ref.str, str_ref.len), "XYZ"); ASSERT_EQ(t2->bytes, 15); } TEST(StringUtil, AddStringOverflow32Length) { const size_t max_size = 100; DynamicBuffer buf{max_size}; std::string big_string(max_size + 1, 'A'); ASSERT_EQ(buf.AddString({big_string.data(), big_string.length()}), kTfLiteError); } TEST(StringUtil, AddStringToFullBufferOverflow32Length) { const size_t max_size = 100; DynamicBuffer buf{max_size}; std::string big_string((max_size / 2) + 1, 'A'); ASSERT_EQ(buf.AddString({big_string.data(), big_string.length()}), kTfLiteOk); EXPECT_EQ(buf.AddString({big_string.data(), big_string.length()}), kTfLiteError); } TEST(StringUtil, TruncatesCharDataToLen) { Interpreter interpreter; interpreter.AddTensors(1); TfLiteTensor* t0 = interpreter.tensor(0); t0->type = kTfLiteString; t0->allocation_type = kTfLiteDynamic; DynamicBuffer buf; char fake_big[] = "ABCADASDA"; ASSERT_EQ(buf.AddString({fake_big, 3}), kTfLiteOk); buf.WriteToTensorAsVector(t0); StringRef added_string = GetString(t0, 0); EXPECT_EQ(added_string.len, 3); EXPECT_EQ(string(added_string.str, 3), "ABC"); } TEST(StringUtil, TestAddJoinedStringCharSeparator) { Interpreter interpreter; interpreter.AddTensors(1); TfLiteTensor* t0 = interpreter.tensor(0); t0->type = kTfLiteString; t0->allocation_type = kTfLiteDynamic; char s0[] = ""; char s1[] = "ABC"; char s2[] = "DEFG"; char s3[] = ""; char s4[] = "XYZ"; DynamicBuffer buf; buf.AddJoinedString({{s0, 0}, {s1, 3}, {s2, 4}, {s3, 0}, {s4, 3}}, ' '); buf.WriteToTensorAsVector(t0); ASSERT_EQ(GetStringCount(t0), 1); StringRef str_ref; str_ref = GetString(t0, 0); ASSERT_EQ(string(str_ref.str, str_ref.len), " ABC DEFG XYZ"); ASSERT_EQ(t0->bytes, 26); } TEST(StringUtil, TestAddJoinedStringStringRefSeparator) { Interpreter interpreter; interpreter.AddTensors(1); TfLiteTensor* t0 = interpreter.tensor(0); t0->type = kTfLiteString; t0->allocation_type = kTfLiteDynamic; char s[] = " - "; char s0[] = ""; char s1[] = "ABC"; char s2[] = "DEFG"; char s3[] = ""; char s4[] = "XYZ"; DynamicBuffer buf; buf.AddJoinedString({{s0, 0}, {s1, 3}, {s2, 4}, {s3, 0}, {s4, 3}}, {s, 3}); buf.WriteToTensorAsVector(t0); ASSERT_EQ(GetStringCount(t0), 1); StringRef str_ref; str_ref = GetString(t0, 0); ASSERT_EQ(string(str_ref.str, str_ref.len), " - ABC - DEFG - - XYZ"); ASSERT_EQ(t0->bytes, 34); } TEST(StringUtil, TestEmptyList) { Interpreter interpreter; interpreter.AddTensors(1); TfLiteTensor* t0 = interpreter.tensor(0); t0->type = kTfLiteString; t0->allocation_type = kTfLiteDynamic; DynamicBuffer buf; buf.WriteToTensorAsVector(t0); ASSERT_EQ(GetStringCount(t0), 0); ASSERT_EQ(t0->bytes, 8); } TEST(StringUtil, TestShapes) { Interpreter interpreter; interpreter.AddTensors(1); TfLiteTensor* t0 = interpreter.tensor(0); t0->type = kTfLiteString; t0->allocation_type = kTfLiteDynamic; t0->dims = TfLiteIntArrayCreate(2); t0->dims->data[0] = 2; t0->dims->data[1] = 1; DynamicBuffer buf; buf.AddString("ABC", 3); buf.AddString("X", 1); buf.WriteToTensor(t0, nullptr); ASSERT_EQ(t0->dims->size, 2); EXPECT_EQ(t0->dims->data[0], 2); EXPECT_EQ(t0->dims->data[1], 1); auto new_shape = TfLiteIntArrayCreate(2); new_shape->data[0] = 1; new_shape->data[1] = 2; buf.WriteToTensor(t0, new_shape); ASSERT_EQ(t0->dims->size, 2); EXPECT_EQ(t0->dims->data[0], 1); EXPECT_EQ(t0->dims->data[1], 2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/string_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/string_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5eb69629-495f-4efe-8e13-19cb96a2dada
cpp
google/cel-cpp
data_interface
common/internal/data_interface.h
common/internal/data_interface_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_INTERNAL_DATA_INTERFACE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_INTERNAL_DATA_INTERFACE_H_ #include <type_traits> #include "absl/base/attributes.h" #include "common/native_type.h" namespace cel { class TypeInterface; class ValueInterface; namespace common_internal { class DataInterface; class DataInterface { public: DataInterface(const DataInterface&) = delete; DataInterface(DataInterface&&) = delete; virtual ~DataInterface() = default; DataInterface& operator=(const DataInterface&) = delete; DataInterface& operator=(DataInterface&&) = delete; protected: DataInterface() = default; private: friend class cel::TypeInterface; friend class cel::ValueInterface; friend struct NativeTypeTraits<DataInterface>; virtual NativeTypeId GetNativeTypeId() const = 0; }; } template <> struct NativeTypeTraits<common_internal::DataInterface> final { static NativeTypeId Id(const common_internal::DataInterface& data_interface) { return data_interface.GetNativeTypeId(); } }; template <typename T> struct NativeTypeTraits< T, std::enable_if_t<std::conjunction_v< std::is_base_of<common_internal::DataInterface, T>, std::negation<std::is_same<T, common_internal::DataInterface>>>>> final { static NativeTypeId Id(const common_internal::DataInterface& data_interface) { return NativeTypeTraits<common_internal::DataInterface>::Id(data_interface); } }; } #endif
#include "common/internal/data_interface.h" #include <memory> #include "common/native_type.h" #include "internal/testing.h" namespace cel::common_internal { namespace { namespace data_interface_test { class TestInterface final : public DataInterface { private: NativeTypeId GetNativeTypeId() const override { return NativeTypeId::For<TestInterface>(); } }; } TEST(DataInterface, GetNativeTypeId) { auto data = std::make_unique<data_interface_test::TestInterface>(); EXPECT_EQ(NativeTypeId::Of(*data), NativeTypeId::For<data_interface_test::TestInterface>()); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/internal/data_interface.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/internal/data_interface_test.cc
4552db5798fb0853b131b783d8875794334fae7f
0587d70c-ea77-47c1-b1b0-a74f752d5522
cpp
tensorflow/tensorflow
memory_bound_loop_optimizer
third_party/xla/xla/service/memory_space_assignment/memory_bound_loop_optimizer.cc
third_party/xla/xla/service/memory_space_assignment/memory_bound_loop_optimizer_test.cc
#include "xla/service/memory_space_assignment/memory_bound_loop_optimizer.h" #include <algorithm> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <set> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/service/buffer_value.h" #include "xla/service/heap_simulator/allocation_block.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_value.h" #include "xla/service/memory_space_assignment/allocation.h" #include "xla/service/memory_space_assignment/cost_analysis.h" #include "xla/service/memory_space_assignment/memory_space_assignment.pb.h" #include "xla/service/memory_space_assignment/options.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace memory_space_assignment { namespace { std::optional<int64_t> GetInstructionIndex( const HloInstruction* instruction, const absl::flat_hash_map<const HloInstruction*, int64_t>& instructions_to_index) { auto it = instructions_to_index.find(instruction); return it == instructions_to_index.end() ? std::nullopt : std::optional<int64_t>(it->second); } } void LoopOptimizerBestFitHeap::CreateBufferInterval( const AllocationBlock& allocation_block, const AllocationBlock* colocated_with) { buffer_intervals_[&allocation_block] = BufferInterval({&allocation_block, allocation_block.size, allocation_block.inclusive_start_time, allocation_block.end_time, {}, colocated_with == nullptr}); if (colocated_with) { buffer_intervals_[colocated_with].colocations.push_back(&allocation_block); } } std::optional<HeapSimulator::Chunk> LoopOptimizerBestFitHeap::MaybeFindChunkCandidate( const AllocationBlock& allocation_block, int64_t preferred_offset) { Chunk chunk_candidate = FindChunkCandidate( buffer_intervals_[&allocation_block], preferred_offset); if (chunk_candidate.chunk_end() <= size_limit_per_heap_) { return chunk_candidate; } return std::nullopt; } std::optional<HeapSimulator::Chunk> LoopOptimizerBestFitHeap::FindAndCommitChunkCandidate( const AllocationBlock& allocation_block, int64_t preferred_offset) { std::optional<Chunk> chunk = MaybeFindChunkCandidate(allocation_block, preferred_offset); if (chunk.has_value()) { CommitChunk(buffer_intervals_[&allocation_block], chunk.value()); } return chunk; } void LoopOptimizerBestFitHeap::RemoveChunk(int64_t start_time, int64_t end_time, Chunk chunk) { CHECK(interval_tree_.Remove(start_time, end_time, chunk)); } void LoopOptimizerBestFitHeap::RemoveEvenChunks( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, std::optional<HeapSimulator::Chunk>& chunk) { RemoveChunk(begin_idx_in_loop, end_idx_in_loop, chunk.value()); RemoveChunk(begin_idx_in_loop + 2 * loop_size_, end_idx_in_loop + 2 * loop_size_, chunk.value()); } void LoopOptimizerBestFitHeap::RemoveOddChunks( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, std::optional<HeapSimulator::Chunk>& chunk) { RemoveChunk(begin_idx_in_loop + loop_size_, end_idx_in_loop + loop_size_, chunk.value()); RemoveChunk(begin_idx_in_loop + 3 * loop_size_, end_idx_in_loop + 3 * loop_size_, chunk.value()); } void LoopOptimizerBestFitHeap::RemoveEvenOddChunkPair( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, EvenOddChunkPair& chunks) { CheckAllocationIntervalValid(begin_idx_in_loop, end_idx_in_loop); ShiftAllocationIntervalIfRequired(begin_idx_in_loop, end_idx_in_loop); auto [even_chunk, odd_chunk] = chunks; RemoveEvenChunks(begin_idx_in_loop, end_idx_in_loop, even_chunk); RemoveOddChunks(begin_idx_in_loop, end_idx_in_loop, odd_chunk); } const AllocationBlock& LoopOptimizerBestFitHeap::GetAllocationBlock( int64_t start_time, int64_t end_time, int64_t size) { allocation_blocks_.push_back( {start_time, end_time, size, static_cast<int64_t>(-1), static_cast<int64_t>(-1), static_cast<int64_t>(allocation_blocks_.size())}); return allocation_blocks_.back(); } const AllocationBlock& LoopOptimizerBestFitHeap::CreateEvenAllocationBlock( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size) { const AllocationBlock& first_allocation_block = GetAllocationBlock(begin_idx_in_loop, end_idx_in_loop, size); CreateBufferInterval(first_allocation_block); const AllocationBlock& second_allocation_block = GetAllocationBlock(begin_idx_in_loop + 2 * loop_size_, end_idx_in_loop + 2 * loop_size_, size); CreateBufferInterval(second_allocation_block, &first_allocation_block); return first_allocation_block; } const AllocationBlock& LoopOptimizerBestFitHeap::CreateOddAllocationBlock( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size) { const AllocationBlock& first_allocation_block = GetAllocationBlock( begin_idx_in_loop + loop_size_, end_idx_in_loop + loop_size_, size); CreateBufferInterval(first_allocation_block); const AllocationBlock& second_allocation_block = GetAllocationBlock(begin_idx_in_loop + 3 * loop_size_, end_idx_in_loop + 3 * loop_size_, size); CreateBufferInterval(second_allocation_block, &first_allocation_block); return first_allocation_block; } void LoopOptimizerBestFitHeap::CheckAllocationIntervalValid( int64_t begin_idx_in_loop, int64_t end_idx_in_loop) const { CHECK_LE(begin_idx_in_loop, end_idx_in_loop); CHECK_LE(-1 * loop_size_, begin_idx_in_loop); CHECK_LT(begin_idx_in_loop, loop_size_); CHECK_LE(0, end_idx_in_loop); CHECK_LT(end_idx_in_loop, 2 * loop_size_); CHECK_LE(end_idx_in_loop - begin_idx_in_loop + 1, 2 * loop_size_); } void LoopOptimizerBestFitHeap::ShiftAllocationIntervalIfRequired( int64_t& begin_idx_in_loop, int64_t& end_idx_in_loop) const { if (begin_idx_in_loop < 0) { begin_idx_in_loop += loop_size_; end_idx_in_loop += loop_size_; } } EvenOddChunkPair LoopOptimizerBestFitHeap::FindEvenAndOddAllocationBetween( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size, std::pair<int64_t, int64_t> preferred_offsets) { CheckAllocationIntervalValid(begin_idx_in_loop, end_idx_in_loop); ShiftAllocationIntervalIfRequired(begin_idx_in_loop, end_idx_in_loop); auto [even_offset, odd_offset] = preferred_offsets; const AllocationBlock& even_allocation = CreateEvenAllocationBlock(begin_idx_in_loop, end_idx_in_loop, size); const AllocationBlock& odd_allocation = CreateOddAllocationBlock(begin_idx_in_loop, end_idx_in_loop, size); std::optional<HeapSimulator::Chunk> even_chunk = FindAndCommitChunkCandidate(even_allocation, even_offset); if (!even_chunk.has_value()) { return {std::nullopt, std::nullopt}; } std::optional<HeapSimulator::Chunk> odd_chunk = MaybeFindChunkCandidate(odd_allocation, odd_offset); RemoveEvenChunks(begin_idx_in_loop, end_idx_in_loop, even_chunk); if (odd_chunk.has_value()) { return {even_chunk, odd_chunk}; } return {std::nullopt, std::nullopt}; } EvenOddChunkPair LoopOptimizerBestFitHeap::AllocateEvenAndOddBetween( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size, std::pair<int64_t, int64_t> preferred_offsets) { CheckAllocationIntervalValid(begin_idx_in_loop, end_idx_in_loop); ShiftAllocationIntervalIfRequired(begin_idx_in_loop, end_idx_in_loop); auto [even_offset, odd_offset] = preferred_offsets; const AllocationBlock& even_allocation = CreateEvenAllocationBlock(begin_idx_in_loop, end_idx_in_loop, size); const AllocationBlock& odd_allocation = CreateOddAllocationBlock(begin_idx_in_loop, end_idx_in_loop, size); std::optional<HeapSimulator::Chunk> even_chunk = FindAndCommitChunkCandidate(even_allocation, even_offset); if (!even_chunk.has_value()) { return {std::nullopt, std::nullopt}; } std::optional<HeapSimulator::Chunk> odd_chunk = FindAndCommitChunkCandidate(odd_allocation, odd_offset); if (odd_chunk.has_value()) { return {even_chunk, odd_chunk}; } RemoveEvenChunks(begin_idx_in_loop, end_idx_in_loop, even_chunk); return {std::nullopt, std::nullopt}; } const AllocationBlock& LoopOptimizerBestFitHeap::CreateSameEvenAndOddAllocationBlock( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size) { const AllocationBlock& first_allocation_block = GetAllocationBlock(begin_idx_in_loop, end_idx_in_loop, size); CreateBufferInterval(first_allocation_block); const AllocationBlock& second_allocation_block = GetAllocationBlock(begin_idx_in_loop + 1 * loop_size_, end_idx_in_loop + 1 * loop_size_, size); CreateBufferInterval(second_allocation_block, &first_allocation_block); const AllocationBlock& third_allocation_block = GetAllocationBlock(begin_idx_in_loop + 2 * loop_size_, end_idx_in_loop + 2 * loop_size_, size); CreateBufferInterval(third_allocation_block, &first_allocation_block); const AllocationBlock& fourth_allocation_block = GetAllocationBlock(begin_idx_in_loop + 3 * loop_size_, end_idx_in_loop + 3 * loop_size_, size); CreateBufferInterval(fourth_allocation_block, &first_allocation_block); return first_allocation_block; } EvenOddChunkPair LoopOptimizerBestFitHeap::FindSameEvenAndOddAllocationBetween( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size, int64_t preferred_offset) { CheckAllocationIntervalValid(begin_idx_in_loop, end_idx_in_loop); ShiftAllocationIntervalIfRequired(begin_idx_in_loop, end_idx_in_loop); CHECK_LE(end_idx_in_loop - begin_idx_in_loop + 1, loop_size_); const AllocationBlock& allocation = CreateSameEvenAndOddAllocationBlock( begin_idx_in_loop, end_idx_in_loop, size); std::optional<HeapSimulator::Chunk> chunk = MaybeFindChunkCandidate(allocation, preferred_offset); return {chunk, chunk}; } EvenOddChunkPair LoopOptimizerBestFitHeap::AllocateSameEvenAndOddBetween( int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size, int64_t preferred_offset) { CheckAllocationIntervalValid(begin_idx_in_loop, end_idx_in_loop); ShiftAllocationIntervalIfRequired(begin_idx_in_loop, end_idx_in_loop); CHECK_LE(end_idx_in_loop - begin_idx_in_loop + 1, loop_size_); const AllocationBlock& allocation = CreateSameEvenAndOddAllocationBlock( begin_idx_in_loop, end_idx_in_loop, size); std::optional<HeapSimulator::Chunk> chunk = FindAndCommitChunkCandidate(allocation, preferred_offset); return {chunk, chunk}; } std::string LoopOptimizerBestFitHeap::MemoryUsageToAsciiArt( int64_t begin_iteration, int64_t end_iteration) const { CHECK_LE(0, begin_iteration); CHECK_LE(begin_iteration, end_iteration); return interval_tree_.NodesOverlappingInTimeToAsciiArt( loop_size_ * begin_iteration, loop_size_ * (end_iteration + 1) - 1, loop_size_); } std::vector<int64_t> LoopOptimizerBestFitHeap::RemainingMemoryByTime() const { std::vector<int64_t> memory_used_by_time = interval_tree_.MemoryUsedInInterval(loop_size_ * 2, loop_size_ * 3 - 1); std::vector<int64_t> remaining_memory_by_time(loop_size_); for (int i = 0; i < loop_size_; ++i) { remaining_memory_by_time[i] = size_limit_per_heap_ - memory_used_by_time[i]; } return remaining_memory_by_time; } int64_t LoopOptimizerBestFitHeap::LastMemoryOffsetOccupied() const { return interval_tree_.HeapSizeInInterval(loop_size_ * 2, loop_size_ * 4 - 1); } absl::StatusOr<std::unique_ptr<MemoryBoundLoopOptimizer>> MemoryBoundLoopOptimizer::Create( int loop_start, int loop_end, uint64_t alternate_memory_size, const MemoryBoundLoopOptimizerOptions& options, const HloLiveRange& hlo_live_range, const HloAliasAnalysis& alias_analysis, const CostAnalysis& cost_analysis, const BufferValue::SizeFunction& size_function, const ReservedScopedMemoryFunction& reserved_scoped_memory_fn) { std::unique_ptr<MemoryBoundLoopOptimizer> optimizer = absl::WrapUnique(new MemoryBoundLoopOptimizer( loop_start, loop_end, alternate_memory_size, options, hlo_live_range, alias_analysis, cost_analysis, size_function, reserved_scoped_memory_fn)); TF_RETURN_IF_ERROR(optimizer->Initialize()); return std::move(optimizer); } MemoryBoundLoopOptimizer::MemoryBoundLoopOptimizer( int loop_start, int loop_end, uint64_t alternate_memory_size, const MemoryBoundLoopOptimizerOptions& options, const HloLiveRange& hlo_live_range, const HloAliasAnalysis& alias_analysis, const CostAnalysis& cost_analysis, const BufferValue::SizeFunction& size_function, const ReservedScopedMemoryFunction& reserved_scoped_memory_fn) : loop_start_(loop_start), loop_end_(loop_end), loop_size_(loop_end - loop_start), alternate_memory_size_(alternate_memory_size), options_(options), hlo_live_range_(hlo_live_range), alias_analysis_(alias_analysis), cost_analysis_(cost_analysis), size_function_(size_function), reserved_scoped_memory_fn_(reserved_scoped_memory_fn) {} absl::Status MemoryBoundLoopOptimizer::Initialize() { const auto& instruction_sequence = hlo_live_range_.flattened_instruction_sequence().instructions(); VLOG(3) << "MemoryBoundLoopOptimizer::Initialize, loop start: " << loop_start_ << ", loop end: " << loop_end_ << ", loop size: " << loop_size_; const HloComputation* loop_computation = nullptr; int prev_iteration_start = loop_start_ - loop_size_; int next_iteration_start = loop_start_ + loop_size_; for (int i = 0; i < loop_size_; ++i) { const HloInstruction* loop_inst = instruction_sequence[loop_start_ + i]; instructions_in_loop_[loop_inst] = i; const HloInstruction* prev_iteration_inst = instruction_sequence[prev_iteration_start + i]; instructions_in_prev_iteration_[prev_iteration_inst] = i; const HloInstruction* next_iteration_inst = instruction_sequence[next_iteration_start + i]; instructions_in_next_iteration_[next_iteration_inst] = i; VLOG(3) << " inst in loop [" << (i) << "]: " << loop_inst->name(); if (!loop_computation) { loop_computation = loop_inst->parent(); } else { TF_RET_CHECK(loop_computation == loop_inst->parent()); } remaining_memory_.push_back( alternate_memory_size_ - reserved_scoped_memory_fn_(loop_inst, {}, {})); } std::set<const HloBuffer*> buffers_to_process; for (const auto& [instruction, idx] : instructions_in_loop_) { auto maybe_add_buffer = [&](const HloInstruction* instruction) { return [this, &buffers_to_process, instruction](const Shape& subshape, const ShapeIndex& index) { if (!subshape.IsArray()) { return; } const HloBuffer& buffer = alias_analysis_.GetUniqueBufferAt(instruction, index); if (buffers_to_process.find(&buffer) == buffers_to_process.end()) { buffers_to_process.insert(&buffer); } }; }; ShapeUtil::ForEachSubshape(instruction->shape(), maybe_add_buffer(instruction)); for (const HloInstruction* operand : instruction->operands()) { ShapeUtil::ForEachSubshape(operand->shape(), maybe_add_buffer(operand)); } } for (const HloBuffer* buffer : buffers_to_process) { MaybeCreateLoopValue(*buffer, loop_computation); } return absl::OkStatus(); } void MemoryBoundLoopOptimizer::MaybeCreateLoopValue( const HloBuffer& buffer, const HloComputation* loop_computation) { loop_values_.push_back({}); LoopValue& loop_value = loop_values_.back(); float pos_bytes = 0; float use_bytes = 0; bool has_footer_consumer = false; for (const HloValue* value : buffer.values()) { for (const HloPosition& position : value->positions()) { if (position.instruction->opcode() == HloOpcode::kGetTupleElement) { continue; } std::optional<int64_t> loop_index = GetInstructionIndex(position.instruction, instructions_in_loop_); std::optional<int64_t> prev_iteration_index; if (loop_index) { loop_value.loop_positions.push_back({*loop_index, position}); VLOG(3) << "Pos match: " << position.instruction->name() << " at " << *loop_index; } else if ((prev_iteration_index = GetInstructionIndex( position.instruction, instructions_in_prev_iteration_))) { loop_value.prev_iteration_positions.push_back( {*prev_iteration_index, position}); VLOG(3) << "Pos match (prev iteration): " << position.instruction->name() << " at " << *prev_iteration_index; } else if (loop_value.prev_iteration_positions.empty() && loop_value.loop_positions.empty() && position.instruction->parent() == loop_computation && !loop_value.header_position) { loop_value.header_position = position; } if (loop_index || prev_iteration_index) { float bytes_accessed = cost_analysis_.base_costs().OutputBytesAccessed( *position.instruction, position.index); pos_bytes += bytes_accessed; VLOG(3) << " accessed: " << bytes_accessed; } } for (const HloUse& use : value->GetUses()) { if (use.instruction->opcode() == HloOpcode::kGetTupleElement) { continue; } std::optional<int64_t> loop_index = GetInstructionIndex(use.instruction, instructions_in_loop_); std::optional<int64_t> next_iteration_index; if (loop_index) { loop_value.loop_uses.push_back({*loop_index, use}); VLOG(3) << "Use match: " << use.instruction->name() << " at " << *loop_index; } else if ((next_iteration_index = GetInstructionIndex( use.instruction, instructions_in_next_iteration_))) { loop_value.next_iteration_uses.push_back({*next_iteration_index, use}); VLOG(3) << "Use match (next iteration): " << use.instruction->name() << " at " << *next_iteration_index; } else if (!loop_value.loop_positions.empty() || !loop_value.loop_uses.empty()) { has_footer_consumer = true; } if (loop_index || next_iteration_index) { float bytes_accessed = cost_analysis_.base_costs().OperandBytesAccessed( *use.instruction, use.operand_number, use.operand_index); use_bytes += bytes_accessed; VLOG(3) << " accessed: " << bytes_accessed; } } } if ((!loop_value.loop_positions.empty() || !loop_value.loop_uses.empty()) && loop_value.prev_iteration_positions.empty()) { loop_value.size = size_function_(**buffer.values().begin()); VLOG(3) << "Size: " << loop_value.size; loop_value.allocation_type = LoopValue::AllocationType::kUnsupported; auto position_compare = [](const std::pair<int64_t, HloPosition>& a, const std::pair<int64_t, HloPosition>& b) { return a.first < b.first; }; auto use_compare = [](const std::pair<int64_t, HloUse>& a, const std::pair<int64_t, HloUse>& b) { return a.first < b.first; }; absl::c_sort(loop_value.loop_positions, position_compare); absl::c_sort(loop_value.prev_iteration_positions, position_compare); absl::c_sort(loop_value.loop_uses, use_compare); absl::c_sort(loop_value.next_iteration_uses, use_compare); if (!loop_value.loop_positions.empty()) { if (loop_value.next_iteration_uses.empty() && !loop_value.loop_uses.empty()) { loop_value.allocation_type = LoopValue::AllocationType::kTemporary; } else if (!loop_value.next_iteration_uses.empty()) { if (loop_value.next_iteration_uses.back().first >= loop_value.loop_positions.front().first) { loop_value.allocation_type = LoopValue::AllocationType::kLoopCarriedDependence; } else { loop_value.allocation_type = LoopValue::AllocationType::kTemporary; } } } else if (loop_value.header_position && !loop_value.loop_uses.empty()) { if (loop_value.loop_uses.size() == loop_value.next_iteration_uses.size() && loop_value.loop_uses.front().first == loop_value.next_iteration_uses.front().first) { loop_value.allocation_type = LoopValue::AllocationType::kPinned; } else if (loop_value.next_iteration_uses.empty() || loop_value.next_iteration_uses.back().first < loop_value.loop_uses.front().first) { loop_value.allocation_type = LoopValue::AllocationType::kPrefetch; } } VLOG(3) << "Allocation type " << LoopValue::AllocationTypeToString(loop_value.allocation_type); VLOG(3) << "Pos bytes: " << pos_bytes << " use bytes: " << use_bytes; float savings = pos_bytes + use_bytes; if (loop_value.header_position) { savings -= loop_value.size; } if (!loop_value.loop_positions.empty() && has_footer_consumer) { savings -= loop_value.size; } loop_value.savings = savings; loop_value.savings_per_byte = savings / loop_value.size; VLOG(3) << "Savings: " << loop_value.savings; VLOG(3) << "Savings per byte: " << loop_value.savings_per_byte; for (const HloValue* value : buffer.values()) { VLOG(3) << value->ToString(); } loop_value.hlo_values = buffer.values(); } else { loop_values_.pop_back(); } } void MemoryBoundLoopOptimizer::Optimize() { SortLoopValues(); AllocateLoopValues(); PostProcess(); } float MemoryBoundLoopOptimizer::CalculateExecutionTime() const { std::vector<std::pair<const CopyAllocation*, float>> prefetches; for (const LoopValue& value : loop_values_) { if (!value.allocations.empty() && value.allocations.back()->is_copy_allocation()) { prefetches.push_back( {static_cast<const CopyAllocation*>(value.allocations.back().get()), cost_analysis_.GetAsyncCopyElapsed( value.hlo_values.front()->shape())}); } } auto get_effective_done_time = [&](int64_t copy_start_schedule_after, int64_t copy_done_schedule_before) -> int64_t { if (copy_start_schedule_after == loop_size_ - 1 && copy_done_schedule_before == 0) { return 2 * loop_size_; } if (copy_start_schedule_after + 1 >= copy_done_schedule_before) { return copy_done_schedule_before + loop_size_; } return copy_done_schedule_before; }; absl::c_sort( prefetches, [&](const std::pair<const CopyAllocation*, float>& a, const std::pair<const CopyAllocation*, float>& b) { return std::forward_as_tuple( a.first->copy_start_schedule_after(), get_effective_done_time( a.first->copy_start_schedule_after(), a.first->copy_done_schedule_before())) < std::forward_as_tuple(b.first->copy_start_schedule_after(), get_effective_done_time( b.first->copy_start_schedule_after(), b.first->copy_done_schedule_before())); }); std::vector<std::optional<int>> required_prefetch_completions(loop_size_); for (int i = 0; i < prefetches.size(); ++i) { const auto& [prefetch, elapsed] = prefetches[i]; int required_prefetch_completion = i; if (prefetch->copy_start_schedule_after() == loop_size_ - 1 && prefetch->copy_done_schedule_before() == 0) { required_prefetch_completion -= 2 * prefetches.size(); } else if (prefetch->copy_start_schedule_after() + 1 >= prefetch->copy_done_schedule_before()) { required_prefetch_completion -= prefetches.size(); } VLOG(3) << "Prefetch #" << i << " (elapsed " << elapsed << "): " << prefetch->ToString(); if (required_prefetch_completions[prefetch->copy_done_schedule_before()]) { required_prefetch_completions[prefetch->copy_done_schedule_before()] = std::max( *required_prefetch_completions[prefetch ->copy_done_schedule_before()], required_prefetch_completion); } else { required_prefetch_completions[prefetch->copy_done_schedule_before()] = required_prefetch_completion; } VLOG(4) << "Required completion at " << prefetch->copy_done_schedule_before() << " = " << *required_prefetch_completions[prefetch ->copy_done_schedule_before()]; } float result; std::vector<float> bandwidth_idle_times; std::vector<float> instructions_elapsed; bandwidth_idle_times.reserve(loop_size_); instructions_elapsed.reserve(loop_size_); for (int i = 0; i < loop_size_; ++i) { bandwidth_idle_times.push_back(GetBandwidthIdleTime(i)); instructions_elapsed.push_back(GetInstructionElapsed(i)); } const int kNumIterations = 3; std::vector<float> prefetch_remaining_elapsed_times(prefetches.size() * kNumIterations); int prefetch_start_index = 0; int prefetch_done_index = 0; int prefetch_completed_index = 0; for (int iteration = 0; iteration < kNumIterations; ++iteration) { float total_elapsed = 0; float total_bandwidth_idle_time = 0; float total_critical_prefetch = 0; for (int i = 0; i < loop_size_; ++i) { std::optional<int> required_prefetch_completion = required_prefetch_completions[i]; if (required_prefetch_completion) { int required_prefetch_done_index = iteration * static_cast<int>(prefetches.size()) + *required_prefetch_completion; VLOG(4) << "Prefetch #" << ((*required_prefetch_completion + prefetches.size()) % prefetches.size()) << " (" << required_prefetch_done_index << ") is required to be completed at " << i; for (; prefetch_done_index <= required_prefetch_done_index; ++prefetch_done_index) { CHECK_LE(prefetch_done_index, prefetch_start_index); if (prefetch_done_index == prefetch_completed_index) { float& prefetch_remaining = prefetch_remaining_elapsed_times[prefetch_done_index]; VLOG(4) << "Prefetch #" << (prefetch_done_index % prefetches.size()) << " (" << prefetch_done_index << ") did not complete, remaining elapsed = " << prefetch_remaining; total_critical_prefetch += prefetch_remaining; prefetch_remaining = 0; ++prefetch_completed_index; } } } float elapsed = instructions_elapsed[i]; total_elapsed += elapsed; float bandwidth_idle_time = bandwidth_idle_times[i]; for (; prefetch_completed_index < prefetch_start_index; ++prefetch_completed_index) { float& prefetch_remaining = prefetch_remaining_elapsed_times[prefetch_completed_index]; if (bandwidth_idle_time < prefetch_remaining) { prefetch_remaining -= bandwidth_idle_time; bandwidth_idle_time = 0; VLOG(4) << "Prefetch #" << (prefetch_completed_index % prefetches.size()) << " (" << prefetch_completed_index << ") still ongoing at " << i << ", remaining elapsed = " << prefetch_remaining; break; } bandwidth_idle_time -= prefetch_remaining; prefetch_remaining = 0; VLOG(4) << "Prefetch #" << (prefetch_completed_index % prefetches.size()) << " (" << prefetch_completed_index << ") completed at " << i << ", bandwidth idle time = " << bandwidth_idle_time; } if (bandwidth_idle_time > 0) { VLOG(4) << "Bandwidth idle time at " << i << " = " << bandwidth_idle_time; total_bandwidth_idle_time += bandwidth_idle_time; } for (; prefetch_start_index < (iteration + 1) * prefetches.size() && prefetches[prefetch_start_index % prefetches.size()] .first->copy_start_schedule_after() == i; ++prefetch_start_index) { float& prefetch_remaining = prefetch_remaining_elapsed_times[prefetch_start_index]; prefetch_remaining = prefetches[prefetch_start_index % prefetches.size()].second; VLOG(4) << "Prefetch #" << (prefetch_start_index % prefetches.size()) << " (" << prefetch_start_index << ") started at " << i << ", remaining elapsed = " << prefetch_remaining; } } VLOG(3) << "Iteration " << iteration; VLOG(3) << "Total elapsed: " << total_elapsed << ", total critical prefetch: " << total_critical_prefetch << ", total bandwidth idle time: " << total_bandwidth_idle_time; result = total_elapsed + total_critical_prefetch; } return result; } std::string MemoryBoundLoopOptimizer::LoopValue::AllocationTypeToString( LoopValue::AllocationType allocation_type) { switch (allocation_type) { case AllocationType::kTemporary: return "temporary"; case AllocationType::kLoopCarriedDependence: return "loop-carried dependence"; case AllocationType::kPinned: return "pinned"; case AllocationType::kPrefetch: return "prefetch"; default: CHECK(allocation_type == AllocationType::kUnsupported); return "unsupported"; } } std::string MemoryBoundLoopOptimizer::LoopValue::ToString() const { std::string values_str; absl::StrAppend(&values_str, "Values:"); for (const HloValue* hlo_value : hlo_values) { absl::StrAppend(&values_str, "\n - ", hlo_value->ToShortString()); } std::string allocations_str; if (!allocations.empty()) { absl::StrAppend(&allocations_str, "Allocations:"); } for (const auto& allocation : allocations) { absl::StrAppend(&allocations_str, "\n - ", allocation->ToString()); } return absl::StrCat( "Size: ", size, " savings: ", savings, " savings per byte: ", savings_per_byte, " allocation type: ", AllocationTypeToString(allocation_type), "\n", values_str, "\n", allocations_str); } bool MemoryBoundLoopOptimizer::LoopValue::IsAllocationTypeSupported() const { return allocation_type == AllocationType::kTemporary || allocation_type == AllocationType::kPinned || allocation_type == AllocationType::kPrefetch; } void MemoryBoundLoopOptimizer::SortLoopValues() { absl::c_stable_sort(loop_values_, [](const LoopValue& a, const LoopValue& b) { return a.savings_per_byte > b.savings_per_byte; }); } void MemoryBoundLoopOptimizer::AllocateLoopValues() { std::vector<LoopValue*> prefetch_values; VLOG(3) << "Pre optimization execution time: " << CalculateExecutionTime(); for (LoopValue& value : loop_values_) { switch (value.allocation_type) { case LoopValue::AllocationType::kTemporary: AllocateTemporary(value); break; case LoopValue::AllocationType::kPinned: if (value.savings > 0) { AllocatePinned(value); } break; case LoopValue::AllocationType::kPrefetch: prefetch_values.push_back(&value); break; case LoopValue::AllocationType::kLoopCarriedDependence: case LoopValue::AllocationType::kUnsupported: VLOG(1) << "Unsupported allocation: " << value.ToString(); } } VLOG(3) << "Execution time after allocating temporaries: " << CalculateExecutionTime(); AllocatePrefetches(absl::MakeSpan(prefetch_values)); VLOG(3) << "Execution time after allocating prefetches: " << CalculateExecutionTime(); } void MemoryBoundLoopOptimizer::PostProcess() { for (LoopValue& value : loop_values_) { absl::flat_hash_set<HloUse> allocated_uses; for (const auto& allocation : value.allocations) { for (const HloUse& use : allocation->uses()) { allocated_uses.insert(use); } } std::vector<HloUse> unallocated_uses; absl::flat_hash_set<int> use_indices; for (const auto& [idx, use] : value.loop_uses) { use_indices.insert(idx); if (!allocated_uses.contains(use)) { unallocated_uses.push_back(use); } } for (const auto& [next_iteration_idx, use] : value.next_iteration_uses) { if (use_indices.contains(next_iteration_idx)) { continue; } HloInstruction* loop_instruction = hlo_live_range_.flattened_instruction_sequence().instructions().at( loop_start_ + next_iteration_idx); HloUse loop_use{loop_instruction, use.operand_number, use.operand_index}; if (!allocated_uses.contains(loop_use)) { unallocated_uses.push_back(loop_use); } } if (!unallocated_uses.empty()) { value.allocations.push_back(std::make_unique<PinnedAllocation>( value.hlo_values.front()->defining_position(), MemorySpace::kDefault, std::nullopt, 0, loop_size_, false)); for (const HloUse& use : unallocated_uses) { value.allocations.back()->AddUse(use); } } } } bool MemoryBoundLoopOptimizer::AllocateBetween(int64_t begin_idx, int64_t end_idx, int64_t size) { int64_t end_idx_sentinel = end_idx; if (end_idx < begin_idx) { end_idx_sentinel += loop_size_; } for (int64_t i = begin_idx; i <= end_idx_sentinel; ++i) { if (remaining_memory_[i % loop_size_] < size) { return false; } } for (int64_t i = begin_idx; i <= end_idx_sentinel; ++i) { remaining_memory_[i % loop_size_] -= size; } return true; } bool MemoryBoundLoopOptimizer::AllocateTemporary(LoopValue& value) { VLOG(3) << "AllocateTemporary: " << value.ToString(); if (value.hlo_values.size() > 1) { VLOG(3) << "LoopValue has more than one hlo value associated."; return false; } int64_t definition_idx = value.loop_positions.front().first; int64_t max_use_idx; if (!value.next_iteration_uses.empty()) { max_use_idx = value.next_iteration_uses.back().first; CHECK_LT(max_use_idx, definition_idx); } else { max_use_idx = value.loop_uses.back().first; } bool success = AllocateBetween(definition_idx, max_use_idx, value.size); if (success) { VLOG(3) << "Pos: " << value.loop_positions[0].second; value.allocations.push_back(std::make_unique<PinnedAllocation>( value.loop_positions[0].second, MemorySpace::kAlternate, std::nullopt, definition_idx, max_use_idx, false)); AddAllLoopPositionsAndUses(value, true); } return success; } bool MemoryBoundLoopOptimizer::AllocatePinned(LoopValue& value) { bool success = AllocateBetween(0, loop_size_ - 1, value.size); if (success) { CHECK(value.header_position); value.allocations.push_back(std::make_unique<PinnedAllocation>( *value.header_position, MemorySpace::kAlternate, std::nullopt, 0, loop_size_, false)); AddAllLoopPositionsAndUses(value, false); } return success; } bool MemoryBoundLoopOptimizer::AllocatePrefetches( absl::Span<LoopValue*> values) { VLOG(3) << "Allocating prefetches num values: " << values.size(); AllocatePrefetchesContext context; context.values = values; context.value_indices.resize(values.size()); absl::c_iota(context.value_indices, 0); absl::c_stable_sort(context.value_indices, [&](int a, int b) { return std::forward_as_tuple( values[a]->loop_uses.begin()->first, values[a]->loop_uses.begin()->second.operand_number) > std::forward_as_tuple( values[b]->loop_uses.begin()->first, values[b]->loop_uses.begin()->second.operand_number); }); absl::flat_hash_map<const HloInstruction*, std::vector<std::pair<int64_t, ShapeIndex>>> additional_uses_in_alternate_mem; absl::flat_hash_map<const HloInstruction*, std::vector<ShapeIndex>> additional_positions_in_alternate_mem; for (const LoopValue* value : values) { VLOG(3) << " prefetch value: " << value->ToString(); for (const auto& [idx, use] : value->loop_uses) { additional_uses_in_alternate_mem[use.instruction].push_back( {use.operand_number, use.operand_index}); } for (const auto& [idx, position] : value->loop_positions) { additional_positions_in_alternate_mem[position.instruction].push_back( position.index); } } for (int i = 0; i < loop_size_; ++i) { context.bandwidth_idle_times.push_back( GetBandwidthIdleTime(i, additional_uses_in_alternate_mem, additional_positions_in_alternate_mem)); VLOG(3) << "Remaining bandwidth at " << i << " = " << *context.bandwidth_idle_times.rbegin(); } context.additional_memory_used.resize(loop_size_, 0); for (int value_index : context.value_indices) { AllocatePrefetch(value_index, context); } for (int i = 0; i < loop_size_; ++i) { remaining_memory_[i] -= context.additional_memory_used[i]; VLOG(3) << "Additional memory [" << i << "]: " << context.additional_memory_used[i]; VLOG(3) << "Remaining memory [" << i << "]: " << remaining_memory_[i]; VLOG(3) << "Remaining bandwidth [" << i << "] : " << context.bandwidth_idle_times[i]; } return true; } bool MemoryBoundLoopOptimizer::AllocatePrefetch( int value_index, AllocatePrefetchesContext& context) { LoopValue* value = context.values.at(value_index); VLOG(3) << "Allocating value: " << value->ToString(); int first_use_idx = value->loop_uses.front().first; int last_use_idx = value->loop_uses.back().first; int last_use_idx_sentinel = last_use_idx; if (!value->next_iteration_uses.empty()) { last_use_idx = value->next_iteration_uses.back().first; last_use_idx_sentinel = last_use_idx + loop_size_; CHECK_LT(last_use_idx, first_use_idx); } bool out_of_memory = false; for (int i = first_use_idx; i <= last_use_idx_sentinel; ++i) { int loop_idx = i % loop_size_; if (context.additional_memory_used[loop_idx] + value->size > remaining_memory_[loop_idx]) { VLOG(3) << "Ran out of memory allocating for uses."; out_of_memory = true; } } if (out_of_memory) { return false; } float copy_resource = cost_analysis_.GetAsyncCopyElapsed(value->hlo_values.front()->shape()); VLOG(3) << "First use: " << value->loop_uses.begin()->second << " use idx: " << first_use_idx << " copy resource: " << copy_resource; std::optional<int> copy_start_time; float accumulated_copy_resource = 0; std::vector<int> early_forced_prefetch_value_indices; int early_forced_prefetch_value_search_index = 0; float early_forced_prefetch_additional_memory = 0; for (int i = first_use_idx - 1; i >= last_use_idx_sentinel - loop_size_; --i) { int loop_idx = (i + loop_size_) % loop_size_; if (i < 0) { for (; context.value_indices[early_forced_prefetch_value_search_index] != value_index; ++early_forced_prefetch_value_search_index) { VLOG(3) << "Searching for early forced: " << early_forced_prefetch_value_search_index; LoopValue* early_forced_value = context.values.at( context.value_indices[early_forced_prefetch_value_search_index]); if (early_forced_value->allocations.empty()) { continue; } const CopyAllocation* early_forced_prefetch = static_cast<const CopyAllocation*>( early_forced_value->allocations.back().get()); VLOG(3) << "Prefetch: " << early_forced_prefetch->ToString(); if (early_forced_prefetch->copy_done_schedule_before() <= early_forced_prefetch->copy_start_schedule_after() + 1 || (early_forced_prefetch->copy_start_schedule_after() == loop_size_ - 1 && early_forced_prefetch->copy_done_schedule_before() == 0)) { break; } if (early_forced_prefetch->copy_start_schedule_after() != loop_idx) { break; } early_forced_prefetch_value_indices.push_back( early_forced_prefetch_value_search_index); early_forced_prefetch_additional_memory += early_forced_value->size; VLOG(3) << "Found early-forced prefetch value: " << early_forced_value->ToString(); VLOG(3) << "Early forced prefetch additional memory: " << early_forced_prefetch_additional_memory; } } int64_t overlap_memory_overhead = 0; if (loop_idx == last_use_idx) { overlap_memory_overhead = value->size; VLOG(3) << "Loop idx == last use idx (" << loop_idx << "), overlap memory overhead = " << overlap_memory_overhead; } if (context.additional_memory_used[loop_idx] + value->size + overlap_memory_overhead + early_forced_prefetch_additional_memory > remaining_memory_[loop_idx]) { VLOG(3) << "Ran out of memory. Accumulated copy resource " << accumulated_copy_resource << " out of " << copy_resource << " at " << loop_idx; break; } float bandwidth_idle_time = context.bandwidth_idle_times[loop_idx]; VLOG(3) << "Idx " << loop_idx << " bandwidth_idle_time: " << bandwidth_idle_time << " copy resource remaining: " << (copy_resource - accumulated_copy_resource) << " diff: " << (bandwidth_idle_time - (copy_resource - accumulated_copy_resource)); if (bandwidth_idle_time >= copy_resource - accumulated_copy_resource) { accumulated_copy_resource = copy_resource; copy_start_time = loop_idx; VLOG(3) << "Found the complete copy ratio and updated accumulated copy " "resource: " << accumulated_copy_resource; break; } else if (!copy_start_time && accumulated_copy_resource + bandwidth_idle_time >= copy_resource * options_.desired_copy_ratio()) { accumulated_copy_resource += bandwidth_idle_time; copy_start_time = loop_idx; VLOG(3) << "Found the desired copy ratio and updated accumulated copy " "resource: " << accumulated_copy_resource; } else if (options_.allow_unsatisfied_fully_pipelined_prefetch() && loop_idx == last_use_idx) { accumulated_copy_resource += bandwidth_idle_time; copy_start_time = loop_idx; VLOG(3) << "Could not reach the desired copy ratio but scheduling " "fully pipelined prefetch anyway: " << accumulated_copy_resource; break; } else { accumulated_copy_resource += bandwidth_idle_time; VLOG(3) << "Updated accumulated copy resource: " << accumulated_copy_resource; } } if (!copy_start_time) { return false; } VLOG(3) << "Success: copy_start_time: " << *copy_start_time << " leftover copy resource: " << (copy_resource - accumulated_copy_resource); auto update_additional_memory_used = [&](int loop_idx, int64_t addition) { VLOG(4) << "Updating additional memory used at " << loop_idx << ". " << context.additional_memory_used[loop_idx] << " + " << addition << " => " << (context.additional_memory_used[loop_idx] + addition) << " (remaining: " << remaining_memory_[loop_idx] << ")"; context.additional_memory_used[loop_idx] += addition; CHECK_LE(context.additional_memory_used[loop_idx], remaining_memory_[loop_idx]); }; for (int i = first_use_idx; i <= last_use_idx_sentinel; ++i) { int loop_idx = i % loop_size_; update_additional_memory_used(loop_idx, value->size); } accumulated_copy_resource = 0.0; for (int i = first_use_idx - 1; i >= last_use_idx_sentinel - loop_size_; --i) { int loop_idx = (i + loop_size_) % loop_size_; float& bandwidth_idle_time = context.bandwidth_idle_times[loop_idx]; int64_t overlap_memory_overhead = 0; update_additional_memory_used(loop_idx, value->size + overlap_memory_overhead); if (bandwidth_idle_time < copy_resource - accumulated_copy_resource) { accumulated_copy_resource += bandwidth_idle_time; bandwidth_idle_time = 0; if (loop_idx == *copy_start_time) { VLOG(3) << "Remaining copy resource: " << (copy_resource - accumulated_copy_resource); break; } } else { bandwidth_idle_time -= copy_resource - accumulated_copy_resource; CHECK_EQ(loop_idx, *copy_start_time); break; } } CHECK(value->header_position); value->allocations.push_back(std::make_unique<PinnedAllocation>( *value->header_position, MemorySpace::kDefault, std::nullopt, 0, loop_size_, false)); value->allocations.push_back(std::make_unique<CopyAllocation>( *value->allocations.back(), MemorySpace::kAlternate, std::nullopt, ((*copy_start_time - 1) + loop_size_) % loop_size_, first_use_idx, last_use_idx_sentinel)); AddAllLoopPositionsAndUses(*value, true); for (int early_forced_prefetch_value_index : early_forced_prefetch_value_indices) { LoopValue* early_forced_value = context.values.at( context.value_indices[early_forced_prefetch_value_index]); CHECK(!early_forced_value->allocations.empty()); CopyAllocation* early_forced_prefetch = static_cast<CopyAllocation*>( early_forced_value->allocations.back().get()); for (int index = early_forced_prefetch->copy_start_schedule_after(); index >= *copy_start_time; --index) { update_additional_memory_used(index, early_forced_value->size); VLOG(3) << "Additional memory used: " << index << " " << context.additional_memory_used[index]; } early_forced_prefetch->set_copy_start_schedule_after( ((*copy_start_time - 1) + loop_size_) % loop_size_); VLOG(3) << "Updated prefetch: " << early_forced_prefetch->ToString(); } return true; } void MemoryBoundLoopOptimizer::AddAllLoopPositionsAndUses( LoopValue& value, bool allocate_next_iteration_uses) { CHECK_GE(value.allocations.size(), 1); Allocation& allocation = *value.allocations.back(); for (const auto& [idx, position] : value.loop_positions) { positions_in_alternate_mem_[position.instruction].push_back(position.index); } for (const auto& [idx, use] : value.loop_uses) { uses_in_alternate_mem_[use.instruction].push_back( {use.operand_number, use.operand_index}); allocation.AddUse(use); } if (allocate_next_iteration_uses) { for (const auto& [next_iteration_idx, use] : value.next_iteration_uses) { HloInstruction* loop_instruction = hlo_live_range_.flattened_instruction_sequence().instructions().at( loop_start_ + next_iteration_idx); uses_in_alternate_mem_[loop_instruction].push_back( {use.operand_number, use.operand_index}); allocation.AddUse( {loop_instruction, use.operand_number, use.operand_index}); } } } float MemoryBoundLoopOptimizer::GetBandwidthIdleTime(int idx) const { const HloInstruction* inst = hlo_live_range_.flattened_instruction_sequence().instructions().at( loop_start_ + idx); std::vector<std::pair<int64_t, ShapeIndex>> empty_operands; std::vector<ShapeIndex> empty_outputs; const std::vector<std::pair<int64_t, ShapeIndex>>* operands_in_alternate_mem = &empty_operands; const std::vector<ShapeIndex>* outputs_in_alternate_mem = &empty_outputs; auto uses_it = uses_in_alternate_mem_.find(inst); if (uses_it != uses_in_alternate_mem_.end()) { operands_in_alternate_mem = &uses_it->second; } auto positions_it = positions_in_alternate_mem_.find(inst); if (positions_it != positions_in_alternate_mem_.end()) { outputs_in_alternate_mem = &positions_it->second; } return cost_analysis_.GetDefaultMemoryBandwidthIdleTime( *inst, *operands_in_alternate_mem, *outputs_in_alternate_mem); } float MemoryBoundLoopOptimizer::GetBandwidthIdleTime( int idx, const absl::flat_hash_map<const HloInstruction*, std::vector<std::pair<int64_t, ShapeIndex>>>& additional_uses_in_alternate_mem, const absl::flat_hash_map<const HloInstruction*, std::vector<ShapeIndex>>& additional_positions_in_alternate_mem) const { const HloInstruction* inst = hlo_live_range_.flattened_instruction_sequence().instructions().at( loop_start_ + idx); std::vector<std::pair<int64_t, ShapeIndex>> operands_in_alternate_mem; std::vector<ShapeIndex> outputs_in_alternate_mem; auto uses_it = uses_in_alternate_mem_.find(inst); if (uses_it != uses_in_alternate_mem_.end()) { operands_in_alternate_mem = uses_it->second; } auto additional_uses_it = additional_uses_in_alternate_mem.find(inst); if (additional_uses_it != additional_uses_in_alternate_mem.end()) { absl::c_copy(additional_uses_it->second, std::back_inserter(operands_in_alternate_mem)); } auto positions_it = positions_in_alternate_mem_.find(inst); if (positions_it != positions_in_alternate_mem_.end()) { outputs_in_alternate_mem = positions_it->second; } auto additional_positions_it = additional_positions_in_alternate_mem.find(inst); if (additional_positions_it != additional_positions_in_alternate_mem.end()) { absl::c_copy(additional_positions_it->second, std::back_inserter(outputs_in_alternate_mem)); } return cost_analysis_.GetDefaultMemoryBandwidthIdleTime( *inst, operands_in_alternate_mem, outputs_in_alternate_mem); } float MemoryBoundLoopOptimizer::GetInstructionElapsed(int idx) const { const HloInstruction* inst = hlo_live_range_.flattened_instruction_sequence().instructions().at( loop_start_ + idx); std::vector<std::pair<int64_t, ShapeIndex>> empty_operands; std::vector<ShapeIndex> empty_outputs; const std::vector<std::pair<int64_t, ShapeIndex>>* operands_in_alternate_mem = &empty_operands; const std::vector<ShapeIndex>* outputs_in_alternate_mem = &empty_outputs; auto uses_it = uses_in_alternate_mem_.find(inst); if (uses_it != uses_in_alternate_mem_.end()) { operands_in_alternate_mem = &uses_it->second; } auto positions_it = positions_in_alternate_mem_.find(inst); if (positions_it != positions_in_alternate_mem_.end()) { outputs_in_alternate_mem = &positions_it->second; } return cost_analysis_.GetInstructionElapsedInAlternateMemory( *inst, *operands_in_alternate_mem, *outputs_in_alternate_mem); } } }
#include "xla/service/memory_space_assignment/memory_bound_loop_optimizer.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "re2/re2.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/service/buffer_value.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/memory_space_assignment/allocation.h" #include "xla/service/memory_space_assignment/buffer_interval_comparator.h" #include "xla/service/memory_space_assignment/cost_analysis.h" #include "xla/service/memory_space_assignment/memory_space_assignment.h" #include "xla/service/memory_space_assignment/memory_space_assignment.pb.h" #include "xla/service/memory_space_assignment/options.h" #include "xla/service/memory_space_assignment/prefetch_interval_picker.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace memory_space_assignment { namespace { using ::testing::ContainerEq; using ::testing::HasSubstr; constexpr int64_t kPointerSize = 8; int64_t ShapeSize(const Shape& shape) { return ShapeUtil::ByteSizeOf(shape, kPointerSize); } int64_t SizeFunction(const BufferValue& value) { return ShapeSize(value.shape()); } int64_t ReservedScopedMemoryFn( const HloInstruction* instruction, const absl::flat_hash_set<std::pair<int, ShapeIndex>>& operands_in_alternate_memory, const absl::flat_hash_set<ShapeIndex>& outputs_in_alternate_memory) { return 0; } class LoopOptimizerBestFitHeapTest : public ::testing::Test { public: LoopOptimizerBestFitHeapTest() : heap_(64, 6, 8) {} bool IsAllocateSameEvenAndOddBetweenSuccessful(int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size) { EvenOddChunkPair chunks = heap_.AllocateSameEvenAndOddBetween( begin_idx_in_loop, end_idx_in_loop, size); return chunks.first.has_value() && chunks.second.has_value(); } bool CanFindSameEvenAndOddAllocationBetween(int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size) { EvenOddChunkPair chunks = heap_.FindSameEvenAndOddAllocationBetween( begin_idx_in_loop, end_idx_in_loop, size); return chunks.first.has_value() && chunks.second.has_value(); } bool IsAllocateEvenAndOddBetweenSuccessful(int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size) { EvenOddChunkPair chunks = heap_.AllocateEvenAndOddBetween( begin_idx_in_loop, end_idx_in_loop, size); return chunks.first.has_value() && chunks.second.has_value(); } bool CanFindEvenAndOddAllocationBetween(int64_t begin_idx_in_loop, int64_t end_idx_in_loop, int64_t size) { EvenOddChunkPair chunks = heap_.FindEvenAndOddAllocationBetween( begin_idx_in_loop, end_idx_in_loop, size); return chunks.first.has_value() && chunks.second.has_value(); } std::string GetMemoryUsageAsciiArt() { return heap_.MemoryUsageToAsciiArt(); } protected: LoopOptimizerBestFitHeap heap_; }; TEST_F(LoopOptimizerBestFitHeapTest, TestAllocateSameEvenAndOddBetween) { EXPECT_TRUE(IsAllocateSameEvenAndOddBetweenSuccessful(3, 8, 16)); EXPECT_TRUE(IsAllocateSameEvenAndOddBetweenSuccessful(-3, 2, 16)); EXPECT_TRUE(IsAllocateSameEvenAndOddBetweenSuccessful(0, 2, 16)); EXPECT_TRUE(IsAllocateSameEvenAndOddBetweenSuccessful(3, 5, 16)); EXPECT_EQ(heap_.LastMemoryOffsetOccupied(), 48); EXPECT_TRUE(IsAllocateSameEvenAndOddBetweenSuccessful(0, 5, 16)); EXPECT_FALSE(IsAllocateSameEvenAndOddBetweenSuccessful(0, 5, 16)); EXPECT_EQ(heap_.LastMemoryOffsetOccupied(), 64); EXPECT_THAT(heap_.RemainingMemoryByTime(), ContainerEq(std::vector<int64_t>{0, 0, 0, 0, 0, 0})); std::string memory_usage = heap_.MemoryUsageToAsciiArt(2, 3); EXPECT_THAT(memory_usage, HasSubstr("Memory map for time: [12,23], " "memory_block_size: 16, group_size: 6")); EXPECT_THAT(memory_usage, HasSubstr("###### ###### 64")); EXPECT_THAT(memory_usage, HasSubstr("###### ###### 48")); EXPECT_THAT(memory_usage, HasSubstr("###### ###### 32")); EXPECT_THAT(memory_usage, HasSubstr("###### ###### 16")); EXPECT_THAT(memory_usage, HasSubstr("234567 890123")); } TEST_F(LoopOptimizerBestFitHeapTest, TestAllocateEvenAndOddBetween) { EXPECT_TRUE(IsAllocateEvenAndOddBetweenSuccessful(3, 11, 16)); EXPECT_EQ(heap_.LastMemoryOffsetOccupied(), 32); EXPECT_TRUE(IsAllocateEvenAndOddBetweenSuccessful(-3, 8, 16)); EXPECT_EQ(heap_.LastMemoryOffsetOccupied(), 64); EXPECT_THAT(heap_.RemainingMemoryByTime(), ContainerEq(std::vector<int64_t>{16, 16, 16, 0, 0, 0})); std::string memory_usage = heap_.MemoryUsageToAsciiArt(); EXPECT_THAT( memory_usage, HasSubstr( "Memory map for time: [0,35], memory_block_size: 16, group_size: 6")); EXPECT_THAT(memory_usage, HasSubstr("...... ...### ###### ###### ###### ###... 64")); EXPECT_THAT(memory_usage, HasSubstr("...### ###### ###### ###### ###... ...... 48")); EXPECT_THAT(memory_usage, HasSubstr("...... ...### ###### ...### ###### ...... 32")); EXPECT_THAT(memory_usage, HasSubstr("...### ###### ...### ###### ...... ...... 16")); EXPECT_THAT(memory_usage, HasSubstr("012345 678901 234567 890123 456789 012345")); } TEST_F(LoopOptimizerBestFitHeapTest, TestRemoveChunk) { EvenOddChunkPair chunks = heap_.AllocateEvenAndOddBetween(3, 11, 16); EXPECT_TRUE(chunks.first.has_value() && chunks.second.has_value()); EvenOddChunkPair second_chunks = heap_.AllocateEvenAndOddBetween(-3, 8, 16); EXPECT_TRUE(second_chunks.first.has_value() && second_chunks.second.has_value()); EXPECT_THAT(heap_.RemainingMemoryByTime(), ContainerEq(std::vector<int64_t>{16, 16, 16, 0, 0, 0})); EXPECT_EQ(heap_.LastMemoryOffsetOccupied(), 64); std::string memory_usage = heap_.MemoryUsageToAsciiArt(2, 3); EXPECT_THAT(memory_usage, HasSubstr("Memory map for time: [12,23], " "memory_block_size: 16, group_size: 6")); EXPECT_THAT(memory_usage, HasSubstr("###### ###### 64")); EXPECT_THAT(memory_usage, HasSubstr("###### ###### 48")); EXPECT_THAT(memory_usage, HasSubstr("###### ...### 32")); EXPECT_THAT(memory_usage, HasSubstr("...### ###### 16")); EXPECT_THAT(memory_usage, HasSubstr("234567 890123")); EXPECT_TRUE(CanFindEvenAndOddAllocationBetween(0, 2, 16)); EXPECT_FALSE(IsAllocateSameEvenAndOddBetweenSuccessful(0, 2, 16)); EXPECT_FALSE(CanFindEvenAndOddAllocationBetween(0, 11, 16)); heap_.RemoveEvenOddChunkPair(3, 11, chunks); EXPECT_TRUE(CanFindEvenAndOddAllocationBetween(0, 11, 16)); EXPECT_TRUE(CanFindEvenAndOddAllocationBetween(-3, 8, 16)); EXPECT_TRUE(CanFindEvenAndOddAllocationBetween(0, 5, 32)); EXPECT_TRUE(CanFindEvenAndOddAllocationBetween(-1, 4, 32)); EXPECT_TRUE(CanFindEvenAndOddAllocationBetween(2, 7, 32)); EXPECT_FALSE(CanFindEvenAndOddAllocationBetween(0, 6, 32)); EXPECT_TRUE(CanFindSameEvenAndOddAllocationBetween(0, 5, 32)); EXPECT_TRUE(CanFindSameEvenAndOddAllocationBetween(-1, 4, 32)); EXPECT_TRUE(CanFindSameEvenAndOddAllocationBetween(2, 7, 32)); std::string updated_memory_usage = heap_.MemoryUsageToAsciiArt(2, 3); EXPECT_THAT(updated_memory_usage, HasSubstr("Memory map for time: [12,23], " "memory_block_size: 16, group_size: 6")); EXPECT_THAT(updated_memory_usage, HasSubstr("###### ###### 64")); EXPECT_THAT(updated_memory_usage, HasSubstr("###### ###### 48")); EXPECT_THAT(updated_memory_usage, HasSubstr("...... ...... 32")); EXPECT_THAT(updated_memory_usage, HasSubstr("...... ...... 16")); EXPECT_THAT(updated_memory_usage, HasSubstr("234567 890123")); heap_.RemoveEvenOddChunkPair(-3, 8, second_chunks); EXPECT_EQ(heap_.LastMemoryOffsetOccupied(), 0); } class MemoryBoundLoopOptimizerTest : public HloTestBase { public: MemoryBoundLoopOptimizerTest() = default; protected: const int64_t kAlternateMemorySpace = 1; const int64_t kDefaultMemorySpace = 0; absl::Status Initialize(const HloModule* module, uint64_t alternate_memory_size = 256) { HloCostAnalysis::Options options; MemoryBoundLoopOptimizerOptions optimizer_options; optimizer_options.set_enabled(true); optimizer_options.set_desired_copy_ratio(0.7); optimizer_options.set_allow_unsatisfied_fully_pipelined_prefetch(false); optimizer_options.set_min_num_iterations(3.0); options_.memory_bound_loop_optimizer_options = optimizer_options; cost_analysis_options_.alternate_mem_bandwidth_bytes_per_second = 128; cost_analysis_options_.async_copy_bandwidth_bytes_per_second = 32; cost_analysis_options_.pipeline_overhead_window_size_mib = 1; options.shape_size = ShapeSize; options.set_flops_per_second(16); options.set_bytes_per_second(32); options.set_transcendentals_per_second(16); hlo_cost_analysis_ = std::make_unique<HloCostAnalysis>(options); TF_RETURN_IF_ERROR( module->entry_computation()->Accept(hlo_cost_analysis_.get())); hlo_cost_analysis_costs_ = std::make_unique<HloCostAnalysisCosts>(*hlo_cost_analysis_); TF_ASSIGN_OR_RETURN(cost_analysis_, CostAnalysis::Create(*hlo_cost_analysis_costs_, cost_analysis_options_, *module)); TF_ASSIGN_OR_RETURN(alias_analysis_, HloAliasAnalysis::Run(module)); TF_ASSIGN_OR_RETURN(live_range_, HloLiveRange::Run(module->schedule(), *alias_analysis_, module->entry_computation())); return absl::OkStatus(); } absl::StatusOr<MemoryBoundLoopOptimizer*> CreateOptimizer( int loop_start, int loop_end, const HloModule* module, uint64_t alternate_memory_size = 256, const ReservedScopedMemoryFunction& reserved_scoped_memory_fn = ReservedScopedMemoryFn) { TF_RETURN_IF_ERROR(Initialize(module, alternate_memory_size)); MemoryBoundLoopOptimizerOptions optimizer_options; optimizer_options.set_enabled(true); optimizer_options.set_desired_copy_ratio(0.7); optimizer_options.set_allow_unsatisfied_fully_pipelined_prefetch(false); TF_ASSIGN_OR_RETURN( optimizer_, MemoryBoundLoopOptimizer::Create( loop_start, loop_end, alternate_memory_size, optimizer_options, *live_range_, *alias_analysis_, *cost_analysis_, SizeFunction, reserved_scoped_memory_fn)); return optimizer_.get(); } absl::StatusOr<std::unique_ptr<HloModule>> ParseAndCreateOptimizer( absl::string_view hlo_loop_str, uint64_t alternate_memory_size, int& loop_start_idx, MemoryBoundLoopOptimizer** optimizer, const ReservedScopedMemoryFunction& reserved_scoped_memory_fn = ReservedScopedMemoryFn) { int loop_end_idx; TF_ASSIGN_OR_RETURN( std::string module_str, ParseAndCreateModuleString(hlo_loop_str, loop_start_idx, loop_end_idx)); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSIGN_OR_RETURN( *optimizer, CreateOptimizer(loop_start_idx, loop_end_idx, module.get(), alternate_memory_size, reserved_scoped_memory_fn)); return std::move(module); } absl::StatusOr<std::string> ParseAndCreateModuleString( absl::string_view hlo_loop_str, int& loop_start_idx, int& loop_end_idx) { RE2 op_re("\\$op([0-9]+) += +(\\S+).*"); std::vector<absl::string_view> ops; std::vector<absl::string_view> op_types; int begin_pos = 0; absl::string_view submatch[3]; while (op_re.Match(hlo_loop_str, begin_pos, hlo_loop_str.size(), RE2::UNANCHORED, submatch, 3)) { for (int i = 0; i < 3; ++i) { if (submatch[i].data() == nullptr) { VLOG(4) << "Submatch[" << i << "] = nullptr"; } else { VLOG(4) << "Submatch[" << i << "] = " << submatch[i] << " (idx: " << (submatch[i].data() - hlo_loop_str.data()) << ")"; } } int op_num; if (!absl::SimpleAtoi(submatch[1], &op_num)) { return InvalidArgument("Op name expects to contain a number, found %s.", submatch[1]); } if (op_num != ops.size()) { return InvalidArgument("Op number expected to be %d found %d.", op_types.size(), op_num); } ops.push_back(submatch[0]); op_types.push_back(submatch[2]); begin_pos = submatch[0].data() - hlo_loop_str.data() + submatch[0].size(); } RE2 param_re("([[:alnum:]]+\\[\\S*\\]) +\\$param([0-9]+)"); std::vector<absl::string_view> param_types; begin_pos = 0; while (param_re.Match(hlo_loop_str, begin_pos, hlo_loop_str.size(), RE2::UNANCHORED, submatch, 3)) { for (int i = 0; i < 3; ++i) { if (submatch[i].data() == nullptr) { VLOG(4) << "Submatch[" << i << "] = nullptr"; } else { VLOG(4) << "Submatch[" << i << "] = " << submatch[i] << " (idx: " << (submatch[i].data() - hlo_loop_str.data()) << ")"; } } int param_num; if (!absl::SimpleAtoi(submatch[2], &param_num)) { return InvalidArgument( "Param name expects to contain a number, found %s.", submatch[2]); } while (param_num >= param_types.size()) { param_types.push_back({}); } param_types[param_num] = submatch[1]; begin_pos = submatch[0].data() - hlo_loop_str.data() + submatch[0].size(); } RE2 root_re("ROOT \\$root += +tuple\\((.*)\\)"); absl::string_view root_values; if (root_re.Match(hlo_loop_str, 0, hlo_loop_str.size(), RE2::UNANCHORED, submatch, 2)) { for (int i = 0; i < 2; ++i) { if (submatch[i].data() == nullptr) { VLOG(4) << "Submatch[" << i << "] = nullptr"; } else { VLOG(4) << "Submatch[" << i << "] = " << submatch[i] << " (idx: " << (submatch[i].data() - hlo_loop_str.data()) << ")"; } } root_values = submatch[1]; } for (absl::string_view op_type : op_types) { VLOG(4) << "op_type: " << op_type; } for (absl::string_view param_type : param_types) { VLOG(4) << "param_type: " << param_type; } std::string hlo_string = R"( HloModule module, is_scheduled=true ENTRY Entry { )"; int total_instructions = 0; for (absl::string_view param_prefix : {"prev_", "", "next_"}) { for (int i = 0; i < param_types.size(); ++i) { int parameter_number = total_instructions; absl::StrAppend(&hlo_string, " ", param_prefix, "param", i, " = ", param_types[i], " parameter(", parameter_number, ") } } for (int i = 0; i < op_types.size(); ++i) { int parameter_number = total_instructions; absl::StrAppend(&hlo_string, " ", "prev_prev_op", i, " = ", op_types[i], " parameter(", parameter_number, ") total_instructions++, "\n"); } std::string new_root_values; auto print_ops = [&](const std::vector<std::pair<const absl::string_view, std::string>>& replacements) { for (int i = 0; i < ops.size(); ++i) { absl::StrAppend(&hlo_string, " ", absl::StrReplaceAll(ops[i], replacements), " total_instructions++, "\n"); } if (!root_values.empty()) { absl::StrAppend(&new_root_values, new_root_values.empty() ? "" : ", ", absl::StrReplaceAll(root_values, replacements)); } }; std::vector<std::pair<const absl::string_view, std::string>> prev_replacements; prev_replacements.push_back({"$prev_op", "prev_prev_op"}); prev_replacements.push_back({"$op", "prev_op"}); prev_replacements.push_back({"$param", "prev_param"}); absl::StrAppend(&hlo_string, " print_ops(prev_replacements); loop_start_idx = total_instructions; std::vector<std::pair<const absl::string_view, std::string>> replacements; replacements.push_back({"$", ""}); absl::StrAppend(&hlo_string, " print_ops(replacements); loop_end_idx = total_instructions; std::vector<std::pair<const absl::string_view, std::string>> next_replacements; next_replacements.push_back({"$prev_op", "op"}); next_replacements.push_back({"$op", "next_op"}); next_replacements.push_back({"$param", "next_param"}); absl::StrAppend(&hlo_string, " print_ops(next_replacements); absl::StrAppend(&hlo_string, " ROOT root = tuple(", new_root_values, ")\n"); absl::StrAppend(&hlo_string, "}"); VLOG(1) << hlo_string; return hlo_string; } absl::StatusOr<std::unique_ptr<PresetAssignments>> RunMsa( HloModule* module, uint64_t alternate_memory_size = 256) { options_.max_size_in_bytes = alternate_memory_size; options_.alignment_in_bytes = 8; options_.verify = true; options_.alternate_memory_space = kAlternateMemorySpace; if (!cost_analysis_) { TF_RETURN_IF_ERROR(Initialize(module, alternate_memory_size)); } CostAnalysis::Cache cache; MemoryBoundednessBufferIntervalComparator comparator(*cost_analysis_, &cache); options_.buffer_interval_comparator = &comparator; CostAnalysisPrefetchIntervalPicker prefetch_interval_picker( CostAnalysisPrefetchIntervalPicker( *cost_analysis_, 0.8, 1.5, 10.0, alternate_memory_size)); options_.prefetch_interval_picker = &prefetch_interval_picker; auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), 8); }; options_.size_fn = size_fn; auto is_allowed_in_alternate_mem = [](const HloValue& value) { HloInstruction* instruction = value.instruction(); HloComputation* computation = instruction->parent(); bool in_entry_computation = (computation == computation->parent()->entry_computation()); if (in_entry_computation && instruction->opcode() == HloOpcode::kParameter) { return false; } return true; }; options_.is_allowed_in_alternate_mem_fn = is_allowed_in_alternate_mem; options_.max_outstanding_prefetches = -1; options_.max_outstanding_evictions = -1; options_.cost_analysis = cost_analysis_.get(); std::unique_ptr<PresetAssignments> preset_assignments = MemorySpaceAssignment::Run(module, *live_range_, *alias_analysis_, options_) .value(); return preset_assignments; } absl::Status VerifyMsaEquivalence( HloModule* module, bool expect_unsupported_allocations = false) { absl::flat_hash_map<std::pair<int, int>, const Allocation*> allocation_map; for (const MemoryBoundLoopOptimizer::LoopValue& value : optimizer_->loop_values()) { if (!value.IsAllocationTypeSupported()) { continue; } for (const auto& allocation : value.allocations) { for (const HloUse& use : allocation->uses()) { absl::string_view inst_name = use.instruction->name(); TF_RET_CHECK(absl::StartsWith(inst_name, "op")); int inst_number; TF_RET_CHECK(absl::SimpleAtoi(inst_name.substr(2), &inst_number)); allocation_map[{inst_number, use.operand_number}] = allocation.get(); } } } auto get_inst_prefix_in_iter = [](int iteration) { switch (iteration) { case 0: return "prev_"; case 1: return ""; case 2: return "next_"; default: LOG(FATAL) << "Invalid iteration " << iteration; return "INVALID"; } }; TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module)); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloLiveRange> live_range, HloLiveRange::Run(module->schedule(), *alias_analysis, module->entry_computation())); const auto& flattened_instructions = live_range->flattened_instruction_sequence().instructions(); for (int iteration = 1; iteration < 3; ++iteration) { for (int inst_number = 0; inst_number < optimizer_->loop_size(); ++inst_number) { HloInstruction* inst = FindInstruction( module, absl::StrCat(get_inst_prefix_in_iter(iteration), "op", inst_number)); for (int operand_number = 0; operand_number < 2; ++operand_number) { const HloInstruction* operand = inst->operand(operand_number); LOG(INFO) << inst->name() << ", operand " << operand_number; if (!allocation_map.contains({inst_number, operand_number})) { TF_RET_CHECK(expect_unsupported_allocations); continue; } const Allocation* allocation = allocation_map.at({inst_number, operand_number}); if (!allocation->is_copy_allocation()) { EXPECT_NE(operand->opcode(), HloOpcode::kCopyDone); int expected_memory_space = allocation->memory_space() == MemorySpace::kDefault ? kDefaultMemorySpace : kAlternateMemorySpace; EXPECT_EQ(operand->shape().layout().memory_space(), expected_memory_space); } else { EXPECT_EQ(allocation->memory_space(), MemorySpace::kAlternate); TF_RET_CHECK(operand->opcode() == HloOpcode::kCopyDone); const CopyAllocation* copy_allocation = static_cast<const CopyAllocation*>(allocation); if (copy_allocation->copy_done_schedule_before() != inst_number) { EXPECT_NE(allocation->uses().front(), (HloUse{inst, operand_number})); continue; } int expected_copy_start_iteration = iteration; if (copy_allocation->copy_start_schedule_after() == optimizer_->loop_size() && copy_allocation->copy_done_schedule_before() == 0) { expected_copy_start_iteration -= 2; } else if (copy_allocation->copy_start_schedule_after() + 1 >= copy_allocation->copy_done_schedule_before()) { expected_copy_start_iteration -= 1; } if (expected_copy_start_iteration >= 0) { const HloInstruction* expected_copy_start_schedule_after = FindInstruction( module, absl::StrCat( get_inst_prefix_in_iter( expected_copy_start_iteration), "op", copy_allocation->copy_start_schedule_after())); LOG(INFO) << "Expected copy start schedule after: " << expected_copy_start_schedule_after->name(); const HloInstruction* copy_start = operand->operand(0); TF_RET_CHECK(copy_start->opcode() == HloOpcode::kCopyStart); int copy_start_idx = live_range->instruction_schedule().at(copy_start); const HloInstruction* copy_start_schedule_after = nullptr; for (int i = copy_start_idx - 1; i >= 0; --i) { HloOpcode opcode = flattened_instructions.at(i)->opcode(); if (opcode != HloOpcode::kCopyStart && opcode != HloOpcode::kCopyDone && opcode != HloOpcode::kGetTupleElement && opcode != HloOpcode::kParameter) { copy_start_schedule_after = flattened_instructions.at(i); break; } } TF_RET_CHECK(copy_start_schedule_after != nullptr); EXPECT_EQ(copy_start_schedule_after, expected_copy_start_schedule_after); } } } } } return absl::OkStatus(); } private: Options options_; CostAnalysisOptions cost_analysis_options_; std::unique_ptr<HloCostAnalysis> hlo_cost_analysis_; std::unique_ptr<HloCostAnalysisCosts> hlo_cost_analysis_costs_; std::unique_ptr<CostAnalysis> cost_analysis_; std::unique_ptr<HloAliasAnalysis> alias_analysis_; std::unique_ptr<HloLiveRange> live_range_; std::unique_ptr<MemoryBoundLoopOptimizer> optimizer_; }; TEST_F(MemoryBoundLoopOptimizerTest, SimplePrefetch) { absl::string_view hlo_loop_str = R"( $op0 = f32[1,4] add(f32[1,4] $prev_op3, f32[1,4] $prev_op4) $op1 = f32[1,4] add(f32[1,4] $prev_op4, f32[1,4] $op0) $op2 = f32[1,4] add(f32[1,4] $op0, f32[1,4] $op1) $op3 = f32[1,4] add(f32[1,4] $op1, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $param0, f32[1,4] $op3) ROOT $root = tuple($op4, $param0) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; int64_t alternate_memory_size = 64; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndCreateOptimizer(hlo_loop_str, alternate_memory_size, loop_start_idx, &optimizer)); optimizer->Optimize(); absl::flat_hash_set<HloUse> seen_uses; for (const MemoryBoundLoopOptimizer::LoopValue& loop_value : optimizer->loop_values()) { LOG(INFO) << loop_value.ToString(); if (loop_value.hlo_values.front() ->defining_position() .instruction->name() == "param0") { EXPECT_TRUE(loop_value.allocations.back()->is_copy_allocation()); } for (const auto& allocation : loop_value.allocations) { for (const HloUse& use : allocation->uses()) { EXPECT_FALSE(seen_uses.contains(use)) << use.ToString(); seen_uses.insert(use); } } } for (absl::string_view inst_name : {"op0", "op1", "op2", "op3", "op4"}) { HloInstruction* inst = module->entry_computation()->GetInstructionWithName(inst_name); EXPECT_TRUE(seen_uses.contains(HloUse{inst, 0})) << inst_name; EXPECT_TRUE(seen_uses.contains(HloUse{inst, 1})) << inst_name; } EXPECT_EQ(optimizer->CalculateExecutionTime(), 1.875); EXPECT_EQ(optimizer->MaxAlternateMemoryUsed(), alternate_memory_size); } TEST_F(MemoryBoundLoopOptimizerTest, ReservedScopedMemory) { absl::string_view hlo_loop_str = R"( $op0 = f32[1,4] add(f32[1,4] $prev_op3, f32[1,4] $prev_op4) $op1 = f32[1,4] add(f32[1,4] $prev_op4, f32[1,4] $op0) $op2 = f32[1,4] add(f32[1,4] $op0, f32[1,4] $op1) $op3 = f32[1,4] add(f32[1,4] $op1, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $param0, f32[1,4] $op3) ROOT $root = tuple($op4, $param0) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndCreateOptimizer( hlo_loop_str, 128, loop_start_idx, &optimizer, [](const HloInstruction*, const absl::flat_hash_set<std::pair<int, ShapeIndex>>&, const absl::flat_hash_set<ShapeIndex>&) { return 128; })); optimizer->Optimize(); for (const MemoryBoundLoopOptimizer::LoopValue& loop_value : optimizer->loop_values()) { LOG(INFO) << "Loop value: " << loop_value.ToString(); for (const auto& allocation : loop_value.allocations) { ASSERT_NE(static_cast<int64_t>(allocation->memory_space()), kAlternateMemorySpace); } } } TEST_F(MemoryBoundLoopOptimizerTest, GetTupleElement) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[1,4] parameter(0) p1 = f32[1,4] parameter(1) p2 = f32[1,4] parameter(2) p3 = f32[1,4] parameter(3) p4 = f32[1,4] parameter(4) p5 = f32[1,4] parameter(5) p6 = f32[1,4] parameter(6) tupleparam = (f32[1,4], f32[1,4]) parameter(7) op1 = tanh(p0) op2 = tanh(p1) op3 = tanh(op2) op4 = add(op1, op3) op5 = tanh(p2) op6 = tanh(p3) op7 = tanh(op6) op8 = add(op5, op7) op9 = tanh(p4) op10 = tanh(p5) op11 = tanh(op10) op12 = add(op9, op11) op13 = tanh(p6) gte = get-tuple-element(tupleparam), index=1 op14 = tanh(gte) op15 = tanh(op14) op16 = add(op13, op15) ROOT root = tuple(tupleparam, op4, op8, op12, op16) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); TF_ASSERT_OK_AND_ASSIGN(auto preset_assignments, RunMsa(module.get())); } TEST_F(MemoryBoundLoopOptimizerTest, NoAlternateMem) { absl::string_view hlo_loop_str = R"( $op0 = f32[1,4] add(f32[1,4] $prev_op3, f32[1,4] $prev_op4) $op1 = f32[1,4] add(f32[1,4] $prev_op4, f32[1,4] $op0) $op2 = f32[1,4] add(f32[1,4] $op0, f32[1,4] $op1) $op3 = f32[1,4] add(f32[1,4] $op1, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $param0, f32[1,4] $op3) ROOT $root = tuple($op4, $param0) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndCreateOptimizer(hlo_loop_str, 0, loop_start_idx, &optimizer)); optimizer->Optimize(); absl::flat_hash_set<HloUse> seen_uses; for (const MemoryBoundLoopOptimizer::LoopValue& loop_value : optimizer->loop_values()) { LOG(INFO) << loop_value.ToString(); for (const auto& allocation : loop_value.allocations) { EXPECT_EQ(allocation->memory_space(), MemorySpace::kDefault); for (const HloUse& use : allocation->uses()) { EXPECT_FALSE(seen_uses.contains(use)) << use.ToString(); seen_uses.insert(use); } } } for (absl::string_view inst_name : {"op0", "op1", "op2", "op3", "op4"}) { HloInstruction* inst = module->entry_computation()->GetInstructionWithName(inst_name); EXPECT_TRUE(seen_uses.contains(HloUse{inst, 0})) << inst_name; EXPECT_TRUE(seen_uses.contains(HloUse{inst, 1})) << inst_name; } } TEST_F(MemoryBoundLoopOptimizerTest, PrefetchFifoOrderWithOverlap) { absl::string_view hlo_loop_str = R"( $op0 = f32[1,4] add(f32[1,4] $prev_op13, f32[1,4] $prev_op14) $op1 = f32[8,4] add(f32[8,4] $param0, f32[8,4] $param1) $op2 = f32[1,4] add(f32[1,4] $prev_op14, f32[1,4] $op0) $op3 = f32[1,4] add(f32[1,4] $op0, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $op2, f32[1,4] $op3) $op5 = f32[1,4] add(f32[1,4] $op3, f32[1,4] $op4) $op6 = f32[1,4] add(f32[1,4] $op4, f32[1,4] $op5) $op7 = f32[1,4] add(f32[1,4] $op5, f32[1,4] $op6) $op8 = f32[1,4] add(f32[1,4] $op6, f32[1,4] $op7) $op9 = f32[1,4] add(f32[1,4] $op7, f32[1,4] $op8) $op10 = f32[1,4] add(f32[1,4] $op8, f32[1,4] $op9) $op11 = f32[1,4] add(f32[1,4] $op9, f32[1,4] $op10) $op12 = f32[1,4] add(f32[1,4] $op10, f32[1,4] $op11) $op13 = f32[1,4] add(f32[1,4] $op11, f32[1,4] $op12) $op14 = f32[1,4] add(f32[1,4] $param2, f32[1,4] $op13) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; int64_t alternate_memory_size = 432; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndCreateOptimizer(hlo_loop_str, alternate_memory_size, loop_start_idx, &optimizer)); optimizer->Optimize(); std::vector<const CopyAllocation*> prefetches; for (const MemoryBoundLoopOptimizer::LoopValue& loop_value : optimizer->loop_values()) { if (!loop_value.allocations.empty() && loop_value.allocations.back()->is_copy_allocation()) { prefetches.push_back(static_cast<const CopyAllocation*>( loop_value.allocations.back().get())); } } EXPECT_EQ(prefetches.size(), 3); bool seen_overlap = false; bool seen_nonoverlap = false; for (const CopyAllocation* prefetch : prefetches) { const HloUse& use = *prefetch->uses().begin(); if (use.instruction->name() == "op14") { EXPECT_EQ(prefetch->copy_done_schedule_before(), 14); EXPECT_EQ(prefetch->copy_start_schedule_after(), 0); } else { ASSERT_EQ(use.instruction->name(), "op1"); EXPECT_EQ(prefetch->copy_done_schedule_before(), 1); if (prefetch->copy_start_schedule_after() == 0) { EXPECT_FALSE(seen_overlap); seen_overlap = true; } else { EXPECT_GT(prefetch->copy_start_schedule_after(), 1); EXPECT_FALSE(seen_nonoverlap); seen_nonoverlap = true; } } } EXPECT_EQ(optimizer->CalculateExecutionTime(), 12.5); const std::vector<int64_t>& remaining_memory = optimizer->remaining_memory(); EXPECT_EQ(remaining_memory.at(0), alternate_memory_size - (3 * 16 + 128 + 128)); EXPECT_EQ(remaining_memory.at(1), alternate_memory_size - (2 * 16 + 2 * 128 + 128 + 16)); EXPECT_EQ(remaining_memory.at(2), alternate_memory_size - (3 * 16 + 128 + 16)); EXPECT_EQ(remaining_memory.at(3), alternate_memory_size - (3 * 16 + 128 + 16)); for (int i = 4; i <= 13; ++i) { EXPECT_EQ(remaining_memory.at(i), alternate_memory_size - (3 * 16 + 128 + 128 + 16)); } EXPECT_EQ(remaining_memory.at(14), alternate_memory_size - (2 * 16 + 128 + 128 + 16)); EXPECT_EQ(optimizer->MaxAlternateMemoryUsed(), alternate_memory_size); } TEST_F(MemoryBoundLoopOptimizerTest, PrefetchFifoOrderWithoutOverlap) { absl::string_view hlo_loop_str = R"( $op0 = f32[1,4] add(f32[1,4] $prev_op13, f32[1,4] $prev_op14) $op1 = f32[8,4] add(f32[8,4] $param0, f32[8,4] $param1) $op2 = f32[1,4] add(f32[1,4] $prev_op14, f32[1,4] $op0) $op3 = f32[1,4] add(f32[1,4] $op0, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $op2, f32[1,4] $op3) $op5 = f32[1,4] add(f32[1,4] $op3, f32[1,4] $op4) $op6 = f32[1,4] add(f32[1,4] $op4, f32[1,4] $op5) $op7 = f32[1,4] add(f32[1,4] $op5, f32[1,4] $op6) $op8 = f32[1,4] add(f32[1,4] $op6, f32[1,4] $op7) $op9 = f32[1,4] add(f32[1,4] $op7, f32[1,4] $op8) $op10 = f32[1,4] add(f32[1,4] $op8, f32[1,4] $op9) $op11 = f32[1,4] add(f32[1,4] $op9, f32[1,4] $op10) $op12 = f32[1,4] add(f32[1,4] $op10, f32[1,4] $op11) $op13 = f32[1,4] add(f32[1,4] $op11, f32[1,4] $op12) $op14 = f32[1,4] add(f32[1,4] $param2, f32[1,4] $op13) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; int64_t alternate_memory_size = 192; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndCreateOptimizer(hlo_loop_str, alternate_memory_size, loop_start_idx, &optimizer)); optimizer->Optimize(); std::vector<const CopyAllocation*> prefetches; for (const MemoryBoundLoopOptimizer::LoopValue& loop_value : optimizer->loop_values()) { if (!loop_value.allocations.empty() && loop_value.allocations.back()->is_copy_allocation()) { prefetches.push_back(static_cast<const CopyAllocation*>( loop_value.allocations.back().get())); } } EXPECT_EQ(prefetches.size(), 2); std::optional<int> expected_op14_copy_start_time; for (const CopyAllocation* prefetch : prefetches) { const HloUse& use = *prefetch->uses().begin(); if (use.instruction->name() == "op1") { EXPECT_EQ(prefetch->copy_done_schedule_before(), 1); EXPECT_GT(prefetch->copy_start_schedule_after(), 1); expected_op14_copy_start_time = prefetch->copy_start_schedule_after(); } } EXPECT_TRUE(expected_op14_copy_start_time.has_value()); for (const CopyAllocation* prefetch : prefetches) { const HloUse& use = *prefetch->uses().begin(); if (use.instruction->name() == "op14") { EXPECT_EQ(prefetch->copy_done_schedule_before(), 14); EXPECT_EQ(prefetch->copy_start_schedule_after(), *expected_op14_copy_start_time); } } EXPECT_GT(optimizer->CalculateExecutionTime(), 12.5); EXPECT_EQ(optimizer->MaxAlternateMemoryUsed(), alternate_memory_size); } TEST_F(MemoryBoundLoopOptimizerTest, PrefetchFifoOrderWithOverlap2) { absl::string_view hlo_loop_str = R"( $op0 = f32[8,4] add(f32[8,4] $param0, f32[8,4] $param1) $op1 = f32[1,4] add(f32[1,4] $prev_op13, f32[1,4] $prev_op14) $op2 = f32[1,4] add(f32[1,4] $prev_op14, f32[1,4] $op1) $op3 = f32[1,4] add(f32[1,4] $op1, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $op2, f32[1,4] $op3) $op5 = f32[1,4] add(f32[1,4] $op3, f32[1,4] $op4) $op6 = f32[1,4] add(f32[1,4] $op4, f32[1,4] $op5) $op7 = f32[1,4] add(f32[1,4] $op5, f32[1,4] $op6) $op8 = f32[1,4] add(f32[1,4] $op6, f32[1,4] $op7) $op9 = f32[1,4] add(f32[1,4] $op7, f32[1,4] $op8) $op10 = f32[1,4] add(f32[1,4] $op8, f32[1,4] $op9) $op11 = f32[1,4] add(f32[1,4] $op9, f32[1,4] $op10) $op12 = f32[1,4] add(f32[1,4] $op10, f32[1,4] $op11) $op13 = f32[1,4] add(f32[1,4] $param2, f32[1,4] $op12) $op14 = f32[1,4] add(f32[1,4] $op12, f32[1,4] $op13) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; int64_t alternate_memory_size = 432; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndCreateOptimizer(hlo_loop_str, alternate_memory_size, loop_start_idx, &optimizer)); optimizer->Optimize(); std::vector<const CopyAllocation*> prefetches; for (const MemoryBoundLoopOptimizer::LoopValue& loop_value : optimizer->loop_values()) { if (!loop_value.allocations.empty() && loop_value.allocations.back()->is_copy_allocation()) { prefetches.push_back(static_cast<const CopyAllocation*>( loop_value.allocations.back().get())); } } EXPECT_EQ(prefetches.size(), 3); bool seen_overlap = false; bool seen_nonoverlap = false; for (const CopyAllocation* prefetch : prefetches) { const HloUse& use = *prefetch->uses().begin(); if (use.instruction->name() == "op13") { EXPECT_EQ(prefetch->copy_done_schedule_before(), 13); EXPECT_EQ(prefetch->copy_start_schedule_after(), 14); } else { ASSERT_EQ(use.instruction->name(), "op0"); EXPECT_EQ(prefetch->copy_done_schedule_before(), 0); if (prefetch->copy_start_schedule_after() == 14) { EXPECT_FALSE(seen_overlap); seen_overlap = true; } else { EXPECT_LT(prefetch->copy_start_schedule_after(), 14); EXPECT_FALSE(seen_nonoverlap); seen_nonoverlap = true; } } } EXPECT_EQ(optimizer->CalculateExecutionTime(), 12.5); EXPECT_EQ(optimizer->MaxAlternateMemoryUsed(), alternate_memory_size); } TEST_F(MemoryBoundLoopOptimizerTest, OptimizerEndToEnd) { absl::string_view hlo_loop_str = R"( $op0 = f32[1,4] add(f32[1,4] $prev_op13, f32[1,4] $prev_op14) $op1 = f32[8,4] add(f32[8,4] $param0, f32[8,4] $param1) $op2 = f32[1,4] add(f32[1,4] $prev_op14, f32[1,4] $op0) $op3 = f32[1,4] add(f32[1,4] $op0, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $op2, f32[1,4] $op3) $op5 = f32[1,4] add(f32[1,4] $op3, f32[1,4] $op4) $op6 = f32[1,4] add(f32[1,4] $op4, f32[1,4] $op5) $op7 = f32[1,4] add(f32[1,4] $op5, f32[1,4] $op6) $op8 = f32[1,4] add(f32[1,4] $op6, f32[1,4] $op7) $op9 = f32[1,4] add(f32[1,4] $op7, f32[1,4] $op8) $op10 = f32[1,4] add(f32[1,4] $op8, f32[1,4] $op9) $op11 = f32[1,4] add(f32[1,4] $op9, f32[1,4] $op10) $op12 = f32[1,4] add(f32[1,4] $op10, f32[1,4] $op11) $op13 = f32[1,4] add(f32[1,4] $op11, f32[1,4] $op12) $op14 = f32[1,4] add(f32[1,4] $param2, f32[1,4] $op13) ROOT $root = tuple($op1, $op14) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndCreateOptimizer(hlo_loop_str, 1024, loop_start_idx, &optimizer)); optimizer->Optimize(); TF_ASSERT_OK_AND_ASSIGN(auto preset_assignments, RunMsa(module.get(), 1024)); TF_ASSERT_OK(VerifyMsaEquivalence(module.get())); } TEST_F(MemoryBoundLoopOptimizerTest, OptimizerEndToEndUnsupportedAllocation) { absl::string_view hlo_loop_str = R"( $op0 = f32[1,4] add(f32[1,4] $prev_op3, f32[1,4] $prev_op4) $op1 = f32[8,4] add(f32[8,4] $param0, f32[8,4] $param1) $op2 = f32[1,4] add(f32[1,4] $prev_op2, f32[1,4] $op0) $op3 = f32[1,4] add(f32[1,4] $op0, f32[1,4] $op2) $op4 = f32[1,4] add(f32[1,4] $op2, f32[1,4] $op3) ROOT $root = tuple($op1, $op4) )"; int loop_start_idx; MemoryBoundLoopOptimizer* optimizer; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndCreateOptimizer(hlo_loop_str, 1024, loop_start_idx, &optimizer)); optimizer->Optimize(); TF_ASSERT_OK_AND_ASSIGN(auto preset_assignments, RunMsa(module.get(), 1024)); TF_ASSERT_OK(VerifyMsaEquivalence(module.get(), true)); const HloInstruction* op2 = FindInstruction(module.get(), "op2"); EXPECT_EQ(op2->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemoryBoundLoopOptimizerTest, TempAndPinnedAllocations) { absl::string_view hlo_str = R"( HloModule module, is_scheduled=true while_cond { while_cond_param = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) ROOT p = pred[] get-tuple-element(while_cond_param), index=5 } while_body { while_body_param = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) pinned_prev_param0 = f32[1,4] get-tuple-element(while_body_param), index=0 next_param0 = f32[1,4] get-tuple-element(while_body_param), index=1 prev_prev_op3 = f32[1,4] get-tuple-element(while_body_param), index=2 prev_prev_op4 = f32[1,4] get-tuple-element(while_body_param), index=3 prev_op0 = f32[1,4] add(f32[1,4] prev_prev_op3, f32[1,4] prev_prev_op4) prev_op1 = f32[1,4] add(f32[1,4] prev_prev_op4, f32[1,4] prev_op0) prev_op2 = f32[1,4] add(f32[1,4] prev_op0, f32[1,4] prev_op1) prev_op3 = f32[1,4] add(f32[1,4] prev_op1, f32[1,4] prev_op2) prev_op4 = f32[1,4] multiply(f32[1,4] pinned_prev_param0, f32[1,4] prev_op3) op0 = f32[1,4] add(f32[1,4] prev_op3, f32[1,4] prev_op4) op1 = f32[1,4] add(f32[1,4] prev_op4, f32[1,4] op0) op2 = f32[1,4] add(f32[1,4] op0, f32[1,4] op1) op3 = f32[1,4] add(f32[1,4] op1, f32[1,4] op2) op4 = f32[1,4] multiply(f32[1,4] pinned_prev_param0, f32[1,4] op3) next_op0 = f32[1,4] add(f32[1,4] op3, f32[1,4] op4) next_op1 = f32[1,4] add(f32[1,4] op4, f32[1,4] next_op0) next_op2 = f32[1,4] add(f32[1,4] next_op0, f32[1,4] next_op1) next_op3 = f32[1,4] add(f32[1,4] next_op1, f32[1,4] next_op2) next_op4 = f32[1,4] multiply(f32[1,4] pinned_prev_param0, f32[1,4] next_op3) p = pred[] get-tuple-element(while_body_param), index=5 ROOT root = tuple(pinned_prev_param0, next_param0, prev_prev_op3, prev_prev_op4, next_op4, p) } ENTRY entry { p0 = f32[1,4] parameter(0) p1 = f32[1,4] parameter(1) p2 = f32[1,4] parameter(2) p3 = f32[1,4] parameter(3) p4 = pred[] parameter(4) copy = f32[1,4] copy(p3) tuple = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) tuple(p0, p1, p2, p3, copy, p4) while = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) while(tuple), condition=while_cond, body=while_body ROOT root = f32[1,4] get-tuple-element(while), index=4 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_str)); int64_t alternate_memory_size = 64; TF_ASSERT_OK_AND_ASSIGN( auto optimizer, CreateOptimizer(19, 24, module.get(), alternate_memory_size)); optimizer->Optimize(); const std::vector<int64_t>& remaining_memory = optimizer->remaining_memory(); EXPECT_EQ(remaining_memory.at(0), alternate_memory_size - (3 * 16 + 16)); EXPECT_EQ(remaining_memory.at(1), alternate_memory_size - (3 * 16 + 16)); EXPECT_EQ(remaining_memory.at(2), alternate_memory_size - (3 * 16 + 16)); EXPECT_EQ(remaining_memory.at(3), alternate_memory_size - (3 * 16 + 16)); EXPECT_EQ(remaining_memory.at(4), alternate_memory_size - (2 * 16 + 16)); EXPECT_EQ(optimizer->MaxAlternateMemoryUsed(), alternate_memory_size); } TEST_F(MemoryBoundLoopOptimizerTest, NegativeSavingNotPinned) { absl::string_view hlo_str = R"( HloModule module, is_scheduled=true while_cond { while_cond_param = (f32[28,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) ROOT p = pred[] get-tuple-element(while_cond_param), index=5 } while_body { while_body_param = (f32[28,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) pinned_prev_param0 = f32[28,4] get-tuple-element(while_body_param), index=0 zero = s32[] constant(0) next_param0 = f32[1,4] get-tuple-element(while_body_param), index=1 prev_prev_op3 = f32[1,4] get-tuple-element(while_body_param), index=2 prev_prev_op4 = f32[1,4] get-tuple-element(while_body_param), index=3 prev_op0 = f32[1,4] add(f32[1,4] prev_prev_op3, f32[1,4] prev_prev_op4) prev_op1 = f32[1,4] add(f32[1,4] prev_prev_op4, f32[1,4] prev_op0) prev_op2 = f32[1,4] add(f32[1,4] prev_op0, f32[1,4] prev_op1) prev_op3 = f32[1,4] add(f32[1,4] prev_op1, f32[1,4] prev_op2) pinned_slice = f32[1,4] dynamic-slice(pinned_prev_param0, zero, zero), dynamic_slice_sizes={1,4} prev_op4 = f32[1,4] multiply(f32[1,4] pinned_slice, f32[1,4] prev_op3) op0 = f32[1,4] add(f32[1,4] prev_op3, f32[1,4] prev_op4) op1 = f32[1,4] add(f32[1,4] prev_op4, f32[1,4] op0) op2 = f32[1,4] add(f32[1,4] op0, f32[1,4] op1) op3 = f32[1,4] add(f32[1,4] op1, f32[1,4] op2) pinned_slice2 = f32[1,4] dynamic-slice(pinned_prev_param0, zero, zero), dynamic_slice_sizes={1,4} op4 = f32[1,4] multiply(f32[1,4] pinned_slice2, f32[1,4] op3) next_op0 = f32[1,4] add(f32[1,4] op3, f32[1,4] op4) next_op1 = f32[1,4] add(f32[1,4] op4, f32[1,4] next_op0) next_op2 = f32[1,4] add(f32[1,4] next_op0, f32[1,4] next_op1) next_op3 = f32[1,4] add(f32[1,4] next_op1, f32[1,4] next_op2) pinned_slice3 = f32[1,4] dynamic-slice(pinned_prev_param0, zero, zero), dynamic_slice_sizes={1,4} next_op4 = f32[1,4] multiply(f32[1,4] pinned_slice3, f32[1,4] next_op3) p = pred[] get-tuple-element(while_body_param), index=5 ROOT root = tuple(pinned_prev_param0, next_param0, prev_prev_op3, prev_prev_op4, next_op4, p) } ENTRY entry { p0 = f32[28,4] parameter(0) p1 = f32[1,4] parameter(1) p2 = f32[1,4] parameter(2) p3 = f32[1,4] parameter(3) p4 = pred[] parameter(4) copy = f32[1,4] copy(p3) tuple = (f32[28,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) tuple(p0, p1, p2, p3, copy, p4) while = (f32[28,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) while(tuple), condition=while_cond, body=while_body ROOT root = f32[1,4] get-tuple-element(while), index=4 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_str)); int64_t alternate_memory_size = 52; TF_ASSERT_OK_AND_ASSIGN( auto optimizer, CreateOptimizer(21, 27, module.get(), alternate_memory_size)); optimizer->Optimize(); const std::vector<int64_t>& remaining_memory = optimizer->remaining_memory(); EXPECT_EQ(remaining_memory.at(0), alternate_memory_size - (3 * 16 + 4)); EXPECT_EQ(optimizer->MaxAlternateMemoryUsed(), alternate_memory_size); } TEST_F(MemoryBoundLoopOptimizerTest, OptimizerEndToEndWhileLoop) { absl::string_view hlo_str = R"( HloModule module, is_scheduled=true while_cond { while_cond_param = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) ROOT p = pred[] get-tuple-element(while_cond_param), index=6 } while_body { while_body_param = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) prev_param0 = f32[1,4] get-tuple-element(while_body_param), index=0 param0 = f32[1,4] get-tuple-element(while_body_param), index=1 next_param0 = f32[1,4] get-tuple-element(while_body_param), index=2 prev_prev_op3 = f32[1,4] get-tuple-element(while_body_param), index=3 prev_prev_op4 = f32[1,4] get-tuple-element(while_body_param), index=4 prev_op0 = f32[1,4] add(f32[1,4] prev_prev_op3, f32[1,4] prev_prev_op4) prev_op1 = f32[1,4] add(f32[1,4] prev_prev_op4, f32[1,4] prev_op0) prev_op2 = f32[1,4] add(f32[1,4] prev_op0, f32[1,4] prev_op1) prev_op3 = f32[1,4] add(f32[1,4] prev_op1, f32[1,4] prev_op2) prev_op4 = f32[1,4] multiply(f32[1,4] prev_param0, f32[1,4] prev_op3) op0 = f32[1,4] add(f32[1,4] prev_op3, f32[1,4] prev_op4) op1 = f32[1,4] add(f32[1,4] prev_op4, f32[1,4] op0) op2 = f32[1,4] add(f32[1,4] op0, f32[1,4] op1) op3 = f32[1,4] add(f32[1,4] op1, f32[1,4] op2) op4 = f32[1,4] multiply(f32[1,4] param0, f32[1,4] op3) next_op0 = f32[1,4] add(f32[1,4] op3, f32[1,4] op4) next_op1 = f32[1,4] add(f32[1,4] op4, f32[1,4] next_op0) next_op2 = f32[1,4] add(f32[1,4] next_op0, f32[1,4] next_op1) next_op3 = f32[1,4] add(f32[1,4] next_op1, f32[1,4] next_op2) next_op4 = f32[1,4] multiply(f32[1,4] next_param0, f32[1,4] next_op3) p = pred[] get-tuple-element(while_body_param), index=6 ROOT root = tuple(prev_param0, param0, next_param0, prev_prev_op3, prev_prev_op4, next_op4, p) } ENTRY entry { p0 = f32[1,4] parameter(0) p1 = f32[1,4] parameter(1) p2 = f32[1,4] parameter(2) p3 = f32[1,4] parameter(3) p4 = f32[1,4] parameter(4) p5 = pred[] parameter(5) copy = f32[1,4] copy(p4) tuple = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) tuple(p0, p1, p2, p3, p4, copy, p5) while = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) while(tuple), condition=while_cond, body=while_body ROOT root = f32[1,4] get-tuple-element(while), index=5 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_str)); TF_ASSERT_OK_AND_ASSIGN(auto preset_assignments, RunMsa(module.get(), 512)); TF_ASSERT_OK_AND_ASSIGN(auto alias_analysis, HloAliasAnalysis::Run(module.get())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_live_range, HloLiveRange::Run(module->schedule(), *alias_analysis, module->entry_computation())); const HloInstruction* prev_copy_done = FindInstruction(module.get(), "prev_op4")->operand(0); const HloInstruction* copy_done = FindInstruction(module.get(), "op4")->operand(0); const HloInstruction* next_copy_done = FindInstruction(module.get(), "next_op4")->operand(0); ASSERT_EQ(prev_copy_done->opcode(), HloOpcode::kCopyDone); ASSERT_EQ(copy_done->opcode(), HloOpcode::kCopyDone); ASSERT_EQ(next_copy_done->opcode(), HloOpcode::kCopyDone); EXPECT_EQ(prev_copy_done->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(copy_done->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(next_copy_done->shape().layout().memory_space(), kAlternateMemorySpace); auto prefetch_distance = [&](const HloInstruction* copy_done) { return hlo_live_range->instruction_schedule().at(copy_done) - hlo_live_range->instruction_schedule().at(copy_done->operand(0)); }; EXPECT_EQ(prefetch_distance(prev_copy_done), prefetch_distance(copy_done)); EXPECT_EQ(prefetch_distance(next_copy_done), prefetch_distance(copy_done)); } TEST_F(MemoryBoundLoopOptimizerTest, OptimizerEndToEndNestedWhileLoopBug) { absl::string_view hlo_str = R"( HloModule module, is_scheduled=true prev_while_cond { prev_while_cond_param = (f32[1,4], pred[]) parameter(0) ROOT p = pred[] get-tuple-element(prev_while_cond_param), index=1 } prev_while_body { prev_while_body_param = (f32[1,4], pred[]) parameter(0) prev_while_body_gte = f32[1,4] get-tuple-element(prev_while_body_param), index=0 prev_while_body_pred = pred[] get-tuple-element(prev_while_body_param), index=1 prev_while_body_op = f32[1,4] negate(prev_while_body_gte) ROOT prev_while_body_root = (f32[1,4], pred[]) tuple(prev_while_body_op, prev_while_body_pred) } current_while_cond { current_while_cond_param = (f32[1,4], pred[]) parameter(0) ROOT p = pred[] get-tuple-element(current_while_cond_param), index=1 } current_while_body { current_while_body_param = (f32[1,4], pred[]) parameter(0) current_while_body_gte = f32[1,4] get-tuple-element(current_while_body_param), index=0 current_while_body_pred = pred[] get-tuple-element(current_while_body_param), index=1 current_while_body_op = f32[1,4] negate(current_while_body_gte) ROOT current_while_body_root = (f32[1,4], pred[]) tuple(current_while_body_op, current_while_body_pred) } next_while_cond { next_while_cond_param = (f32[1,4], pred[]) parameter(0) ROOT p = pred[] get-tuple-element(next_while_cond_param), index=1 } next_while_body { next_while_body_param = (f32[1,4], pred[]) parameter(0) next_while_body_gte = f32[1,4] get-tuple-element(next_while_body_param), index=0 next_while_body_pred = pred[] get-tuple-element(next_while_body_param), index=1 next_while_body_op = f32[1,4] negate(next_while_body_gte) ROOT next_while_body_root = (f32[1,4], pred[]) tuple(next_while_body_op, next_while_body_pred) } while_cond { while_cond_param = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) ROOT p = pred[] get-tuple-element(while_cond_param), index=6 } while_body { while_body_param = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) parameter(0) prev_param0 = f32[1,4] get-tuple-element(while_body_param), index=0 param0 = f32[1,4] get-tuple-element(while_body_param), index=1 next_param0 = f32[1,4] get-tuple-element(while_body_param), index=2 prev_prev_op3 = f32[1,4] get-tuple-element(while_body_param), index=3 prev_prev_op4 = f32[1,4] get-tuple-element(while_body_param), index=4 while_pred = pred[] get-tuple-element(while_body_param), index=6 prev_op0 = f32[1,4] add(f32[1,4] prev_prev_op3, f32[1,4] prev_prev_op4) prev_op1 = f32[1,4] add(f32[1,4] prev_prev_op4, f32[1,4] prev_op0) prev_op2 = f32[1,4] add(f32[1,4] prev_op0, f32[1,4] prev_op1) prev_op3 = f32[1,4] add(f32[1,4] prev_op1, f32[1,4] prev_op2) prev_tuple = (f32[1,4], pred[]) tuple(prev_op3, while_pred) prev_while = (f32[1,4], pred[]) while(prev_tuple), condition=prev_while_cond, body=prev_while_body prev_gte = f32[1,4] get-tuple-element(prev_while), index=0 prev_op4 = f32[1,4] multiply(f32[1,4] prev_param0, f32[1,4] prev_gte) op0 = f32[1,4] add(f32[1,4] prev_op3, f32[1,4] prev_op4) op1 = f32[1,4] add(f32[1,4] prev_op4, f32[1,4] op0) op2 = f32[1,4] add(f32[1,4] op0, f32[1,4] op1) op3 = f32[1,4] add(f32[1,4] op1, f32[1,4] op2) current_tuple = (f32[1,4], pred[]) tuple(op3, while_pred) current_while = (f32[1,4], pred[]) while(current_tuple), condition=current_while_cond, body=current_while_body current_gte = f32[1,4] get-tuple-element(current_while), index=0 op4 = f32[1,4] multiply(f32[1,4] param0, f32[1,4] current_gte) next_op0 = f32[1,4] add(f32[1,4] op3, f32[1,4] op4) next_op1 = f32[1,4] add(f32[1,4] op4, f32[1,4] next_op0) next_op2 = f32[1,4] add(f32[1,4] next_op0, f32[1,4] next_op1) next_op3 = f32[1,4] add(f32[1,4] next_op1, f32[1,4] next_op2) next_tuple = (f32[1,4], pred[]) tuple(next_op3, while_pred) next_while = (f32[1,4], pred[]) while(next_tuple), condition=next_while_cond, body=next_while_body next_gte = f32[1,4] get-tuple-element(next_while), index=0 next_op4 = f32[1,4] multiply(f32[1,4] next_param0, f32[1,4] next_gte) ROOT root = tuple(prev_param0, param0, next_param0, prev_prev_op3, prev_prev_op4, next_op4, while_pred) } ENTRY entry { p0 = f32[1,4] parameter(0) p1 = f32[1,4] parameter(1) p2 = f32[1,4] parameter(2) p3 = f32[1,4] parameter(3) p4 = f32[1,4] parameter(4) p5 = pred[] parameter(5) copy = f32[1,4] copy(p4) tuple = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) tuple(p0, p1, p2, p3, p4, copy, p5) while = (f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], f32[1,4], pred[]) while(tuple), condition=while_cond, body=while_body ROOT root = f32[1,4] get-tuple-element(while), index=5 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_str)); TF_ASSERT_OK_AND_ASSIGN(auto preset_assignments, RunMsa(module.get(), 512)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_assignment/memory_bound_loop_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_assignment/memory_bound_loop_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
35055de0-39d9-4889-8071-f4779761f1e2
cpp
tensorflow/tensorflow
example_proto_helper
tensorflow/core/util/example_proto_helper.cc
tensorflow/core/util/example_proto_helper_test.cc
#include "tensorflow/core/util/example_proto_helper.h" #include <algorithm> #include <limits> #include <vector> #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { Status CheckValidType(const DataType& dtype) { switch (dtype) { case DT_INT64: case DT_FLOAT: case DT_STRING: return absl::OkStatus(); default: return errors::InvalidArgument("Received input dtype: ", DataTypeString(dtype)); } } Status CheckTypesMatch(const Feature& feature, const DataType& dtype, bool* match) { switch (dtype) { case DT_INT64: *match = (feature.kind_case() == Feature::kInt64List); break; case DT_FLOAT: *match = (feature.kind_case() == Feature::kFloatList); break; case DT_STRING: *match = (feature.kind_case() == Feature::kBytesList); break; default: return errors::InvalidArgument("Invalid input dtype: ", DataTypeString(dtype)); } return absl::OkStatus(); } Status FeatureDenseCopy(const std::size_t out_index, const string& name, const string& key, const DataType& dtype, const TensorShape& shape, const Feature& feature, Tensor* out) { const std::size_t num_elements = shape.num_elements(); const std::size_t offset = out_index * num_elements; switch (dtype) { case DT_INT64: { const Int64List& values = feature.int64_list(); if (static_cast<size_t>(values.value_size()) != num_elements) { return errors::InvalidArgument( "Name: ", name, ", Key: ", key, ", Index: ", out_index, ". Number of int64 values != expected. " "values size: ", values.value_size(), " but output shape: ", shape.DebugString()); } auto out_p = out->flat<int64_t>().data() + offset; std::copy_n(values.value().data(), num_elements, out_p); return absl::OkStatus(); } case DT_FLOAT: { const FloatList& values = feature.float_list(); if (static_cast<size_t>(values.value_size()) != num_elements) { return errors::InvalidArgument( "Name: ", name, ", Key: ", key, ", Index: ", out_index, ". Number of float values != expected. " "values size: ", values.value_size(), " but output shape: ", shape.DebugString()); } auto out_p = out->flat<float>().data() + offset; std::copy_n(values.value().data(), num_elements, out_p); return absl::OkStatus(); } case DT_STRING: { const BytesList& values = feature.bytes_list(); if (static_cast<size_t>(values.value_size()) != num_elements) { return errors::InvalidArgument( "Name: ", name, ", Key ", key, ", Index: ", out_index, ". Number of bytes values != expected. " "Values size: ", values.value_size(), " but output shape: ", shape.DebugString()); } auto out_p = out->flat<tstring>().data() + offset; std::transform(values.value().data(), values.value().data() + num_elements, out_p, [](const string* s) { return *s; }); return absl::OkStatus(); } default: return errors::InvalidArgument("Invalid input dtype: ", DataTypeString(dtype)); } } Tensor FeatureSparseCopy(const std::size_t batch, const string& key, const DataType& dtype, const Feature& feature) { switch (dtype) { case DT_INT64: { const Int64List& values = feature.int64_list(); const int64_t num_elements = values.value_size(); Tensor out(dtype, TensorShape({num_elements})); auto out_p = out.flat<int64_t>().data(); std::copy_n(values.value().data(), num_elements, out_p); return out; } case DT_FLOAT: { const FloatList& values = feature.float_list(); const int64_t num_elements = values.value_size(); Tensor out(dtype, TensorShape({num_elements})); auto out_p = out.flat<float>().data(); std::copy_n(values.value().data(), num_elements, out_p); return out; } case DT_STRING: { const BytesList& values = feature.bytes_list(); const int64_t num_elements = values.value_size(); Tensor out(dtype, TensorShape({num_elements})); auto out_p = out.flat<tstring>().data(); std::transform(values.value().data(), values.value().data() + num_elements, out_p, [](const string* s) { return *s; }); return out; } default: LOG(FATAL) << "not supposed to be here. dtype requested: " << dtype; } } int64_t CopyIntoSparseTensor(const Tensor& in, const int batch, const int64_t offset, Tensor* indices, Tensor* values) { const int64_t num_elements = in.shape().num_elements(); const DataType& dtype = in.dtype(); CHECK_EQ(dtype, values->dtype()); if (num_elements > 0) { auto ix_t = indices->matrix<int64_t>(); int64_t* ix_p = &ix_t(offset, 0); for (int64_t i = 0; i < num_elements; ++i, ix_p += 2) { *ix_p = batch; *(ix_p + 1) = i; } } switch (dtype) { case DT_INT64: { std::copy_n(in.flat<int64_t>().data(), num_elements, values->flat<int64_t>().data() + offset); break; } case DT_FLOAT: { std::copy_n(in.flat<float>().data(), num_elements, values->flat<float>().data() + offset); break; } case DT_STRING: { std::copy_n(in.flat<tstring>().data(), num_elements, values->flat<tstring>().data() + offset); break; } default: LOG(FATAL) << "Not supposed to be here. Saw dtype: " << dtype; } return num_elements; } void RowDenseCopy(const std::size_t& out_index, const DataType& dtype, const Tensor& in, Tensor* out) { const std::size_t num_elements = in.shape().num_elements(); const std::size_t offset = out_index * num_elements; switch (dtype) { case DT_INT64: { std::copy_n(in.flat<int64_t>().data(), num_elements, out->flat<int64_t>().data() + offset); break; } case DT_FLOAT: { std::copy_n(in.flat<float>().data(), num_elements, out->flat<float>().data() + offset); break; } case DT_STRING: { std::copy_n(in.flat<tstring>().data(), num_elements, out->flat<tstring>().data() + offset); break; } default: LOG(FATAL) << "Not supposed to be here. Saw dtype: " << dtype; } } Status SingleExampleProtoToTensors( const Example& example, const string& example_name, const int batch_index, const std::vector<FixedLenFeature>& fixed_len_features, const std::vector<VarLenFeature>& var_len_features, std::vector<Tensor*>* output_dense_values_tensor, std::vector<std::vector<Tensor>>* output_sparse_values_tmp) { const Features& features = example.features(); const auto& feature_dict = features.feature(); for (size_t d = 0; d < fixed_len_features.size(); ++d) { const FixedLenFeature& feature_config = fixed_len_features[d]; const string& key = feature_config.key; const DataType& dtype = feature_config.dtype; const TensorShape& shape = feature_config.shape; const Tensor& default_value = feature_config.default_value; bool required = (default_value.NumElements() == 0); const auto& feature_found = feature_dict.find(key); const bool feature_has_data = (feature_found != feature_dict.end() && (feature_found->second.kind_case() != Feature::KIND_NOT_SET)); const bool required_ok = feature_has_data || !required; if (!required_ok) { return errors::InvalidArgument("Name: ", example_name, ", Feature: ", key, " is required but could not be found."); } if (feature_has_data) { const Feature& f = feature_found->second; bool types_match; TF_RETURN_IF_ERROR(CheckTypesMatch(f, dtype, &types_match)); if (!types_match) { return errors::InvalidArgument("Name: ", example_name, ", Feature: ", key, ". Data types don't match. ", "Expected type: ", DataTypeString(dtype), " Feature is: ", f.DebugString()); } TF_RETURN_IF_ERROR(FeatureDenseCopy(batch_index, example_name, key, dtype, shape, f, (*output_dense_values_tensor)[d])); } else { RowDenseCopy(batch_index, dtype, default_value, (*output_dense_values_tensor)[d]); } } for (size_t d = 0; d < var_len_features.size(); ++d) { const VarLenFeature& feature_config = var_len_features[d]; const string& key = feature_config.key; const DataType& dtype = feature_config.dtype; const auto& feature_found = feature_dict.find(key); const bool feature_has_data = (feature_found != feature_dict.end() && (feature_found->second.kind_case() != Feature::KIND_NOT_SET)); if (feature_has_data) { const Feature& f = feature_found->second; bool types_match; TF_RETURN_IF_ERROR(CheckTypesMatch(f, dtype, &types_match)); if (!types_match) { return errors::InvalidArgument("Name: ", example_name, ", Feature: ", key, ". Data types don't match. ", "Expected type: ", DataTypeString(dtype), " Feature is: ", f.DebugString()); } (*output_sparse_values_tmp)[d][batch_index] = FeatureSparseCopy(batch_index, key, dtype, f); } else { (*output_sparse_values_tmp)[d][batch_index] = Tensor(dtype, TensorShape({0})); } } return absl::OkStatus(); } Status GetSparseTensorShapes(const VarLenFeature& var_len_feature, const std::vector<Tensor>& sparse_values_tmp, const int batch_size, VarLenFeatureBatchShapes* output_shapes) { int64_t total_num_features = 0; int64_t max_num_features = 0; for (int b = 0; b < batch_size; ++b) { const Tensor& t = sparse_values_tmp[b]; const int64_t num_elements = t.shape().num_elements(); total_num_features += num_elements; max_num_features = std::max(max_num_features, num_elements); } output_shapes->indices_shape.AddDim(total_num_features); output_shapes->indices_shape.AddDim(2); output_shapes->values_shape.AddDim(total_num_features); output_shapes->max_num_features = max_num_features; return absl::OkStatus(); } Status BatchExampleProtoToTensors( const std::vector<const Example*>& examples, const std::vector<string>& names, const std::vector<FixedLenFeature>& fixed_len_features, const std::vector<VarLenFeature>& var_len_features, Allocator* allocator, std::vector<Tensor>* output_dense_values_tensor, std::vector<Tensor>* output_sparse_indices_tensor, std::vector<Tensor>* output_sparse_values_tensor, std::vector<Tensor>* output_sparse_shapes_tensor) { const int batch_size = examples.size(); const bool has_names = (!names.empty()); if (has_names) { if (names.size() != examples.size()) { return errors::InvalidArgument( "Expected len(names) == len(examples), but got: ", names.size(), " vs. ", examples.size()); } } std::vector<Tensor*> output_dense_values_tensor_ptrs( fixed_len_features.size()); for (size_t d = 0; d < fixed_len_features.size(); ++d) { const FixedLenFeature& config = fixed_len_features[d]; TensorShape out_shape; out_shape.AddDim(batch_size); const TensorShape& shape = config.shape; const DataType& dtype = config.dtype; for (const int dim : shape.dim_sizes()) out_shape.AddDim(dim); (*output_dense_values_tensor)[d] = Tensor(allocator, dtype, out_shape); output_dense_values_tensor_ptrs[d] = &(*output_dense_values_tensor)[d]; } std::vector<std::vector<Tensor>> sparse_values_tmp(var_len_features.size()); for (size_t d = 0; d < var_len_features.size(); ++d) { sparse_values_tmp[d] = std::vector<Tensor>(batch_size); } for (size_t b = 0; b < examples.size(); ++b) { const Example& ex = *(examples[b]); const string& example_name = (has_names) ? names[b] : "<unknown>"; TF_RETURN_IF_ERROR(SingleExampleProtoToTensors( ex, example_name, b, fixed_len_features, var_len_features, &output_dense_values_tensor_ptrs, &sparse_values_tmp)); } for (size_t d = 0; d < var_len_features.size(); ++d) { const VarLenFeature& feature_config = var_len_features[d]; const DataType& dtype = feature_config.dtype; const std::vector<Tensor>& sparse_values_tensor = sparse_values_tmp[d]; VarLenFeatureBatchShapes sparse_tensor_batch_shapes; TF_RETURN_IF_ERROR(GetSparseTensorShapes(feature_config, sparse_values_tensor, batch_size, &sparse_tensor_batch_shapes)); const TensorShape& indices_shape = sparse_tensor_batch_shapes.indices_shape; const TensorShape& values_shape = sparse_tensor_batch_shapes.values_shape; (*output_sparse_indices_tensor)[d] = Tensor(allocator, DT_INT64, indices_shape); (*output_sparse_values_tensor)[d] = Tensor(allocator, dtype, values_shape); (*output_sparse_shapes_tensor)[d] = Tensor(allocator, DT_INT64, TensorShape({2})); auto shape_t = (*output_sparse_shapes_tensor)[d].vec<int64_t>(); shape_t(0) = batch_size; shape_t(1) = sparse_tensor_batch_shapes.max_num_features; Tensor* sp_indices_d = &(*output_sparse_indices_tensor)[d]; Tensor* sp_values_d = &(*output_sparse_values_tensor)[d]; int64_t offset = 0; for (int b = 0; b < batch_size; ++b) { const int64_t num_elements = CopyIntoSparseTensor( sparse_values_tensor[b], b, offset, sp_indices_d, sp_values_d); offset += num_elements; } } return absl::OkStatus(); } Status ParseExampleAttrs::FinishInit(int op_version) { switch (op_version) { case 1: num_ragged = 0; break; case 2: num_dense = dense_types.size(); num_ragged = ragged_value_types.size(); break; default: return errors::InvalidArgument("Unexpected op_version", op_version); } if (static_cast<size_t>(num_sparse) != sparse_types.size()) { return errors::InvalidArgument("len(sparse_keys) != len(sparse_types)"); } if (static_cast<size_t>(num_dense) != dense_types.size()) { return errors::InvalidArgument("len(dense_keys) != len(dense_types)"); } if (static_cast<size_t>(num_dense) != dense_shapes.size()) { return errors::InvalidArgument("len(dense_keys) != len(dense_shapes)"); } if (static_cast<size_t>(num_ragged) != ragged_value_types.size()) { return errors::InvalidArgument( "len(ragged_keys) != len(ragged_value_types)"); } if (static_cast<size_t>(num_ragged) != ragged_split_types.size()) { return errors::InvalidArgument( "len(ragged_keys) != len(ragged_split_types)"); } if (num_dense > std::numeric_limits<int32>::max()) { return errors::InvalidArgument("num_dense_ too large"); } for (const DataType& type : dense_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : sparse_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : ragged_value_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : ragged_split_types) { if (!(type == DT_INT64 || type == DT_INT32)) { return errors::InvalidArgument("Invalid ragged_split_type: ", DataTypeString(type)); } } return absl::OkStatus(); } Status ParseSingleExampleAttrs::FinishInit() { if (sparse_keys.size() != sparse_types.size()) { return errors::InvalidArgument("len(sparse_keys) != len(sparse_types)"); } if (dense_keys.size() != dense_types.size()) { return errors::InvalidArgument("len(dense_keys) != len(dense_types)"); } if (dense_keys.size() != dense_shapes.size()) { return errors::InvalidArgument("len(dense_keys) != len(dense_shapes)"); } for (const DataType& type : dense_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : sparse_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } return absl::OkStatus(); } Status ParseSequenceExampleAttrs::FinishInit(int op_version) { switch (op_version) { case 1: num_context_ragged = 0; num_feature_list_ragged = 0; if (num_context_sparse != context_sparse_keys.size()) { return errors::InvalidArgument( "num_context_sparse (", num_context_sparse, ") must match the size of context_sparse_keys (", context_sparse_keys.size(), ")"); } if (num_context_dense != context_dense_keys.size()) { return errors::InvalidArgument( "num_context_dense (", num_context_dense, ") must match the size of context_dense_keys (", context_dense_keys.size(), ")"); } if (num_feature_list_sparse != feature_list_sparse_keys.size()) { return errors::InvalidArgument( "num_feature_list_sparse (", num_feature_list_sparse, ") must match the size of feature_list_sparse_keys (", feature_list_sparse_keys.size(), ")"); } if (num_feature_list_dense != feature_list_dense_keys.size()) { return errors::InvalidArgument( "num_feature_list_dense (", num_feature_list_dense, ") must match the size of feature_list_dense_keys (", feature_list_dense_keys.size(), ")"); } break; case 2: num_context_dense = context_dense_types.size(); num_context_ragged = context_ragged_value_types.size(); num_feature_list_ragged = feature_list_ragged_value_types.size(); break; default: return errors::InvalidArgument("Unexpected op_version", op_version); } if (num_context_sparse != context_sparse_types.size()) { return errors::InvalidArgument( "num_context_sparse (", num_context_sparse, ") must match the size of context_sparse_types (", context_sparse_types.size(), ")"); } if (num_context_dense != context_dense_types.size() || num_context_dense != context_dense_shapes.size()) { return errors::InvalidArgument( "num_context_dense (", num_context_dense, ") must match the size of context_dense_types (", context_dense_types.size(), ") and context_dense_shapes (", context_dense_shapes.size(), ")"); } if ((num_context_ragged != context_ragged_value_types.size()) || (num_context_ragged != context_ragged_split_types.size())) { return errors::InvalidArgument( "num_context_ragged (", num_context_ragged, ") must match the size of context_ragged_value_types (", context_ragged_value_types.size(), ") and context_ragged_split_types (", context_ragged_split_types.size(), ")"); } if (num_feature_list_sparse != feature_list_sparse_types.size()) { return errors::InvalidArgument( "num_feature_list_sparse (", num_feature_list_sparse, ") must match the size of feature_list_sparse_types (", feature_list_sparse_types.size(), ")"); } if (num_feature_list_dense != feature_list_dense_types.size() || num_feature_list_dense != feature_list_dense_shapes.size()) { return errors::InvalidArgument( "num_feature_list_dense (", num_feature_list_dense, ") must match the size of feature_list_dense_types (", feature_list_dense_types.size(), ") and feature_list_dense_shapes (", feature_list_dense_shapes.size(), ")"); } if ((num_feature_list_ragged != feature_list_ragged_value_types.size()) || (num_feature_list_ragged != feature_list_ragged_split_types.size())) { return errors::InvalidArgument( "num_feature_list_ragged (", num_feature_list_ragged, ") must match the size of feature_list_ragged_value_types (", feature_list_ragged_value_types.size(), ") and feature_list_ragged_split_types (", feature_list_ragged_split_types.size(), ")"); } for (const DataType& type : context_dense_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : context_sparse_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : feature_list_dense_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : feature_list_sparse_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : context_ragged_value_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : context_ragged_split_types) { if (!(type == DT_INT64 || type == DT_INT32)) { return errors::InvalidArgument("Invalid context_ragged_split_type: ", DataTypeString(type)); } } for (const DataType& type : feature_list_ragged_value_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : feature_list_ragged_split_types) { if (!(type == DT_INT64 || type == DT_INT32)) { return errors::InvalidArgument("Invalid feature_list_ragged_split_type: ", DataTypeString(type)); } } return absl::OkStatus(); } Status ParseSingleSequenceExampleAttrs::FinishInit() { if (static_cast<size_t>(num_context_sparse) != context_sparse_types.size()) { return errors::InvalidArgument( "len(context_sparse_keys) != len(context_sparse_types)"); } if (static_cast<size_t>(num_context_dense) != context_dense_types.size()) { return errors::InvalidArgument( "len(context_dense_keys) != len(context_dense_types)"); } if (static_cast<size_t>(num_context_dense) != context_dense_shapes.size()) { return errors::InvalidArgument( "len(context_dense_keys) != len(context_dense_shapes)"); } if (static_cast<size_t>(num_feature_list_sparse) != feature_list_sparse_types.size()) { return errors::InvalidArgument( "len(feature_list_sparse_keys) != len(feature_list_sparse_types)"); } if (static_cast<size_t>(num_feature_list_dense) != feature_list_dense_types.size()) { return errors::InvalidArgument( "len(feature_list_dense_keys) != " "len(feature_list_dense_types)"); } for (const DataType& type : context_dense_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : context_sparse_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : feature_list_dense_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } for (const DataType& type : feature_list_sparse_types) { TF_RETURN_IF_ERROR(CheckValidType(type)); } return absl::OkStatus(); } Status GetDenseShapes(const std::vector<PartialTensorShape>& dense_shapes, std::vector<bool>* variable_length, std::vector<std::size_t>* elements_per_stride) { for (int i = 0; i < dense_shapes.size(); ++i) { bool shape_ok = true; if (dense_shapes[i].dims() == -1) { shape_ok = false; } else { for (int d = 1; d < dense_shapes[i].dims(); ++d) { if (dense_shapes[i].dim_size(d) == -1) { shape_ok = false; } } } if (!shape_ok) { return errors::InvalidArgument( "dense_shapes[", i, "] has unknown rank or unknown inner dimensions: ", dense_shapes[i].DebugString()); } TensorShape dense_shape; if (dense_shapes[i].dims() > 0 && dense_shapes[i].dim_size(0) == -1) { variable_length->push_back(true); for (int d = 1; d < dense_shapes[i].dims(); ++d) { dense_shape.AddDim(dense_shapes[i].dim_size(d)); } } else { variable_length->push_back(false); dense_shapes[i].AsTensorShape(&dense_shape); } elements_per_stride->push_back(dense_shape.num_elements()); } return absl::OkStatus(); } }
#include "tensorflow/core/util/example_proto_helper.h" #include <cstdint> #include <vector> #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" namespace tensorflow { namespace { TEST(CopyIntoSparseTensorTest, String) { Tensor in_tensor(DT_STRING, TensorShape({2})); in_tensor.flat<tstring>()(0) = "hello"; in_tensor.flat<tstring>()(1) = "world"; int n_values = 5; Tensor ix_tensor(DT_INT64, TensorShape({n_values, 2})); auto ix_matrix = ix_tensor.matrix<int64_t>(); for (int i = 0; i < n_values; ++i) { for (int j = 0; j < 2; ++j) { ix_matrix(i, j) = 0; } } Tensor value_tensor(DT_STRING, TensorShape({n_values})); int batch = 67; int64_t offset = 1; auto n_elems = CopyIntoSparseTensor(in_tensor, batch, offset, &ix_tensor, &value_tensor); EXPECT_EQ(2, n_elems); EXPECT_EQ(0, ix_matrix(0, 0)); EXPECT_EQ(0, ix_matrix(0, 1)); EXPECT_EQ(batch, ix_matrix(1, 0)); EXPECT_EQ(0, ix_matrix(1, 1)); EXPECT_EQ(batch, ix_matrix(2, 0)); EXPECT_EQ(1, ix_matrix(2, 1)); EXPECT_EQ(0, ix_matrix(3, 0)); EXPECT_EQ(0, ix_matrix(3, 1)); EXPECT_EQ(0, ix_matrix(4, 0)); EXPECT_EQ(0, ix_matrix(4, 1)); auto values = value_tensor.flat<tstring>(); EXPECT_EQ("", values(0)); EXPECT_EQ("hello", values(1)); EXPECT_EQ("world", values(2)); EXPECT_EQ("", values(3)); EXPECT_EQ("", values(4)); } constexpr char kDenseInt64Key[] = "dense_int64"; constexpr char kDenseFloatKey[] = "dense_float"; constexpr char kDenseStringKey[] = "dense_string"; constexpr char kSparseInt64Key[] = "sparse_int64"; constexpr char kSparseFloatKey[] = "sparse_float"; constexpr char kSparseStringKey[] = "sparse_string"; class SingleExampleProtoToTensorsTest : public ::testing::Test { protected: void SetUp() override { FixedLenFeature int64_dense_config; int64_dense_config.key = kDenseInt64Key; int64_dense_config.dtype = DT_INT64; int64_dense_config.shape = TensorShape({1}); int64_dense_config.default_value = Tensor(DT_INT64, TensorShape({1})); int64_dense_config.default_value.scalar<int64_t>()() = 0; dense_vec_.push_back(int64_dense_config); FixedLenFeature float_dense_config; float_dense_config.key = kDenseFloatKey; float_dense_config.dtype = DT_FLOAT; float_dense_config.shape = TensorShape({1}); float_dense_config.default_value = Tensor(DT_FLOAT, TensorShape({1})); float_dense_config.default_value.scalar<float>()() = 0.0; dense_vec_.push_back(float_dense_config); FixedLenFeature string_dense_config; string_dense_config.key = kDenseStringKey; string_dense_config.dtype = DT_STRING; string_dense_config.shape = TensorShape({1}); string_dense_config.default_value = Tensor(DT_STRING, TensorShape({1})); string_dense_config.default_value.scalar<tstring>()() = "default"; dense_vec_.push_back(string_dense_config); VarLenFeature int64_sparse_config; int64_sparse_config.key = kSparseInt64Key; int64_sparse_config.dtype = DT_INT64; sparse_vec_.push_back(int64_sparse_config); VarLenFeature float_sparse_config; float_sparse_config.key = kSparseFloatKey; float_sparse_config.dtype = DT_FLOAT; sparse_vec_.push_back(float_sparse_config); VarLenFeature string_sparse_config; string_sparse_config.key = kSparseStringKey; string_sparse_config.dtype = DT_STRING; sparse_vec_.push_back(string_sparse_config); } std::vector<FixedLenFeature> dense_vec_; std::vector<VarLenFeature> sparse_vec_; }; TEST_F(SingleExampleProtoToTensorsTest, SparseOnlyTrivial) { Example ex; (*ex.mutable_features()->mutable_feature())[kSparseInt64Key] .mutable_int64_list() ->add_value(42); (*ex.mutable_features()->mutable_feature())[kSparseFloatKey] .mutable_float_list() ->add_value(4.2); (*ex.mutable_features()->mutable_feature())[kSparseStringKey] .mutable_bytes_list() ->add_value("forty-two"); std::vector<Tensor*> output_dense_values(0); std::vector<std::vector<Tensor>> output_sparse_values_tmp(3); for (int i = 0; i < 3; ++i) { output_sparse_values_tmp[i] = std::vector<Tensor>(1); } std::vector<FixedLenFeature> empty_dense_vec; TF_EXPECT_OK(SingleExampleProtoToTensors(ex, "", 0, empty_dense_vec, sparse_vec_, &output_dense_values, &output_sparse_values_tmp)); const std::vector<Tensor>& int64_tensor_vec = output_sparse_values_tmp[0]; EXPECT_EQ(1, int64_tensor_vec.size()); EXPECT_EQ(42, int64_tensor_vec[0].vec<int64_t>()(0)); const std::vector<Tensor>& float_tensor_vec = output_sparse_values_tmp[1]; EXPECT_EQ(1, float_tensor_vec.size()); EXPECT_NEAR(4.2, float_tensor_vec[0].vec<float>()(0), 0.001); const std::vector<Tensor>& string_tensor_vec = output_sparse_values_tmp[2]; EXPECT_EQ(1, string_tensor_vec.size()); EXPECT_EQ("forty-two", string_tensor_vec[0].vec<tstring>()(0)); } TEST_F(SingleExampleProtoToTensorsTest, SparseOnlyEmpty) { Example empty; std::vector<Tensor*> output_dense_values(0); std::vector<std::vector<Tensor>> output_sparse_values_tmp(3); for (int i = 0; i < 3; ++i) { output_sparse_values_tmp[i] = std::vector<Tensor>(1); } std::vector<FixedLenFeature> empty_dense_vec; TF_EXPECT_OK(SingleExampleProtoToTensors(empty, "", 0, empty_dense_vec, sparse_vec_, &output_dense_values, &output_sparse_values_tmp)); const std::vector<Tensor>& int64_tensor_vec = output_sparse_values_tmp[0]; EXPECT_EQ(1, int64_tensor_vec.size()); EXPECT_EQ(0, int64_tensor_vec[0].vec<int64_t>().size()); const std::vector<Tensor>& float_tensor_vec = output_sparse_values_tmp[1]; EXPECT_EQ(1, float_tensor_vec.size()); EXPECT_EQ(0, float_tensor_vec[0].vec<float>().size()); const std::vector<Tensor>& string_tensor_vec = output_sparse_values_tmp[2]; EXPECT_EQ(1, string_tensor_vec.size()); EXPECT_EQ(0, string_tensor_vec[0].vec<tstring>().size()); } TEST_F(SingleExampleProtoToTensorsTest, DenseOnlyTrivial) { Example ex; (*ex.mutable_features()->mutable_feature())[kDenseInt64Key] .mutable_int64_list() ->add_value(42); (*ex.mutable_features()->mutable_feature())[kDenseFloatKey] .mutable_float_list() ->add_value(4.2); (*ex.mutable_features()->mutable_feature())[kDenseStringKey] .mutable_bytes_list() ->add_value("forty-two"); std::vector<Tensor*> output_dense_values(3); Tensor int64_dense_output(DT_INT64, TensorShape({1, 1})); output_dense_values[0] = &int64_dense_output; Tensor float_dense_output(DT_FLOAT, TensorShape({1, 1})); output_dense_values[1] = &float_dense_output; Tensor str_dense_output(DT_STRING, TensorShape({1, 1})); output_dense_values[2] = &str_dense_output; std::vector<VarLenFeature> empty_sparse_vec; std::vector<std::vector<Tensor>> output_sparse_values_tmp; TF_EXPECT_OK(SingleExampleProtoToTensors( ex, "", 0, dense_vec_, empty_sparse_vec, &output_dense_values, &output_sparse_values_tmp)); EXPECT_TRUE(output_sparse_values_tmp.empty()); EXPECT_EQ(1, int64_dense_output.matrix<int64_t>().size()); EXPECT_EQ(42, int64_dense_output.matrix<int64_t>()(0, 0)); EXPECT_EQ(1, float_dense_output.matrix<float>().size()); EXPECT_NEAR(4.2, float_dense_output.matrix<float>()(0, 0), 0.001); EXPECT_EQ(1, str_dense_output.matrix<tstring>().size()); EXPECT_EQ("forty-two", str_dense_output.matrix<tstring>()(0, 0)); } TEST_F(SingleExampleProtoToTensorsTest, DenseOnlyDefaults) { std::vector<Tensor*> output_dense_values(3); Tensor int64_dense_output(DT_INT64, TensorShape({1, 1})); output_dense_values[0] = &int64_dense_output; Tensor float_dense_output(DT_FLOAT, TensorShape({1, 1})); output_dense_values[1] = &float_dense_output; Tensor str_dense_output(DT_STRING, TensorShape({1, 1})); output_dense_values[2] = &str_dense_output; Example empty; std::vector<VarLenFeature> empty_sparse_vec; std::vector<std::vector<Tensor>> output_sparse_values_tmp; TF_EXPECT_OK(SingleExampleProtoToTensors( empty, "", 0, dense_vec_, empty_sparse_vec, &output_dense_values, &output_sparse_values_tmp)); EXPECT_EQ(1, int64_dense_output.matrix<int64_t>().size()); EXPECT_EQ(0, int64_dense_output.matrix<int64_t>()(0, 0)); EXPECT_EQ(1, float_dense_output.matrix<float>().size()); EXPECT_NEAR(0.0, float_dense_output.matrix<float>()(0, 0), 0.001); EXPECT_EQ(1, str_dense_output.matrix<tstring>().size()); EXPECT_EQ("default", str_dense_output.matrix<tstring>()(0, 0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/example_proto_helper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/example_proto_helper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
524aa7af-ef63-4f60-b2bc-3d00af43a14a
cpp
tensorflow/tensorflow
bitcast_dtypes_expander
third_party/xla/xla/service/bitcast_dtypes_expander.cc
third_party/xla/xla/service/bitcast_dtypes_expander_test.cc
#include "xla/service/bitcast_dtypes_expander.h" #include "absl/strings/str_format.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/broadcast.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<HloInstruction*> BitcastDtypesExpander::ExpandInstruction( HloInstruction* instruction) { HloInstruction* input = instruction->mutable_operand(0); const Shape& from_shape = input->shape(); const Shape& to_shape = instruction->shape(); int input_bit_width = primitive_util::BitWidth(from_shape.element_type()); int output_bit_width = primitive_util::BitWidth(to_shape.element_type()); PrimitiveType input_logical_type = primitive_util::UnsignedIntegralTypeForBitWidth(input_bit_width); PrimitiveType output_logical_type = primitive_util::UnsignedIntegralTypeForBitWidth(output_bit_width); if (input_bit_width == output_bit_width) { return instruction; } std::string name = absl::StrFormat("xla.bitcast_convert_%s_2_%s", from_shape.ToString(), to_shape.ToString()); HloModule* module = instruction->GetModule(); HloComputation*& computation = computation_cache_.emplace(name, nullptr).first->second; if (!computation) { XlaBuilder b(name); XlaOp input = Parameter(&b, 0, instruction->operand(0)->shape(), "a"); if (input_bit_width > output_bit_width) { std::vector<int64_t> broadcasted_input_shape( from_shape.dimensions().begin(), from_shape.dimensions().end()); std::vector<int64_t> reshaped_input_shape(from_shape.dimensions().begin(), from_shape.dimensions().end()); broadcasted_input_shape.push_back(input_bit_width / output_bit_width); reshaped_input_shape.push_back(1); int64_t output_bit_width_mask = (int64_t{1} << output_bit_width) - 1; TF_ASSIGN_OR_RETURN(input, BroadcastTo(Reshape(input, reshaped_input_shape), broadcasted_input_shape)); input = BitcastConvertType(input, input_logical_type); TF_ASSIGN_OR_RETURN(Shape input_shape, b.GetShape(input)); XlaOp iota = Iota(&b, input_shape, input_shape.dimensions_size() - 1); XlaOp iota_m = Mul(ScalarLike(input, output_bit_width), iota); input = And(ShiftRightLogical(input, iota_m), ScalarLike(input, output_bit_width_mask)); input = ConvertElementType(input, output_logical_type); } else if (input_bit_width < output_bit_width) { input = BitcastConvertType(input, input_logical_type); input = ConvertElementType(input, output_logical_type); XlaOp iota_m = Mul( ConstantR0WithType(&b, output_logical_type, input_bit_width), Iota(&b, ShapeUtil::ChangeElementType(from_shape, output_logical_type), from_shape.rank() - 1)); input = ShiftLeft(input, iota_m); input = Reduce(input, Zero(&b, output_logical_type), CreateScalarOrComputation(output_logical_type, &b), {from_shape.rank() - 1}); } BitcastConvertType(input, to_shape.element_type()); TF_ASSIGN_OR_RETURN(XlaComputation xla_computation, b.Build()); TF_ASSIGN_OR_RETURN(ProgramShape program_shape, xla_computation.GetProgramShape()); HloModuleConfig config(program_shape); TF_ASSIGN_OR_RETURN(auto new_module, HloModule::CreateFromProto( xla_computation.proto(), config)); HloCloneContext context(module); computation = module->DeepCloneComputation(new_module->entry_computation(), &context); } return instruction->parent()->AddInstruction(HloInstruction::CreateCall( instruction->shape(), instruction->operands(), computation)); } bool BitcastDtypesExpander::InstructionMatchesPattern( HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kBitcastConvert && primitive_util::BitWidth(instruction->shape().element_type()) != primitive_util::BitWidth( instruction->operand(0)->shape().element_type()); } }
#include "xla/service/bitcast_dtypes_expander.h" #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class BitcastDtypesExpanderTest : public HloTestBase {}; TEST_F(BitcastDtypesExpanderTest, S32toS8) { absl::string_view hlo_string = R"( HloModule bitcast_to_smaller ENTRY main { p = s32[10] parameter(0) ROOT out = s8[10,4] bitcast-convert(p) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(BitcastDtypesExpanderTest, S64toS32) { absl::string_view hlo_string = R"( HloModule bitcast_to_smaller ENTRY main { p = s64[10] parameter(0) ROOT out = s32[10,2] bitcast-convert(p) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(BitcastDtypesExpanderTest, S8toS32) { absl::string_view hlo_string = R"( HloModule bitcast_to_larger ENTRY main { p = s8[10,4] parameter(0) ROOT out = s32[10] bitcast-convert(p) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(BitcastDtypesExpanderTest, RewriteInsideWhileTest) { absl::string_view hlo_string = R"( HloModule module body { p_body = (f32[2], s32[]) parameter(0) val1 = f32[2] get-tuple-element(p_body), index=0 val2 = s32[] get-tuple-element(p_body), index=1 const = s32[] constant(42) converted_val2 = s8[4] bitcast-convert(val2) converted_const = s8[4] bitcast-convert(const) add = s8[4] add(converted_val2, converted_const) out_add = s32[] bitcast-convert(add) ROOT root = (f32[2], s32[]) tuple(val1, out_add) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/bitcast_dtypes_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/bitcast_dtypes_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0c1c9d13-d0f8-48d2-8b19-bb7cb1d46d0c
cpp
tensorflow/tensorflow
reffed_status_callback
tensorflow/core/util/reffed_status_callback.h
tensorflow/core/util/reffed_status_callback_test.cc
#ifndef TENSORFLOW_CORE_UTIL_REFFED_STATUS_CALLBACK_H_ #define TENSORFLOW_CORE_UTIL_REFFED_STATUS_CALLBACK_H_ #include <utility> #include "absl/strings/str_cat.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { class ReffedStatusCallback : public core::RefCounted { public: explicit ReffedStatusCallback(StatusCallback done) : done_(std::move(done)) {} void UpdateStatus(const Status& s) { mutex_lock lock(mu_); status_group_.Update(s); } bool ok() { tf_shared_lock lock(mu_); return status_group_.ok(); } Status status() { tf_shared_lock lock(mu_); return status_group_.as_summary_status(); } ~ReffedStatusCallback() override { done_(status_group_.as_summary_status()); } private: StatusCallback done_; mutex mu_; StatusGroup status_group_ TF_GUARDED_BY(mu_); }; } #endif
#include "tensorflow/core/util/reffed_status_callback.h" #include <atomic> #include <utility> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace { TEST(TestReffedStatusCallback, CallsBackOK) { bool called = false; Status status = absl::InvalidArgumentError(""); auto done = [&called, &status](const Status& s) { called = true; status = s; }; auto* cb = new ReffedStatusCallback(std::move(done)); EXPECT_FALSE(called); cb->Unref(); EXPECT_TRUE(called); EXPECT_TRUE(status.ok()); } TEST(TestReffedStatusCallback, CallsBackFail) { bool called = false; Status status = absl::OkStatus(); auto done = [&called, &status](const Status& s) { called = true; status = s; }; auto* cb = new ReffedStatusCallback(std::move(done)); cb->UpdateStatus(absl::InternalError("1")); cb->UpdateStatus(absl::InvalidArgumentError("2")); EXPECT_FALSE(called); cb->Unref(); EXPECT_TRUE(called); EXPECT_THAT(status.code(), ::testing::AnyOf(error::INTERNAL, error::INVALID_ARGUMENT)); EXPECT_TRUE(absl::StrContains(status.message(), "1")); EXPECT_TRUE(absl::StrContains(status.message(), "2")); } TEST(TestReffedStatusCallback, RefMulti) { int called = false; Status status = absl::OkStatus(); auto done = [&called, &status](const Status& s) { called = true; status = s; }; auto* cb = new ReffedStatusCallback(std::move(done)); cb->Ref(); cb->UpdateStatus(absl::InternalError("1")); cb->Ref(); cb->UpdateStatus(absl::InternalError("2")); cb->Unref(); cb->Unref(); EXPECT_FALSE(called); cb->Unref(); EXPECT_TRUE(called); EXPECT_TRUE(absl::StrContains(status.message(), "1")); EXPECT_TRUE(absl::StrContains(status.message(), "2")); } TEST(TestReffedStatusCallback, MultiThreaded) { std::atomic<int> num_called(0); Status status; Notification n; auto done = [&num_called, &status, &n](const Status& s) { ++num_called; status = s; n.Notify(); }; auto* cb = new ReffedStatusCallback(std::move(done)); thread::ThreadPool threads(Env::Default(), "test", 3); for (int i = 0; i < 5; ++i) { cb->Ref(); threads.Schedule([cb]() { cb->UpdateStatus(absl::InvalidArgumentError("err")); cb->Unref(); }); } cb->Unref(); n.WaitForNotification(); EXPECT_EQ(num_called.load(), 1); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(status.message(), "err")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/reffed_status_callback.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/reffed_status_callback_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0c721096-8562-4b1d-b7aa-af2b88995ff3
cpp
tensorflow/tensorflow
strided_slice_logic
tensorflow/lite/kernels/internal/strided_slice_logic.h
tensorflow/lite/kernels/internal/strided_slice_logic_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_STRIDED_SLICE_LOGIC_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_STRIDED_SLICE_LOGIC_H_ #include <limits> #include <vector> #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace strided_slice { inline int Clamp(const int v, const int lo, const int hi) { TFLITE_DCHECK(!(hi < lo)); if (hi < v) return hi; if (v < lo) return lo; return v; } inline void StridedSlicePadIndices(tflite::StridedSliceParams* p, int dim_count) { TFLITE_CHECK_LE(dim_count, 5); TFLITE_CHECK_GE(dim_count, p->start_indices_count); TFLITE_CHECK_EQ(p->start_indices_count, p->stop_indices_count); TFLITE_CHECK_EQ(p->stop_indices_count, p->strides_count); const int pad_count = dim_count - p->start_indices_count; for (int i = p->start_indices_count - 1; i >= 0; --i) { p->strides[i + pad_count] = p->strides[i]; p->start_indices[i + pad_count] = p->start_indices[i]; p->stop_indices[i + pad_count] = p->stop_indices[i]; } for (int i = 0; i < pad_count; ++i) { p->start_indices[i] = 0; p->stop_indices[i] = 1; p->strides[i] = 1; } p->shrink_axis_mask <<= pad_count; p->ellipsis_mask <<= pad_count; p->new_axis_mask <<= pad_count; p->begin_mask <<= pad_count; p->end_mask <<= pad_count; p->begin_mask |= (1 << pad_count) - 1; p->end_mask |= (1 << pad_count) - 1; p->start_indices_count = dim_count; p->stop_indices_count = dim_count; p->strides_count = dim_count; } inline int StridedSliceStartForAxis(const tflite::StridedSliceParams& params, const RuntimeShape& input_shape, int32_t axis) { const int32_t axis_size = input_shape.Dims(axis); int32_t start = params.start_indices[axis]; const int32_t stride = params.strides[axis]; const int32_t begin_mask = (params.begin_mask & 1 << axis); if (start < 0) { start += axis_size; } if (stride > 0) { start = Clamp(start, 0, axis_size); } else { start = Clamp(start, -1, axis_size - 1); } if (begin_mask) { if (stride > 0) { start = 0; } else { start = axis_size - 1; } } return start; } inline int StridedSliceEndForAxis(const tflite::StridedSliceParams& params, const RuntimeShape& input_shape, int axis, int start) { const auto shrink_axis_mask = params.shrink_axis_mask; const bool shrink_axis = shrink_axis_mask & (1 << axis); const int axis_size = input_shape.Dims(axis); const bool offset = params.offset; if (shrink_axis) { if (start >= axis_size) { return start; } else { return start + 1; } } const auto* indices = params.stop_indices; int end = indices[axis]; if (offset) { end += start; } const int32_t stride = params.strides[axis]; const int32_t end_mask = (params.end_mask & 1 << axis); if (end < 0) { end += axis_size; } if (stride > 0) { end = Clamp(end, 0, axis_size); } else { end = Clamp(end, -1, axis_size - 1); } if (end_mask) { if (stride > 0) { end = axis_size; } else { end = -1; } } return end; } inline int StartForAxis(const tflite::StridedSliceParams& params, const RuntimeShape& input_shape, int axis) { const auto begin_mask = params.begin_mask; const auto* start_indices = params.start_indices; const auto* strides = params.strides; const int axis_size = input_shape.Dims(axis); if (axis_size == 0) { return 0; } int start = start_indices[axis]; if (begin_mask & 1 << axis) { if (strides[axis] > 0) { start = std::numeric_limits<int>::lowest(); } else { start = std::numeric_limits<int>::max(); } } if (start < 0) { start += axis_size; } if (strides[axis] > 0) { start = Clamp(start, 0, axis_size); } else { start = Clamp(start, -1, axis_size - 1); } return start; } inline int StopForAxis(const tflite::StridedSliceParams& params, const RuntimeShape& input_shape, int axis, int start_for_axis) { const auto end_mask = params.end_mask; const auto shrink_axis_mask = params.shrink_axis_mask; const auto* stop_indices = params.stop_indices; const auto* strides = params.strides; const int axis_size = input_shape.Dims(axis); if (axis_size == 0) { return 0; } const bool shrink_axis = shrink_axis_mask & (1 << axis); int stop = stop_indices[axis]; if (shrink_axis) { return start_for_axis + 1; } if (end_mask & (1 << axis)) { if (strides[axis] > 0) { stop = std::numeric_limits<int>::max(); } else { stop = std::numeric_limits<int>::lowest(); } } if (stop < 0) { stop += axis_size; } if (strides[axis] > 0) { stop = Clamp(stop, 0, axis_size); } else { stop = Clamp(stop, -1, axis_size - 1); } return stop; } inline bool LoopCondition(int index, int stop, int stride) { return stride > 0 ? index >= stop : index <= stop; } inline tflite::StridedSliceParams BuildStridedSliceParams( int begin_mask, int end_mask, int shrink_axis_mask, const std::vector<int>& start_indices, const std::vector<int>& stop_indices, const std::vector<int>& strides) { tflite::StridedSliceParams op_params{}; const int dims_count = start_indices.size(); op_params.start_indices_count = dims_count; op_params.stop_indices_count = dims_count; op_params.strides_count = dims_count; for (int i = 0; i < dims_count; ++i) { op_params.start_indices[i] = start_indices[i]; op_params.stop_indices[i] = stop_indices[i]; op_params.strides[i] = strides[i]; } op_params.begin_mask = begin_mask; op_params.ellipsis_mask = 0; op_params.end_mask = end_mask; op_params.new_axis_mask = 0; op_params.shrink_axis_mask = shrink_axis_mask; return op_params; } } } #endif
#include "tensorflow/lite/kernels/internal/strided_slice_logic.h" #include <initializer_list> #include <gtest/gtest.h> namespace tflite { namespace { void RunStridedSlicePadIndices(std::initializer_list<int> begin, std::initializer_list<int> end, std::initializer_list<int> stride, std::initializer_list<int> expected_begin, std::initializer_list<int> expected_end, std::initializer_list<int> expected_stride) { StridedSliceParams op_params; int dims = begin.size(); op_params.start_indices_count = dims; op_params.stop_indices_count = dims; op_params.strides_count = dims; for (int i = 0; i < dims; ++i) { op_params.start_indices[i] = begin.begin()[i]; op_params.stop_indices[i] = end.begin()[i]; op_params.strides[i] = stride.begin()[i]; } strided_slice::StridedSlicePadIndices(&op_params, 4); for (int i = 0; i < 4; ++i) { EXPECT_EQ(op_params.start_indices[i], expected_begin.begin()[i]); EXPECT_EQ(op_params.stop_indices[i], expected_end.begin()[i]); EXPECT_EQ(op_params.strides[i], expected_stride.begin()[i]); } } TEST(RunStridedSlicePadIndices, Pad1) { RunStridedSlicePadIndices({1, 2, 3}, {4, 5, 6}, {2, 2, 2}, {0, 1, 2, 3}, {1, 4, 5, 6}, {1, 2, 2, 2} ); } TEST(RunStridedSlicePadIndices, Pad2) { RunStridedSlicePadIndices({1, 2}, {4, 5}, {2, 2}, {0, 0, 1, 2}, {1, 1, 4, 5}, {1, 1, 2, 2} ); } TEST(RunStridedSlicePadIndices, Pad3) { RunStridedSlicePadIndices({1}, {4}, {2}, {0, 0, 0, 1}, {1, 1, 1, 4}, {1, 1, 1, 2} ); } TEST(StridedSliceStartForAxis, NegativeOOBIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = -11; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 0); } TEST(StridedSliceStartForAxis, NegativeOneTheBoundaryIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = -10; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 0); } TEST(StridedSliceStartForAxis, NegativeWithinBoundsIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = -9; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 1); } TEST(StridedSliceStartForAxis, MinusOneIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = -1; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 9); } TEST(StridedSliceStartForAxis, ZeroIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = 0; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 0); } TEST(StridedSliceStartForAxis, OneIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = 1; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 1); } TEST(StridedSliceStartForAxis, PositiveBoundaryIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = 9; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 9); } TEST(StridedSliceStartForAxis, PositiveOOBIndexSizeofArray) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = 10; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 10); } TEST(StridedSliceStartForAxis, PositiveOOBIndex) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = 11; params.strides[0] = 1; int start = strided_slice::StridedSliceStartForAxis( params, RuntimeShape({10}), 0); EXPECT_EQ(start, 10); } TEST(StridedSliceStartForAxis, TenFourMinus1) { StridedSliceParams params{}; params.begin_mask = 0; params.end_mask = 0; params.start_indices[0] = 5; params.stop_indices[0] = 2; params.strides[0] = -1; int start = strided_slice::StridedSliceStartForAxis(params, RuntimeShape({4}), 0); int stop = strided_slice::StridedSliceEndForAxis(params, RuntimeShape({4}), 0, start); EXPECT_EQ(start, 3); EXPECT_EQ(stop, 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/strided_slice_logic.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/strided_slice_logic_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b33caddb-e189-4706-ad85-019b3a5d26d2
cpp
google/tensorstore
iterate_over_index_range
tensorstore/util/iterate_over_index_range.h
tensorstore/util/iterate_over_index_range_test.cc
#ifndef TENSORSTORE_UTIL_ITERATE_OVER_INDEX_RANGE_H_ #define TENSORSTORE_UTIL_ITERATE_OVER_INDEX_RANGE_H_ #include <cassert> #include <type_traits> #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/internal/void_wrapper.h" #include "tensorstore/rank.h" #include "tensorstore/util/constant_vector.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_iterate { inline constexpr DimensionIndex GetLoopDimension(ContiguousLayoutOrder order, DimensionIndex outer_dims, DimensionIndex total_dims) { return order == ContiguousLayoutOrder::c ? outer_dims : total_dims - 1 - outer_dims; } template <typename Func, typename IndexType, DimensionIndex Rank> using IterateOverIndexRangeResult = std::decay_t< std::invoke_result_t<Func, tensorstore::span<const IndexType, Rank>>>; template <ContiguousLayoutOrder Order, typename Func, typename IndexType, DimensionIndex Rank> struct IterateOverIndexRangeHelper { using IndicesSpan = tensorstore::span<const IndexType, Rank>; using ResultType = IterateOverIndexRangeResult<Func, IndexType, Rank>; using WrappedResultType = internal::Void::WrappedType<ResultType>; static WrappedResultType LoopImpl( Func func, DimensionIndex outer_dims, const IndexType* origin, const IndexType* shape, tensorstore::span<IndexType, Rank> indices) { WrappedResultType result = internal::DefaultIterationResult<WrappedResultType>::value(); const DimensionIndex cur_dim = GetLoopDimension(Order, outer_dims, indices.size()); const IndexType start = origin[cur_dim]; const IndexType stop = shape[cur_dim] + start; if (outer_dims + 1 == indices.size()) { for (IndexType i = start; i < stop; ++i) { indices[cur_dim] = i; result = internal::Void::CallAndWrap(func, IndicesSpan(indices)); if (!result) break; } } else { for (IndexType i = start; i < stop; ++i) { indices[cur_dim] = i; result = LoopImpl(func, outer_dims + 1, origin, shape, indices); if (!result) break; } } return result; } static ResultType Start(Func func, const IndexType* origin, IndicesSpan shape) { if (shape.size() == 0) { return func(tensorstore::span<const IndexType, Rank>()); } assert(shape.size() <= kMaxRank); IndexType indices[kMaxRank]; return internal::Void::Unwrap(LoopImpl( func, 0, &origin[0], &shape[0], tensorstore::span<IndexType, Rank>(&indices[0], shape.size()))); } }; } template <ContiguousLayoutOrder Order = ContiguousLayoutOrder::c, typename IndexType, DimensionIndex Rank, typename Func> internal_iterate::IterateOverIndexRangeResult< Func, std::remove_const_t<IndexType>, Rank> IterateOverIndexRange(tensorstore::span<IndexType, Rank> origin, tensorstore::span<IndexType, Rank> shape, Func&& func) { assert(origin.size() == shape.size()); return internal_iterate::IterateOverIndexRangeHelper< Order, Func, std::remove_const_t<IndexType>, Rank>::Start(func, origin.data(), shape); } template <ContiguousLayoutOrder Order = ContiguousLayoutOrder::c, typename BoxType, typename Func> std::enable_if_t<IsBoxLike<BoxType>, internal_iterate::IterateOverIndexRangeResult< Func, Index, BoxType::static_rank>> IterateOverIndexRange(const BoxType& box, Func&& func, ContiguousLayoutOrder order = ContiguousLayoutOrder::c) { return internal_iterate::IterateOverIndexRangeHelper< Order, Func, Index, BoxType::static_rank>::Start(func, box.origin().data(), box.shape()); } template <ContiguousLayoutOrder Order = ContiguousLayoutOrder::c, typename IndexType, DimensionIndex Rank, typename Func> internal_iterate::IterateOverIndexRangeResult< Func, std::remove_const_t<IndexType>, Rank> IterateOverIndexRange(tensorstore::span<IndexType, Rank> shape, Func&& func) { using NonConstIndex = std::remove_const_t<IndexType>; return internal_iterate:: IterateOverIndexRangeHelper<Order, Func, NonConstIndex, Rank>::Start( func, GetConstantVector<NonConstIndex, 0>(GetStaticOrDynamicExtent(shape)) .data(), shape); } } #endif
#include "tensorstore/util/iterate_over_index_range.h" #include <vector> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::Index; using ::tensorstore::IterateOverIndexRange; using ::tensorstore::span; TEST(IterateOverIndexRange, COrder) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::c>( span({2, 3}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, FortranOrder) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 0}, {1, 0}, {0, 1}, {1, 1}, {0, 2}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::fortran>( span({2, 3}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, COrderWithOrigin) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 1}, {0, 2}, {1, 1}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::c>( span({0, 1}), span({2, 2}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, FortranOrderWithOrigin) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 1}, {1, 1}, {0, 2}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::fortran>( span({0, 1}), span({2, 2}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, COrderWithBox) { using R = std::vector<Index>; std::vector<R> result; const std::vector<R> expected_result{{0, 1}, {0, 2}, {1, 1}, {1, 2}}; IterateOverIndexRange( tensorstore::BoxView({0, 1}, {2, 2}), [&](span<const Index, 2> x) { result.emplace_back(x.begin(), x.end()); }, ContiguousLayoutOrder::c); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, RankZero) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{R{}}; IterateOverIndexRange<ContiguousLayoutOrder::fortran>( span<const int, 0>(), [&](span<const int, 0> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, Stop) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 0}, {0, 1}}; EXPECT_EQ(false, IterateOverIndexRange<ContiguousLayoutOrder::c>( span({2, 3}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); return x[1] != 1; })); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, ZeroElementsBoolReturn) { EXPECT_EQ(true, IterateOverIndexRange<ContiguousLayoutOrder::c>( span({0}), [&](span<const int, 1> x) { return false; })); } TEST(IterateOverIndexRange, StaticRankZero) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{R{}}; IterateOverIndexRange(span<const int, 0>{}, [&](span<const int, 0> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, DynamicRankZero) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{R{}}; IterateOverIndexRange(span<const int>(nullptr, 0), [&](span<const int> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/iterate_over_index_range.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/iterate_over_index_range_test.cc
4f887a6430414cd6088e1743555015b10f116d50
dc588779-d7fa-4d6d-84b8-e9aba3af929e
cpp
tensorflow/tensorflow
graph_partition
tensorflow/core/tfrt/utils/graph_partition.cc
tensorflow/core/tfrt/utils/graph_partition_test.cc
#include "tensorflow/core/tfrt/utils/graph_partition.h" #include <algorithm> #include <functional> #include <map> #include <memory> #include <optional> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/inline_function_utils.h" #include "tensorflow/core/common_runtime/partitioning_utils.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_partition.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace tfrt_stub { namespace { struct NodeInfo { Node* node = nullptr; DataType data_type; int index = -1; Node* node_copy = nullptr; }; struct CallNodeInputInfo { int index = -1; DataType data_type; Node* input_node = nullptr; int input_node_index = -1; Node* arg_node = nullptr; Node* ret_node = nullptr; }; struct OutputNodeInfo { absl::flat_hash_map<std::string, NodeInfo> output_nodes; std::optional<std::pair<std::string, NodeInfo>> auxiliary_output_node; }; Status PrepareSubgraphForFunctionConversion( const std::vector<std::string>& inputs, const std::vector<std::string>& outputs, const Device* host_device, const std::string& func_name, absl::flat_hash_map<std::string, NodeInfo>& input_nodes, absl::flat_hash_map<std::string, NodeInfo>& output_nodes, std::optional<std::pair<std::string, NodeInfo>>& auxiliary_output_node, Graph* subgraph, Graph* graph) { std::unordered_map<std::string, Node*> name_to_node_map = subgraph->BuildNodeNameIndex(); int input_index = 0, output_index = 0; for (const auto& input : inputs) { int position = -1; std::string node_name = grappler::ParseNodeName(input, &position); if (position != 0) { return errors::Unimplemented( "Support for input node with multiple output tensors is not " "implemented."); } if (name_to_node_map.count(node_name) == 0) continue; Node* node = name_to_node_map.at(node_name); NodeInfo node_info; node_info.node = node; node_info.data_type = node->output_type(position); node_info.index = input_index++; node_info.node_copy = graph->CopyNode(node); input_nodes.emplace(node->name(), node_info); TF_ASSIGN_OR_RETURN( Node * arg_node, NodeBuilder(absl::StrCat("arg_", node_info.index, "/", node->name()), "_Arg") .Attr("index", node_info.index) .Attr("T", node_info.data_type) .Finalize(subgraph)); CHECK_EQ(node->num_inputs(), 0); std::vector<const Edge*> out_edges(node->out_edges().begin(), node->out_edges().end()); for (const Edge* edge : out_edges) { if (edge->IsControlEdge()) { subgraph->AddControlEdge(arg_node, edge->dst()); } else { TF_RETURN_IF_ERROR( subgraph->UpdateEdge(arg_node, 0, edge->dst(), edge->dst_input())); } } subgraph->RemoveNode(node); } for (const auto& output : outputs) { int position = -1; std::string node_name = grappler::ParseNodeName(output, &position); if (position != 0) { return errors::Unimplemented( "Support for output node with multiple output tensors is not " "implemented."); } if (name_to_node_map.count(node_name) == 0) continue; Node* node = name_to_node_map.at(node_name); NodeInfo node_info; node_info.node = node; node_info.data_type = node->output_type(position); node_info.index = output_index++; output_nodes.emplace(node->name(), node_info); TF_ASSIGN_OR_RETURN( Node * ret_node, NodeBuilder(absl::StrCat("ret_", node_info.index, "/", node->name()), "_Retval") .Attr("index", node_info.index) .Attr("T", node_info.data_type) .Input(NodeBuilder::NodeOut(node->name(), position, node_info.data_type)) .Finalize(subgraph)); node->set_name(node->name() + "/partition_renamed"); subgraph->AddEdge(node, 0, ret_node, 0); } if (output_nodes.empty()) { const DataType data_type = DT_INT32; TensorShape const_shape; Tensor const_tensor(data_type, const_shape); const_tensor.flat<int>()(0) = 0; TF_ASSIGN_OR_RETURN( Node * const_node, NodeBuilder(absl::StrCat("const/unused/", func_name), "Const") .AssignedDevice(host_device->name()) .Attr("dtype", data_type) .Attr("value", const_tensor) .Finalize(subgraph)); NodeInfo node_info; node_info.node = const_node; node_info.data_type = data_type; node_info.index = output_index++; auxiliary_output_node.emplace(const_node->name(), node_info); TF_ASSIGN_OR_RETURN( Node * ret_node, NodeBuilder( absl::StrCat("ret_", node_info.index, "/", const_node->name()), "_Retval") .Attr("index", node_info.index) .Attr("T", data_type) .Input(NodeBuilder::NodeOut(const_node->name(), 0, data_type)) .Finalize(subgraph)); subgraph->AddEdge(const_node, 0, ret_node, 0); } return absl::OkStatus(); } absl::StatusOr<Node*> BuildPartitionedCallOp( const std::string& func_name, const Device* host_device, const std::string& device, const absl::flat_hash_map<std::string, NodeInfo>& input_nodes, const absl::flat_hash_map<std::string, NodeInfo>& output_nodes, const absl::optional<std::pair<std::string, NodeInfo>>& auxiliary_output_node, const std::vector<std::string>& control_outputs, Graph* subgraph, Graph* graph) { std::string call_node_name = absl::StrCat("partitioned_call/", func_name); NodeBuilder call_builder(call_node_name, "PartitionedCall"); call_builder.AssignedDevice(host_device->name()); call_builder.Attr(tensorflow::kNoInlineAttr, true); std::vector<DataType> input_dtypes(input_nodes.size()); for (const auto& input_node : input_nodes) { input_dtypes[input_node.second.index] = input_node.second.data_type; } call_builder.Attr("Tin", input_dtypes); CHECK(auxiliary_output_node ? output_nodes.empty() : !output_nodes.empty()); std::vector<DataType> output_dtypes( auxiliary_output_node ? 1 : output_nodes.size()); if (auxiliary_output_node) { CHECK_EQ(auxiliary_output_node->second.index, 0); output_dtypes[auxiliary_output_node->second.index] = auxiliary_output_node->second.data_type; } else { for (const auto& output_node : output_nodes) { output_dtypes[output_node.second.index] = output_node.second.data_type; } } call_builder.Attr("Tout", output_dtypes); std::vector<NodeBuilder::NodeOut> call_node_inputs(input_nodes.size()); for (const auto& input_node : input_nodes) { call_node_inputs[input_node.second.index] = NodeBuilder::NodeOut(input_node.second.node_copy, 0); } call_builder.Input(call_node_inputs); NameAttrList f; f.set_name(func_name); call_builder.Attr("f", f); TF_ASSIGN_OR_RETURN(Node * call_node, call_builder.Finalize(graph)); absl::flat_hash_set<std::string> control_ret_names(control_outputs.begin(), control_outputs.end()); for (const Node* node : subgraph->op_nodes()) { if (node->IsSend()) { control_ret_names.insert(node->name()); } } auto control_ret_node_names = [&control_ret_names](const Node* node) -> absl::optional<std::string> { if (control_ret_names.contains(node->name())) { return node->name(); } return std::nullopt; }; FunctionDef new_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*subgraph, func_name, control_ret_node_names, &new_fdef)); (*new_fdef.mutable_attr())[tensorflow::kNoInlineAttr].set_b(true); (*new_fdef.mutable_attr())["device"].set_s(device); TF_RETURN_IF_ERROR(graph->mutable_flib_def()->AddFunctionDef(new_fdef)); return call_node; } absl::StatusOr<Node*> BuildStatefulPartitionedCallOp( absl::flat_hash_map<std::string, CallNodeInputInfo>& call_node_input_info, const absl::flat_hash_map<std::string, Node*>& all_partitioned_call_ops, const std::string& stateful_call_func_name, const Device* host_device, Graph* graph) { std::string call_node_name = absl::StrCat("stateful_partitioned_call/", stateful_call_func_name); NodeBuilder call_builder(call_node_name, "StatefulPartitionedCall"); call_builder.Attr(tensorflow::kNoInlineAttr, true); call_builder.AssignedDevice(host_device->name()); int num_output_nodes = call_node_input_info.size(); std::vector<DataType> input_dtypes(num_output_nodes); for (const auto& node_info : call_node_input_info) { CHECK(node_info.second.index < num_output_nodes); input_dtypes[node_info.second.index] = node_info.second.data_type; } call_builder.Attr("Tin", input_dtypes); call_builder.Attr("Tout", input_dtypes); std::vector<NodeBuilder::NodeOut> call_node_inputs(num_output_nodes); for (const auto& node_info : call_node_input_info) { call_node_inputs[node_info.second.index] = NodeBuilder::NodeOut( node_info.second.input_node, node_info.second.input_node_index); } call_builder.Input(call_node_inputs); NameAttrList f; f.set_name(stateful_call_func_name); call_builder.Attr("f", f); TF_ASSIGN_OR_RETURN(Node * stateful_call_node, call_builder.Finalize(graph)); auto id_graph = std::make_unique<Graph>(graph->flib_def().default_registry()); std::vector<NodeBuilder::NodeOut> output_tensors(num_output_nodes); for (auto& node_info : call_node_input_info) { TF_ASSIGN_OR_RETURN(node_info.second.arg_node, NodeBuilder(absl::StrCat("arg_", node_info.second.index, "/", stateful_call_func_name), "_Arg") .Attr("index", node_info.second.index) .Attr("T", node_info.second.data_type) .Finalize(id_graph.get())); output_tensors[node_info.second.index] = NodeBuilder::NodeOut(node_info.second.arg_node, 0); } TF_ASSIGN_OR_RETURN( Node * identity_node, NodeBuilder(absl::StrCat("identityN", "/", stateful_call_func_name), "IdentityN") .AssignedDevice(host_device->name()) .Input(output_tensors) .Finalize(id_graph.get())); for (auto& node_info : call_node_input_info) { TF_ASSIGN_OR_RETURN( node_info.second.ret_node, NodeBuilder(absl::StrCat("ret_", node_info.second.index, "/", stateful_call_func_name), "_Retval") .Attr("index", node_info.second.index) .Attr("T", node_info.second.data_type) .Input(NodeBuilder::NodeOut(identity_node, node_info.second.index)) .Finalize(id_graph.get())); id_graph->AddEdge(identity_node, node_info.second.index, node_info.second.ret_node, 0); } FunctionDef id_fdef; TF_RETURN_IF_ERROR( GraphToFunctionDef(*id_graph, stateful_call_func_name, &id_fdef)); (*id_fdef.mutable_attr())[tensorflow::kNoInlineAttr].set_b(true); TF_RETURN_IF_ERROR(graph->mutable_flib_def()->AddFunctionDef(id_fdef)); return stateful_call_node; } bool HasMultipleDevices(const Graph* graph) { bool has_multiple_devices = false; std::optional<std::string> location; for (const Node* node : graph->op_nodes()) { if (location) { if (*location != node->assigned_device_name()) { has_multiple_devices = true; break; } } else { location = node->assigned_device_name(); } } return has_multiple_devices; } std::string GetNameFromDevice(const std::string& device) { std::string ret = device; for (int i = 0; i < ret.size(); ++i) { if (ret[i] == ':') ret[i] = '_'; } return ret; } } absl::StatusOr<std::unique_ptr<Graph>> InsertTransferOps( const std::string& graph_func_name, const DeviceSet& device_set, const Device* host_device, const std::vector<std::string>& inputs, const std::vector<std::string>& outputs, const std::vector<std::string>& control_outputs, std::unique_ptr<Graph> graph) { if (!HasMultipleDevices(graph.get())) { return graph; } auto new_graph = std::make_unique<Graph>(graph->flib_def()); FunctionDefLibrary flib = graph->flib_def().ToProto(); std::unordered_map<string, std::unique_ptr<Graph>> partitions; TF_RETURN_IF_ERROR( PartitionFunctionGraph(device_set, std::move(graph), &partitions)); absl::flat_hash_map<std::string, Node*> all_partitioned_call_ops; std::map<std::string, OutputNodeInfo> device_to_output_info_map; for (auto& partition : partitions) { const string& device = partition.first; VLOG(1) << "Process the partitioin on device: " << device; Graph* subgraph = partition.second.get(); TF_RETURN_IF_ERROR(subgraph->AddFunctionLibrary(flib)); FunctionNameGenerator name_generator( &new_graph->flib_def(), absl::StrCat(graph_func_name, "-partition-", GetNameFromDevice(device))); std::string func_name = name_generator.GetName(); absl::flat_hash_map<std::string, NodeInfo> input_nodes; OutputNodeInfo& output_node_info = device_to_output_info_map[device]; absl::flat_hash_map<std::string, NodeInfo>& output_nodes = output_node_info.output_nodes; std::optional<std::pair<std::string, NodeInfo>>& auxiliary_output_node = output_node_info.auxiliary_output_node; TF_RETURN_IF_ERROR(PrepareSubgraphForFunctionConversion( inputs, outputs, host_device, func_name, input_nodes, output_nodes, auxiliary_output_node, subgraph, new_graph.get())); TF_ASSIGN_OR_RETURN( Node * call_node, BuildPartitionedCallOp(func_name, host_device, device, input_nodes, output_nodes, auxiliary_output_node, control_outputs, subgraph, new_graph.get())); all_partitioned_call_ops[device] = call_node; } int input_index = 0; absl::flat_hash_map<std::string, CallNodeInputInfo> call_node_input_info; auto get_call_node_input_info = [&](const std::string& device, const std::string& node_name, const NodeInfo& node_info) { CHECK(!call_node_input_info.contains(node_name)); CallNodeInputInfo& info = call_node_input_info[node_name]; info.index = input_index++; info.data_type = node_info.data_type; info.input_node = all_partitioned_call_ops.at(device); info.input_node_index = node_info.index; }; for (const auto& entry : device_to_output_info_map) { const std::string& device = entry.first; const OutputNodeInfo& output_info = entry.second; for (const auto& node_info : output_info.output_nodes) { get_call_node_input_info(device, node_info.first, node_info.second); } if (output_info.auxiliary_output_node) { get_call_node_input_info(device, output_info.auxiliary_output_node->first, output_info.auxiliary_output_node->second); } } FunctionNameGenerator name_generator( &new_graph->flib_def(), absl::StrCat(graph_func_name, "/output_aggregator")); std::string stateful_call_func_name = name_generator.GetName(); TF_ASSIGN_OR_RETURN( Node * stateful_call_node, BuildStatefulPartitionedCallOp( call_node_input_info, all_partitioned_call_ops, stateful_call_func_name, host_device, new_graph.get())); for (const auto& node_info : call_node_input_info) { TF_RETURN_IF_ERROR(NodeBuilder(node_info.first, "Identity") .Input(NodeBuilder::NodeOut(stateful_call_node, node_info.second.index)) .Attr("T", node_info.second.data_type) .AssignedDevice(host_device->name()) .Finalize(new_graph.get(), nullptr)); } CHECK_GT(stateful_call_node->num_outputs(), 0); for (const auto& control_output : control_outputs) { TF_RETURN_IF_ERROR(NodeBuilder(control_output, "Identity") .Input(NodeBuilder::NodeOut(stateful_call_node, 0)) .Attr("T", stateful_call_node->output_type(0)) .AssignedDevice(host_device->name()) .Finalize(new_graph.get(), nullptr)); } return new_graph; } } }
#include "tensorflow/core/tfrt/utils/graph_partition.h" #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/inline_function_utils.h" #include "tensorflow/core/common_runtime/placer.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::testing::IsEmpty; using ::testing::NotNull; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; class GraphPartitionTest : public grappler::GrapplerTest { public: void SetUp() override { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", 2}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices(options, "/job:a/replica:0/task:0", &devices)); device0_ = devices[0].get(); device1_ = devices[1].get(); device_mgr_ = std::make_unique<DynamicDeviceMgr>(std::move(devices)); for (auto d : device_mgr_->ListDevices()) { device_set_.AddDevice(d); } } std::unique_ptr<DeviceMgr> device_mgr_; Device* device0_ = nullptr; Device* device1_ = nullptr; DeviceSet device_set_; }; TEST_F(GraphPartitionTest, InsertTransferOpsWithOneDevice) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); Scope scope = Scope::NewRootScope().WithDevice(device0_->name()); auto input = ops::Placeholder(scope.WithOpName("input"), DT_FLOAT); auto id_x = ops::Identity(scope.WithOpName("identity"), input); auto output = ops::Identity(scope.WithOpName("output"), id_x); TF_ASSERT_OK(scope.ToGraph(graph.get())); GraphDef original_graphdef; TF_ASSERT_OK(scope.ToGraphDef(&original_graphdef)); FunctionLibraryDefinition flib_def(OpRegistry::Global()); Placer placer(graph.get(), "", &flib_def, &device_set_, device0_); TF_ASSERT_OK(placer.Run()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<Graph> new_graph, InsertTransferOps("test_graph", device_set_, device0_, {"input"}, {"output"}, {}, std::move(graph))); GraphDef new_graphdef; new_graph->ToGraphDef(&new_graphdef); CompareGraphs(original_graphdef, new_graphdef); } TEST_F(GraphPartitionTest, InsertTransferOpsWithTwoDevice) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); Scope scope = Scope::NewRootScope(); Scope scope0 = scope.WithDevice(device0_->name()); Scope scope1 = scope.WithDevice(device1_->name()); auto input = ops::Placeholder(scope0.WithOpName("input"), DT_FLOAT); Output id_x = ops::Identity(scope0.WithOpName("id_x"), input); Output id_y = ops::Identity(scope1.WithOpName("id_y"), input); auto output = ops::IdentityN(scope0.WithOpName("output"), {id_x, id_y}); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionLibraryDefinition flib_def(OpRegistry::Global()); Placer placer(graph.get(), "", &flib_def, &device_set_, device0_); TF_ASSERT_OK(placer.Run()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<Graph> new_graph, InsertTransferOps("test_graph", device_set_, device0_, {"input"}, {"output"}, {}, std::move(graph))); GraphDef new_graphdef; new_graph->ToGraphDef(&new_graphdef); NodeDef* input_node = nullptr; NodeDef* output_node = nullptr; NodeDef* stateful_partitioned_call_node = nullptr; std::vector<NodeDef*> partitioned_call_nodes; for (NodeDef& node : *new_graphdef.mutable_node()) { if (node.op() == "PartitionedCall") { partitioned_call_nodes.push_back(&node); } else if (node.op() == "StatefulPartitionedCall") { stateful_partitioned_call_node = &node; } else if (node.name() == "input") { input_node = &node; } else if (node.name() == "output") { output_node = &node; } } ASSERT_THAT(input_node, NotNull()); ASSERT_THAT(output_node, NotNull()); ASSERT_THAT(partitioned_call_nodes, SizeIs(2)); ASSERT_THAT(stateful_partitioned_call_node, NotNull()); EXPECT_THAT(stateful_partitioned_call_node->input(), UnorderedElementsAre(partitioned_call_nodes[0]->name(), partitioned_call_nodes[1]->name())); absl::flat_hash_map<std::string, FunctionDef> func_name_to_func; EXPECT_THAT(new_graphdef.library().function(), SizeIs(3)); for (const FunctionDef& fdef : new_graphdef.library().function()) { ASSERT_TRUE(fdef.attr().contains(tensorflow::kNoInlineAttr)); EXPECT_TRUE(fdef.attr().at(tensorflow::kNoInlineAttr).b()); func_name_to_func[fdef.signature().name()] = fdef; } for (NodeDef* node : partitioned_call_nodes) { ASSERT_TRUE(node->attr().contains("f")); ASSERT_TRUE(func_name_to_func.contains(node->attr().at("f").func().name())); const FunctionDef& fdef = func_name_to_func.at(node->attr().at("f").func().name()); ASSERT_TRUE(fdef.attr().contains("device")); if (fdef.attr().at("device").s() == device0_->name()) { EXPECT_THAT(node->input(), UnorderedElementsAre(input_node->name())); } else if (fdef.attr().at("device").s() == device1_->name()) { EXPECT_THAT(node->input(), IsEmpty()); } ASSERT_TRUE(node->attr().contains(tensorflow::kNoInlineAttr)); EXPECT_TRUE(node->attr().at(tensorflow::kNoInlineAttr).b()); int send_count = 0, recv_count = 0; for (const NodeDef& node : fdef.node_def()) { if (node.op() == "_Send") ++send_count; else if (node.op() == "_Recv") ++recv_count; } EXPECT_EQ(send_count, 1); EXPECT_EQ(recv_count, 1); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/graph_partition.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/graph_partition_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a217a66e-5969-4512-b0f5-1c473f8c4fa5
cpp
google/quiche
qbone_stream
quiche/quic/qbone/qbone_stream.cc
quiche/quic/qbone/qbone_stream_test.cc
#include "quiche/quic/qbone/qbone_stream.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/qbone/qbone_constants.h" #include "quiche/quic/qbone/qbone_session_base.h" #include "quiche/common/platform/api/quiche_command_line_flags.h" DEFINE_QUICHE_COMMAND_LINE_FLAG(int, qbone_stream_ttl_secs, 3, "The QBONE Stream TTL in seconds."); namespace quic { QboneWriteOnlyStream::QboneWriteOnlyStream(QuicStreamId id, QuicSession* session) : QuicStream(id, session, false, WRITE_UNIDIRECTIONAL) { MaybeSetTtl(QuicTime::Delta::FromSeconds( quiche::GetQuicheCommandLineFlag(FLAGS_qbone_stream_ttl_secs))); } void QboneWriteOnlyStream::WritePacketToQuicStream(absl::string_view packet) { WriteOrBufferData(packet, true, nullptr); } QboneReadOnlyStream::QboneReadOnlyStream(QuicStreamId id, QboneSessionBase* session) : QuicStream(id, session, false, READ_UNIDIRECTIONAL), session_(session) { MaybeSetTtl(QuicTime::Delta::FromSeconds( quiche::GetQuicheCommandLineFlag(FLAGS_qbone_stream_ttl_secs))); } void QboneReadOnlyStream::OnDataAvailable() { sequencer()->Read(&buffer_); if (sequencer()->IsClosed()) { session_->ProcessPacketFromPeer(buffer_); OnFinRead(); return; } if (buffer_.size() > QboneConstants::kMaxQbonePacketBytes) { if (!rst_sent()) { Reset(QUIC_BAD_APPLICATION_PAYLOAD); } StopReading(); } } }
#include "quiche/quic/qbone/qbone_stream.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_stream_priority.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/platform/api/quic_test_loopback.h" #include "quiche/quic/qbone/qbone_constants.h" #include "quiche/quic/qbone/qbone_session_base.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/quic/test_tools/mock_connection_id_generator.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/simple_buffer_allocator.h" namespace quic { namespace { using ::testing::_; using ::testing::StrictMock; class MockQuicSession : public QboneSessionBase { public: MockQuicSession(QuicConnection* connection, const QuicConfig& config) : QboneSessionBase(connection, nullptr , config, CurrentSupportedVersions(), nullptr ) {} ~MockQuicSession() override {} QuicConsumedData WritevData(QuicStreamId id, size_t write_length, QuicStreamOffset offset, StreamSendingState state, TransmissionType type, EncryptionLevel level) override { if (!writable_) { return QuicConsumedData(0, false); } return QuicConsumedData(write_length, state != StreamSendingState::NO_FIN); } QboneReadOnlyStream* CreateIncomingStream(QuicStreamId id) override { return nullptr; } MOCK_METHOD(void, MaybeSendRstStreamFrame, (QuicStreamId stream_id, QuicResetStreamError error, QuicStreamOffset bytes_written), (override)); MOCK_METHOD(void, MaybeSendStopSendingFrame, (QuicStreamId stream_id, QuicResetStreamError error), (override)); void set_writable(bool writable) { writable_ = writable; } void RegisterReliableStream(QuicStreamId stream_id) { write_blocked_streams()->RegisterStream(stream_id, false, QuicStreamPriority()); } void ActivateReliableStream(std::unique_ptr<QuicStream> stream) { ActivateStream(std::move(stream)); } std::unique_ptr<QuicCryptoStream> CreateCryptoStream() override { return std::make_unique<test::MockQuicCryptoStream>(this); } MOCK_METHOD(void, ProcessPacketFromPeer, (absl::string_view), (override)); MOCK_METHOD(void, ProcessPacketFromNetwork, (absl::string_view), (override)); private: bool writable_ = true; }; class DummyPacketWriter : public QuicPacketWriter { public: DummyPacketWriter() {} WriteResult WritePacket(const char* buffer, size_t buf_len, const QuicIpAddress& self_address, const QuicSocketAddress& peer_address, PerPacketOptions* options, const QuicPacketWriterParams& params) override { return WriteResult(WRITE_STATUS_ERROR, 0); } bool IsWriteBlocked() const override { return false; }; void SetWritable() override {} std::optional<int> MessageTooBigErrorCode() const override { return std::nullopt; } QuicByteCount GetMaxPacketSize( const QuicSocketAddress& peer_address) const override { return 0; } bool SupportsReleaseTime() const override { return false; } bool IsBatchMode() const override { return false; } bool SupportsEcn() const override { return false; } QuicPacketBuffer GetNextWriteLocation( const QuicIpAddress& self_address, const QuicSocketAddress& peer_address) override { return {nullptr, nullptr}; } WriteResult Flush() override { return WriteResult(WRITE_STATUS_OK, 0); } }; class QboneReadOnlyStreamTest : public ::testing::Test, public QuicConnectionHelperInterface { public: void CreateReliableQuicStream() { Perspective perspective = Perspective::IS_SERVER; bool owns_writer = true; alarm_factory_ = std::make_unique<test::MockAlarmFactory>(); connection_.reset(new QuicConnection( test::TestConnectionId(0), QuicSocketAddress(TestLoopback(), 0), QuicSocketAddress(TestLoopback(), 0), this , alarm_factory_.get(), new DummyPacketWriter(), owns_writer, perspective, ParsedVersionOfIndex(CurrentSupportedVersions(), 0), connection_id_generator_)); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); session_ = std::make_unique<StrictMock<MockQuicSession>>(connection_.get(), QuicConfig()); session_->Initialize(); stream_ = new QboneReadOnlyStream(kStreamId, session_.get()); session_->ActivateReliableStream( std::unique_ptr<QboneReadOnlyStream>(stream_)); } ~QboneReadOnlyStreamTest() override {} const QuicClock* GetClock() const override { return &clock_; } QuicRandom* GetRandomGenerator() override { return QuicRandom::GetInstance(); } quiche::QuicheBufferAllocator* GetStreamSendBufferAllocator() override { return &buffer_allocator_; } protected: QboneReadOnlyStream* stream_; std::unique_ptr<StrictMock<MockQuicSession>> session_; std::unique_ptr<QuicAlarmFactory> alarm_factory_; std::unique_ptr<QuicConnection> connection_; quiche::SimpleBufferAllocator buffer_allocator_; MockClock clock_; const QuicStreamId kStreamId = QuicUtils::GetFirstUnidirectionalStreamId( CurrentSupportedVersions()[0].transport_version, Perspective::IS_CLIENT); quic::test::MockConnectionIdGenerator connection_id_generator_; }; TEST_F(QboneReadOnlyStreamTest, ReadDataWhole) { std::string packet = "Stuff"; CreateReliableQuicStream(); QuicStreamFrame frame(kStreamId, true, 0, packet); EXPECT_CALL(*session_, ProcessPacketFromPeer("Stuff")); stream_->OnStreamFrame(frame); } TEST_F(QboneReadOnlyStreamTest, ReadBuffered) { CreateReliableQuicStream(); std::string packet = "Stuf"; { QuicStreamFrame frame(kStreamId, false, 0, packet); stream_->OnStreamFrame(frame); } packet = "f"; EXPECT_CALL(*session_, ProcessPacketFromPeer("Stuff")); { QuicStreamFrame frame(kStreamId, true, 4, packet); stream_->OnStreamFrame(frame); } } TEST_F(QboneReadOnlyStreamTest, ReadOutOfOrder) { CreateReliableQuicStream(); std::string packet = "f"; { QuicStreamFrame frame(kStreamId, true, 4, packet); stream_->OnStreamFrame(frame); } packet = "S"; { QuicStreamFrame frame(kStreamId, false, 0, packet); stream_->OnStreamFrame(frame); } packet = "tuf"; EXPECT_CALL(*session_, ProcessPacketFromPeer("Stuff")); { QuicStreamFrame frame(kStreamId, false, 1, packet); stream_->OnStreamFrame(frame); } } TEST_F(QboneReadOnlyStreamTest, ReadBufferedTooLarge) { CreateReliableQuicStream(); std::string packet = "0123456789"; int iterations = (QboneConstants::kMaxQbonePacketBytes / packet.size()) + 2; EXPECT_CALL(*session_, MaybeSendStopSendingFrame( kStreamId, QuicResetStreamError::FromInternal( QUIC_BAD_APPLICATION_PAYLOAD))); EXPECT_CALL( *session_, MaybeSendRstStreamFrame( kStreamId, QuicResetStreamError::FromInternal(QUIC_BAD_APPLICATION_PAYLOAD), _)); for (int i = 0; i < iterations; ++i) { QuicStreamFrame frame(kStreamId, i == (iterations - 1), i * packet.size(), packet); if (!stream_->reading_stopped()) { stream_->OnStreamFrame(frame); } } EXPECT_TRUE(stream_->reading_stopped()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_stream.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_stream_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
23685236-e6b3-4b48-baa2-5eeb90ec2264
cpp
google/quiche
quiche_endian
quiche/common/quiche_endian.h
quiche/common/quiche_endian_test.cc
#ifndef QUICHE_COMMON_QUICHE_ENDIAN_H_ #define QUICHE_COMMON_QUICHE_ENDIAN_H_ #include <algorithm> #include <cstdint> #include <type_traits> #include "quiche/common/platform/api/quiche_export.h" namespace quiche { enum Endianness { NETWORK_BYTE_ORDER, HOST_BYTE_ORDER }; class QUICHE_EXPORT QuicheEndian { public: #if defined(__clang__) || \ (defined(__GNUC__) && \ ((__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || __GNUC__ >= 5)) static uint16_t HostToNet16(uint16_t x) { return __builtin_bswap16(x); } static uint32_t HostToNet32(uint32_t x) { return __builtin_bswap32(x); } static uint64_t HostToNet64(uint64_t x) { return __builtin_bswap64(x); } #else static uint16_t HostToNet16(uint16_t x) { return PortableByteSwap(x); } static uint32_t HostToNet32(uint32_t x) { return PortableByteSwap(x); } static uint64_t HostToNet64(uint64_t x) { return PortableByteSwap(x); } #endif static uint16_t NetToHost16(uint16_t x) { return HostToNet16(x); } static uint32_t NetToHost32(uint32_t x) { return HostToNet32(x); } static uint64_t NetToHost64(uint64_t x) { return HostToNet64(x); } template <typename T> static T PortableByteSwap(T input) { static_assert(std::is_unsigned<T>::value, "T has to be uintNN_t"); union { T number; char bytes[sizeof(T)]; } value; value.number = input; std::reverse(&value.bytes[0], &value.bytes[sizeof(T)]); return value.number; } }; enum QuicheVariableLengthIntegerLength : uint8_t { VARIABLE_LENGTH_INTEGER_LENGTH_0 = 0, VARIABLE_LENGTH_INTEGER_LENGTH_1 = 1, VARIABLE_LENGTH_INTEGER_LENGTH_2 = 2, VARIABLE_LENGTH_INTEGER_LENGTH_4 = 4, VARIABLE_LENGTH_INTEGER_LENGTH_8 = 8, kQuicheDefaultLongHeaderLengthLength = VARIABLE_LENGTH_INTEGER_LENGTH_2, }; } #endif
#include "quiche/common/quiche_endian.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace test { namespace { const uint16_t k16BitTestData = 0xaabb; const uint16_t k16BitSwappedTestData = 0xbbaa; const uint32_t k32BitTestData = 0xaabbccdd; const uint32_t k32BitSwappedTestData = 0xddccbbaa; const uint64_t k64BitTestData = 0xaabbccdd44332211; const uint64_t k64BitSwappedTestData = 0x11223344ddccbbaa; class QuicheEndianTest : public QuicheTest {}; TEST_F(QuicheEndianTest, Portable) { EXPECT_EQ(k16BitSwappedTestData, QuicheEndian::PortableByteSwap(k16BitTestData)); EXPECT_EQ(k32BitSwappedTestData, QuicheEndian::PortableByteSwap(k32BitTestData)); EXPECT_EQ(k64BitSwappedTestData, QuicheEndian::PortableByteSwap(k64BitTestData)); } TEST_F(QuicheEndianTest, HostToNet) { EXPECT_EQ(k16BitSwappedTestData, quiche::QuicheEndian::HostToNet16(k16BitTestData)); EXPECT_EQ(k32BitSwappedTestData, quiche::QuicheEndian::HostToNet32(k32BitTestData)); EXPECT_EQ(k64BitSwappedTestData, quiche::QuicheEndian::HostToNet64(k64BitTestData)); } TEST_F(QuicheEndianTest, NetToHost) { EXPECT_EQ(k16BitTestData, quiche::QuicheEndian::NetToHost16(k16BitSwappedTestData)); EXPECT_EQ(k32BitTestData, quiche::QuicheEndian::NetToHost32(k32BitSwappedTestData)); EXPECT_EQ(k64BitTestData, quiche::QuicheEndian::NetToHost64(k64BitSwappedTestData)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_endian.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_endian_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
37cd1887-c85b-4f59-ac67-475cfab01dc1
cpp
tensorflow/tensorflow
all_reduce_contiguous
third_party/xla/xla/service/all_reduce_contiguous.cc
third_party/xla/xla/service/all_reduce_contiguous_test.cc
#include "xla/service/all_reduce_contiguous.h" #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { absl::Status ReplaceWithContiguousAllReduce( HloAllReduceInstruction* all_reduce) { TF_RET_CHECK(all_reduce); TF_RET_CHECK(!all_reduce->has_sharding()); HloComputation& computation = *all_reduce->parent(); PrimitiveType element_type = all_reduce->operand(0)->shape().element_type(); std::vector<HloInstruction*> flat_operands; flat_operands.reserve(all_reduce->operand_count()); int64_t total_size = 0; for (HloInstruction* operand : all_reduce->operands()) { TF_RET_CHECK(operand->shape().IsArray()); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); Shape flat_shape = ShapeUtil::MakeShape(element_type, {num_elements}); flat_operands.push_back(computation.AddInstruction( HloInstruction::CreateBitcast(flat_shape, operand))); total_size += num_elements; } Shape concat_shape = ShapeUtil::MakeShape(element_type, {total_size}); HloInstruction* concatenated = computation.AddInstruction(HloInstruction::CreateConcatenate( concat_shape, flat_operands, 0)); HloInstruction* new_all_reduce = computation.AddInstruction(HloInstruction::CreateAllReduce( concat_shape, {concatenated}, all_reduce->to_apply(), all_reduce->device_list(), false, all_reduce->channel_id(), all_reduce->use_global_device_ids())); std::vector<HloInstruction*> outputs; outputs.reserve(all_reduce->operand_count()); int64_t offset = 0; for (int64_t i = 0; i < all_reduce->operand_count(); ++i) { const Shape& flat_shape = flat_operands[i]->shape(); int64_t end = offset + flat_shape.dimensions(0); HloInstruction* sliced = computation.AddInstruction( HloInstruction::CreateSlice(flat_shape, new_all_reduce, {offset}, {end}, {1})); outputs.push_back(computation.AddInstruction(HloInstruction::CreateBitcast( all_reduce->operand(i)->shape(), sliced))); offset = end; } TF_RETURN_IF_ERROR(computation.ReplaceWithNewInstruction( all_reduce, HloInstruction::CreateTuple(outputs))); return absl::OkStatus(); } } absl::StatusOr<bool> AllReduceContiguous::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Running AllReduceContiguous"; if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceContiguous because the module contains all-reduce " "with constrained layouts"; return false; } std::vector<HloAllReduceInstruction*> all_reduces; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kAllReduce && instruction->operand_count() > 1) { all_reduces.push_back(Cast<HloAllReduceInstruction>(instruction)); } } } for (HloAllReduceInstruction* all_reduce : all_reduces) { TF_RETURN_IF_ERROR(ReplaceWithContiguousAllReduce(all_reduce)); } return !all_reduces.empty(); } }
#include "xla/service/all_reduce_contiguous.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; using AllReduceContiguousTest = HloTestBase; TEST_F(AllReduceContiguousTest, Simple) { const absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[128] parameter(0) p1 = f32[4,4] parameter(1) ROOT crs = (f32[128], f32[4,4]) all-reduce(p0, p1), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllReduceContiguous pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* root = module->entry_computation()->root_instruction(); auto crs = AllOf(op::Shape("f32[144]"), op::AllReduce(op::Concatenate(op::Bitcast(op::Parameter(0)), op::Bitcast(op::Parameter(1))))); ASSERT_THAT( root, op::Tuple(AllOf(op::Shape("f32[128]"), op::Bitcast(op::Slice(crs))), AllOf(op::Shape("f32[4,4]"), op::Bitcast(op::Slice(crs))))); EXPECT_EQ(root->operand(0)->operand(0)->slice_starts(0), 0); EXPECT_EQ(root->operand(0)->operand(0)->slice_limits(0), 128); EXPECT_EQ(root->operand(1)->operand(0)->slice_starts(0), 128); EXPECT_EQ(root->operand(1)->operand(0)->slice_limits(0), 128 + 4 * 4); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_contiguous.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_contiguous_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
288c8bde-c5d9-4a6c-a2a7-e4e91ae9a23a
cpp
tensorflow/tensorflow
auto_scaler
tensorflow/core/data/service/auto_scaler.cc
tensorflow/core/data/service/auto_scaler_test.cc
#include "tensorflow/core/data/service/auto_scaler.h" #include <algorithm> #include <cmath> #include <cstdint> #include <memory> #include <numeric> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/framework/metrics.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr double kAutoScalerOutlierSigmas = 1.0; template <typename T> double GetMedian(const absl::flat_hash_map<T, double>& rates) { std::vector<double> sorted_rates; for (const auto& [id, rate] : rates) { sorted_rates.push_back(rate); } std::sort(sorted_rates.begin(), sorted_rates.end()); return sorted_rates[sorted_rates.size() / 2]; } template <typename T> double GetMean(const absl::flat_hash_map<T, double>& rates) { double rates_sum = 0.0; for (const auto& [id, rate] : rates) { rates_sum += rate; } if (rates_sum == 0.0) return 0.0; return rates_sum / static_cast<double>(rates.size()); } template <typename T> double GetStandardDeviation(const absl::flat_hash_map<T, double>& rates, double mean) { double squared_distances_sum = 0.0; for (const auto& [id, rate] : rates) { squared_distances_sum += (rate - mean) * (rate - mean); } if (squared_distances_sum == 0.0 || rates.size() <= 1) return 0.0; return std::sqrt(squared_distances_sum / static_cast<double>(rates.size() - 1)); } template <typename T> void ReplaceOutliers(const absl::flat_hash_map<T, double>& rates, std::vector<double>& rates_without_outliers, double outlier_sigmas) { if (rates.empty()) return; double mean = GetMean(rates); double median = GetMedian(rates); double standard_deviation = GetStandardDeviation(rates, mean); double lower_threshold = mean - standard_deviation * outlier_sigmas; double upper_threshold = mean + standard_deviation * outlier_sigmas; for (const auto& [id, rate] : rates) { if (rate >= lower_threshold && rate <= upper_threshold) { rates_without_outliers.push_back(rate); } else { rates_without_outliers.push_back(median); } } } std::optional<int64_t> AutoScaler::GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (worker_throughputs_.empty() || consumption_rates_.empty()) return std::nullopt; std::vector<double> consumption_rates_without_outliers; ReplaceOutliers(consumption_rates_, consumption_rates_without_outliers, kAutoScalerOutlierSigmas); double consumption_rates_sum_ = std::accumulate(consumption_rates_without_outliers.begin(), consumption_rates_without_outliers.end(), 0.0); std::vector<double> worker_throughputs_without_outliers; ReplaceOutliers(worker_throughputs_, worker_throughputs_without_outliers, kAutoScalerOutlierSigmas); double worker_throughputs_sum_ = std::accumulate(worker_throughputs_without_outliers.begin(), worker_throughputs_without_outliers.end(), 0.0); double average_worker_throughput = worker_throughputs_sum_ / static_cast<double>(worker_throughputs_.size()); int64_t optimal_number_of_workers = ceil(consumption_rates_sum_ / average_worker_throughput); return std::max(int64_t{1}, optimal_number_of_workers); } absl::Status AutoScaler::ReportProcessingTime(const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_) { if (processing_time <= absl::ZeroDuration()) { return absl::InvalidArgumentError(absl::StrCat( "Cannot update processing_time with a ZeroDuration or negative value: ", absl::FormatDuration(processing_time))); } double worker_throughput = 1.0 / absl::ToDoubleSeconds(processing_time); tsl::mutex_lock l(mu_); worker_throughputs_[worker_address] = worker_throughput; return absl::OkStatus(); } absl::Status AutoScaler::ReportTargetProcessingTime( int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_) { if (target_processing_time <= absl::ZeroDuration()) { return absl::InvalidArgumentError( absl::StrCat("Cannot update target_processing_time with a ZeroDuration " "or negative value: ", absl::FormatDuration(target_processing_time))); } double consumption_rate = 1.0 / absl::ToDoubleSeconds(target_processing_time); tsl::mutex_lock l(mu_); consumption_rates_[consumer_id] = consumption_rate; return absl::OkStatus(); } absl::Status AutoScaler::RemoveWorker(const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!worker_throughputs_.contains(worker_address)) return absl::NotFoundError( absl::StrCat("Worker with address ", worker_address, " not found")); worker_throughputs_.erase(worker_address); return absl::OkStatus(); } absl::Status AutoScaler::RemoveConsumer(int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!consumption_rates_.contains(consumer_id)) return absl::NotFoundError( absl::StrCat("Consumer with ID ", consumer_id, " not found")); consumption_rates_.erase(consumer_id); return absl::OkStatus(); } void MultipleIterationsAutoScaler::EnsureIterationIsRegistered( int64_t iteration_id) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!auto_scalers_.contains(iteration_id)) { auto_scalers_[iteration_id] = std::make_unique<AutoScaler>(); } } absl::Status MultipleIterationsAutoScaler::UnregisterIteration( int64_t iteration_id) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat("AutoScaler for iteration_id ", iteration_id, " does not exist")); auto_scalers_.erase(iteration_id); return absl::OkStatus(); } absl::Status MultipleIterationsAutoScaler::UpdateOptimalNumberOfWorkersMetric( int64_t current_number_of_workers) TF_LOCKS_EXCLUDED(mu_) { if (current_number_of_workers <= 0) return absl::InvalidArgumentError( "The current number of workers must be positive"); std::optional<int64_t> optimal_number_of_workers = GetOptimalNumberOfWorkers(); if (!optimal_number_of_workers) return absl::UnavailableError( "Cannot update the optimal number of workers metric because there are " "no reported processing and target processing times for at least one " "iteration"); VLOG(3) << "Estimated optimal number of workers: " << optimal_number_of_workers.value(); int64_t bound_optimal_number_of_workers = optimal_number_of_workers.value(); if (bound_optimal_number_of_workers > current_number_of_workers * 4 || bound_optimal_number_of_workers > current_number_of_workers + 500) { bound_optimal_number_of_workers = std::min(current_number_of_workers * 4, current_number_of_workers + 500); } bound_optimal_number_of_workers = std::min(bound_optimal_number_of_workers, int64_t{100000}); VLOG(3) << "Bound optimal number of workers: " << bound_optimal_number_of_workers; metrics::RecordTFDataServiceOptimalNumberOfWorkers( bound_optimal_number_of_workers); return absl::OkStatus(); } std::optional<int64_t> MultipleIterationsAutoScaler::GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_) { int64_t optimal_number_of_workers = 0; { tsl::tf_shared_lock l(mu_); for (const auto& [iteration_id, auto_scaler] : auto_scalers_) { std::optional<int64_t> current_optimal_number_of_workers = auto_scaler->GetOptimalNumberOfWorkers(); if (!current_optimal_number_of_workers.has_value()) continue; optimal_number_of_workers = std::max( optimal_number_of_workers, current_optimal_number_of_workers.value()); } } if (optimal_number_of_workers == 0) return std::nullopt; else return optimal_number_of_workers; } absl::Status MultipleIterationsAutoScaler::ReportProcessingTime( int64_t iteration_id, const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); EnsureIterationIsRegistered(iteration_id); absl::Status status = auto_scalers_[iteration_id]->ReportProcessingTime( worker_address, processing_time); return status; } absl::Status MultipleIterationsAutoScaler::ReportTargetProcessingTime( int64_t iteration_id, int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); EnsureIterationIsRegistered(iteration_id); absl::Status status = auto_scalers_[iteration_id]->ReportTargetProcessingTime( consumer_id, target_processing_time); return status; } absl::Status MultipleIterationsAutoScaler::RemoveWorker( int64_t iteration_id, const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_) { tsl::tf_shared_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat( "There are no reported times for iteration_id ", iteration_id)); absl::Status status = auto_scalers_[iteration_id]->RemoveWorker(worker_address); return status; } absl::Status MultipleIterationsAutoScaler::RemoveConsumer(int64_t iteration_id, int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_) { tsl::tf_shared_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat( "There are no reported times for iteration_id ", iteration_id)); absl::Status status = auto_scalers_[iteration_id]->RemoveConsumer(consumer_id); return status; } } }
#include "tensorflow/core/data/service/auto_scaler.h" #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::tsl::testing::StatusIs; TEST(AutoScalerTest, GetOptimalNumberOfWorkersInitialState) { AutoScaler auto_scaler; EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredWorkers) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredConsumers) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate1) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.025))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 8); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate2) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(1, absl::Seconds(0.05))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 11); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate3) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.01))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(1, absl::Seconds(0.02))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 20); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersRemoveOutliersTPT) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Nanoseconds(80000000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Nanoseconds(500))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Nanoseconds(3000000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Nanoseconds(2000000))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 107); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersRemoveOutliersPT) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Nanoseconds(80000000))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Nanoseconds(70000000))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Nanoseconds(1000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Nanoseconds(300000))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 244); } TEST(AutoScalerTest, ReportProcessingTimeNewWorker) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); } TEST(AutoScalerTest, ReportProcessingTimeExistingWorker) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(20))); } TEST(AutoScalerTest, ReportProcessingTimeNewAndExisting) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Microseconds(10))); } TEST(AutoScalerTest, ReportProcessingTimeZeroDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportProcessingTimeNegativeDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( "/worker/task/0:20000", absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportTargetProcessingTimeNewConsumer) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); } TEST(AutoScalerTest, ReportTargetProcessingTimeExistingConsumer) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(20))); } TEST(AutoScalerTest, ReportTargetProcessingTimeNewAndExisting) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Microseconds(10))); } TEST(AutoScalerTest, ReportTargetProcessingTimeZeroDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportTargetProcessingTimeNegativeDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, RemoveWorkerSuccessful) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/0:20000")); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/1:20000")); } TEST(AutoScalerTest, RemoveNonexistentWorker) { AutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveWorker("/worker/task/0:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(AutoScalerTest, RemoveWorkerAfterNewPTReported) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/0:20000")); } TEST(AutoScalerTest, RemoveConsumerSuccessful) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0)); TF_ASSERT_OK(auto_scaler.RemoveConsumer(1)); } TEST(AutoScalerTest, RemoveNonexistentConsumer) { AutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveConsumer(0), StatusIs(absl::StatusCode::kNotFound)); } TEST(AutoScalerTest, RemoveConsumerAfterNewTPTReported) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0)); } TEST(MultipleIterationsAutoScalerTest, UnregisterExistingIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.UnregisterIteration(0)); } TEST(MultipleIterationsAutoScalerTest, UnregisterNonexistentIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.UnregisterIteration(0), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricInvalidCurrentWorkers) { MultipleIterationsAutoScaler auto_scaler; absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(0); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument)); status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(-1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedTimes) { MultipleIterationsAutoScaler auto_scaler; absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedPTs) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedTPTs) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricWithReportedTimes) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(1)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_GT(cell_reader.Read(), 0); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricIncreaseWithinLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(500))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(15)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 50); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetric4xIncreaseLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(2)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 8); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetric500IncreaseLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10000))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(1000)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 1500); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricMaxLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(200000))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(99700)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 100000); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersInitialState) { MultipleIterationsAutoScaler auto_scaler; EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredWorkers) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredConsumers) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate1) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Seconds(0.025))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Seconds(0.05))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 11); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate2) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Seconds(0.025))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Seconds(0.05))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(2, "/worker/task/0:20000", absl::Seconds(0.1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(2, "/worker/task/1:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, 0, absl::Seconds(0.01))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, 1, absl::Seconds(0.02))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 20); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeExistingWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewAndExisting) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Microseconds(30))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeZeroDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( 0, "/worker/task/0:20000", absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNegativeDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( 0, "/worker/task/0:20000", absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewConsumer) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeExistingWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewAndExisting) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Microseconds(30))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeZeroDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, 0, absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNegativeDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerUnregisteredIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveWorker(0, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(auto_scaler.RemoveWorker(1, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerSuccessful) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker(0, "/worker/task/0:20000")); TF_ASSERT_OK(auto_scaler.RemoveWorker(1, "/worker/task/0:20000")); } TEST(MultipleIterationsAutoScalerTest, RemoveNonexistentWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); EXPECT_THAT(auto_scaler.RemoveWorker(0, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerAfterNewPTReported) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker(0, "/worker/task/0:20000")); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerUnregisteredIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveConsumer(0, 0), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(auto_scaler.RemoveConsumer(1, 0), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerSuccessful) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0, 0)); TF_ASSERT_OK(auto_scaler.RemoveConsumer(1, 0)); } TEST(MultipleIterationsAutoScalerTest, RemoveNonexistentConsumer) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); EXPECT_THAT(auto_scaler.RemoveConsumer(0, 1), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerAfterNewTPTReported) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0, 0)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/auto_scaler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/auto_scaler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ded06446-76e1-4235-8d69-e8c7e7375965
cpp
google/libaddressinput
address_formatter
cpp/src/address_formatter.cc
cpp/test/address_formatter_test.cc
#include <libaddressinput/address_formatter.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <algorithm> #include <cassert> #include <cstddef> #include <functional> #include <string> #include <vector> #include "format_element.h" #include "language.h" #include "region_data_constants.h" #include "rule.h" #include "util/cctype_tolower_equal.h" #include "util/size.h" namespace i18n { namespace addressinput { namespace { const char kCommaSeparator[] = ", "; const char kSpaceSeparator[] = " "; const char kArabicCommaSeparator[] = "، "; const char kLanguagesThatUseSpace[][3] = { "th", "ko", }; const char kLanguagesThatHaveNoSeparator[][3] = { "ja", "zh", }; const char kLanguagesThatUseAnArabicComma[][3] = { "ar", "fa", "ku", "ps", "ur", }; std::string GetLineSeparatorForLanguage(const std::string& language_tag) { Language address_language(language_tag); if (address_language.has_latin_script) { return kCommaSeparator; } const std::string& base_language = address_language.base; using std::placeholders::_1; if (std::find_if(kLanguagesThatUseSpace, kLanguagesThatUseSpace + size(kLanguagesThatUseSpace), std::bind(&EqualToTolowerString, _1, base_language)) != kLanguagesThatUseSpace + size(kLanguagesThatUseSpace)) { return kSpaceSeparator; } else if (std::find_if( kLanguagesThatHaveNoSeparator, kLanguagesThatHaveNoSeparator + size(kLanguagesThatHaveNoSeparator), std::bind(&EqualToTolowerString, _1, base_language)) != kLanguagesThatHaveNoSeparator + size(kLanguagesThatHaveNoSeparator)) { return ""; } else if (std::find_if( kLanguagesThatUseAnArabicComma, kLanguagesThatUseAnArabicComma + size(kLanguagesThatUseAnArabicComma), std::bind(&EqualToTolowerString, _1, base_language)) != kLanguagesThatUseAnArabicComma + size(kLanguagesThatUseAnArabicComma)) { return kArabicCommaSeparator; } return kCommaSeparator; } void CombineLinesForLanguage(const std::vector<std::string>& lines, const std::string& language_tag, std::string* line) { line->clear(); std::string separator = GetLineSeparatorForLanguage(language_tag); for (auto it = lines.begin(); it != lines.end(); ++it) { if (it != lines.begin()) { line->append(separator); } line->append(*it); } } } void GetFormattedNationalAddress( const AddressData& address_data, std::vector<std::string>* lines) { assert(lines != nullptr); lines->clear(); Rule rule; rule.CopyFrom(Rule::GetDefault()); rule.ParseSerializedRule( RegionDataConstants::GetRegionData(address_data.region_code)); Language language(address_data.language_code); const std::vector<FormatElement>& format = language.has_latin_script && !rule.GetLatinFormat().empty() ? rule.GetLatinFormat() : rule.GetFormat(); std::vector<FormatElement> pruned_format; for (auto element_it = format.begin(); element_it != format.end(); ++element_it) { if (element_it->IsNewline() || (element_it->IsField() && !address_data.IsFieldEmpty(element_it->GetField())) || (!element_it->IsField() && (element_it + 1 == format.end() || !(element_it + 1)->IsField() || !address_data.IsFieldEmpty((element_it + 1)->GetField())) && (element_it == format.begin() || !(element_it - 1)->IsField() || (!pruned_format.empty() && pruned_format.back().IsField())))) { pruned_format.push_back(*element_it); } } std::string line; for (const auto& element : pruned_format) { if (element.IsNewline()) { if (!line.empty()) { lines->push_back(line); line.clear(); } } else if (element.IsField()) { AddressField field = element.GetField(); if (field == STREET_ADDRESS) { if (!address_data.IsFieldEmpty(field)) { line.append(address_data.address_line.front()); if (address_data.address_line.size() > 1U) { lines->push_back(line); line.clear(); const auto last_element_iterator = address_data.address_line.begin() + address_data.address_line.size() - 1; lines->insert(lines->end(), address_data.address_line.begin() + 1, last_element_iterator); line.append(*last_element_iterator); } } } else { line.append(address_data.GetFieldValue(field)); } } else { line.append(element.GetLiteral()); } } if (!line.empty()) { lines->push_back(line); } } void GetFormattedNationalAddressLine( const AddressData& address_data, std::string* line) { std::vector<std::string> address_lines; GetFormattedNationalAddress(address_data, &address_lines); CombineLinesForLanguage(address_lines, address_data.language_code, line); } void GetStreetAddressLinesAsSingleLine( const AddressData& address_data, std::string* line) { CombineLinesForLanguage( address_data.address_line, address_data.language_code, line); } } }
#include <libaddressinput/address_formatter.h> #include <libaddressinput/address_data.h> #include <string> #include <vector> #include <gtest/gtest.h> namespace { using i18n::addressinput::AddressData; using i18n::addressinput::GetFormattedNationalAddress; using i18n::addressinput::GetFormattedNationalAddressLine; using i18n::addressinput::GetStreetAddressLinesAsSingleLine; TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_EmptyAddress) { const AddressData address; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_TRUE(result.empty()); } TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_1Line) { AddressData address{ .region_code = "US", .address_line{"Line 1"}, }; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1", result); address.language_code = "en"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1", result); address.language_code = "zh-Hans"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1", result); } TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_2Lines) { AddressData address{ .region_code = "US", .address_line{ "Line 1", "Line 2", }, }; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1, Line 2", result); address.language_code = "en"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1, Line 2", result); address.language_code = "zh-Hans"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1Line 2", result); address.language_code = "ko"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1 Line 2", result); address.language_code = "ar"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1، Line 2", result); } TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_5Lines) { const AddressData address{ .region_code = "US", .address_line{ "Line 1", "Line 2", "Line 3", "Line 4", "Line 5", }, .language_code = "fr", }; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ(result, "Line 1, Line 2, Line 3, Line 4, Line 5"); } TEST(AddressFormatterTest, GetFormattedNationalAddressLocalLanguage) { AddressData address{ .region_code = "NZ", .address_line{ "Rotopapa", "Irwell 3RD", }, .locality = "Leeston", .postal_code = "8704", }; const std::vector<std::string> expected{ "Rotopapa", "Irwell 3RD", "Leeston 8704", }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.language_code = "en-Latn-CN"; lines.clear(); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); std::string one_line; GetFormattedNationalAddressLine(address, &one_line); EXPECT_EQ("Rotopapa, Irwell 3RD, Leeston 8704", one_line); } TEST(AddressFormatterTest, GetFormattedNationalAddressLatinFormat) { static const char kTaiwanCity[] = "大安區"; static const char kTaiwanAdmin[] = "台北市"; static const char kTaiwanStreetLine[] = "台灣信義路三段33號"; static const char kPostalCode[] = "106"; const AddressData address{ .region_code = "TW", .address_line{kTaiwanStreetLine}, .administrative_area = kTaiwanAdmin, .locality = kTaiwanCity, .postal_code = kPostalCode, .language_code = "zh-Hant", }; const std::vector<std::string> expected{ kPostalCode, std::string(kTaiwanAdmin).append(kTaiwanCity), kTaiwanStreetLine, }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); std::string one_line; GetFormattedNationalAddressLine(address, &one_line); EXPECT_EQ(std::string(kPostalCode) .append(kTaiwanAdmin) .append(kTaiwanCity) .append(kTaiwanStreetLine), one_line); const AddressData latin_address{ .region_code = "TW", .address_line{"No. 33, Section 3 Xinyi Rd"}, .administrative_area = "Taipei City", .locality = "Da-an District", .postal_code = kPostalCode, .language_code = "zh-Latn", }; const std::vector<std::string> expected_latin{ "No. 33, Section 3 Xinyi Rd", "Da-an District, Taipei City 106", }; lines.clear(); GetFormattedNationalAddress(latin_address, &lines); EXPECT_EQ(expected_latin, lines); GetFormattedNationalAddressLine(latin_address, &one_line); EXPECT_EQ("No. 33, Section 3 Xinyi Rd, Da-an District, Taipei City 106", one_line); } TEST(AddressFormatterTest, GetFormattedNationalAddressMultilingualCountry) { const AddressData address{ .region_code = "CA", .address_line{ "5 Rue du Tresor", "Apt. 4", }, .administrative_area = "QC", .locality = "Montmagny", .postal_code = "G1R 123", .language_code = "fr", }; const std::vector<std::string> expected{ "5 Rue du Tresor", "Apt. 4", "Montmagny QC G1R 123", }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddress_InlineStreetAddress) { const AddressData address{ .region_code = "CI", .address_line{"32 Boulevard Carde"}, .locality = "Abidjan", .sorting_code = "64", .language_code = "zh-Hant", }; const std::vector<std::string> expected{"64 32 Boulevard Carde Abidjan 64"}; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralsAroundField) { AddressData address{.region_code = "CH"}; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "Zurich"; expected.emplace_back("Zurich"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "8001"; expected.back().assign("CH-8001 Zurich"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality.clear(); expected.back().assign("CH-8001"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralsBetweenFields) { AddressData address{.region_code = "US"}; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.administrative_area = "CA"; expected.emplace_back("CA"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "Los Angeles"; expected.back().assign("Los Angeles, CA"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "90291"; expected.back().assign("Los Angeles, CA 90291"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.administrative_area.clear(); expected.back().assign("Los Angeles 90291"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality.clear(); address.administrative_area = "CA"; expected.back().assign("CA 90291"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralOnSeparateLine) { AddressData address{.region_code = "AX"}; std::vector<std::string> expected{"ÅLAND"}; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "City"; expected.emplace(expected.begin(), "City"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "123"; expected.front().assign("AX-123 City"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralBeforeField) { AddressData address{ .region_code = "JP", .language_code = "ja", }; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "123"; expected.emplace_back("〒123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.administrative_area = "Prefecture"; expected.emplace_back("Prefecture"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code.clear(); expected.erase(expected.begin()); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddress_LiteralBeforeOneAddressLine) { const AddressData address{ .region_code = "JP", .address_line{"Roppongi Hills"}, .administrative_area = "Tokyo", .language_code = "ja_Latn", }; const std::vector<std::string> expected{"Roppongi Hills, Tokyo"}; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddress_LiteralBeforeTwoAddressLines) { const AddressData address{ .region_code = "JP", .address_line{ "Roppongi Hills", "Mori Tower", }, .administrative_area = "Tokyo", .language_code = "ja_Latn", }; const std::vector<std::string> expected{ "Roppongi Hills", "Mori Tower, Tokyo", }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_DuplicateField) { AddressData address{.region_code = "CI"}; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.sorting_code = "123"; expected.emplace_back("123 123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.address_line.emplace_back("456 Main St"); expected.back().assign("123 456 Main St 123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "Yamoussoukro"; expected.back().assign("123 456 Main St Yamoussoukro 123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.sorting_code.erase(); expected.back().assign("456 Main St Yamoussoukro"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.address_line.clear(); expected.back().assign("Yamoussoukro"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/address_formatter.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/address_formatter_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
1ceb4a07-5c78-4d1a-9f00-874e52495ac2
cpp
google/tensorstore
blosc_compressor
tensorstore/internal/compression/blosc_compressor.cc
tensorstore/driver/n5/blosc_compressor_test.cc
#include "tensorstore/internal/compression/blosc_compressor.h" #include <cstddef> #include <limits> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "riegeli/base/chain.h" #include "riegeli/bytes/chain_reader.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/read_all.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/write.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/compression/blosc.h" namespace tensorstore { namespace internal { namespace { class BloscDeferredWriter : public riegeli::CordWriter<absl::Cord> { public: explicit BloscDeferredWriter(blosc::Options options, std::unique_ptr<riegeli::Writer> base_writer) : CordWriter(riegeli::CordWriterBase::Options().set_max_block_size( std::numeric_limits<size_t>::max())), options_(std::move(options)), base_writer_(std::move(base_writer)) {} void Done() override { CordWriter::Done(); auto output = blosc::Encode(dest().Flatten(), options_); if (!output.ok()) { Fail(std::move(output).status()); return; } auto status = riegeli::Write(*std::move(output), std::move(base_writer_)); if (!status.ok()) { Fail(std::move(status)); return; } } private: blosc::Options options_; std::unique_ptr<riegeli::Writer> base_writer_; }; } std::unique_ptr<riegeli::Writer> BloscCompressor::GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const { return std::make_unique<BloscDeferredWriter>( blosc::Options{codec.c_str(), level, shuffle, blocksize, element_bytes}, std::move(base_writer)); } std::unique_ptr<riegeli::Reader> BloscCompressor::GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const { auto output = riegeli::ReadAll( std::move(base_reader), [](absl::string_view input) -> absl::StatusOr<std::string> { auto output = blosc::Decode(input); if (!output.ok()) return std::move(output).status(); return *std::move(output); }); auto reader = std::make_unique<riegeli::ChainReader<riegeli::Chain>>( output.ok() ? riegeli::Chain(*std::move(output)) : riegeli::Chain()); if (!output.ok()) { reader->Fail(std::move(output).status()); } return reader; } } }
#include <cstdint> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/driver/n5/compressor.h" #include "tensorstore/driver/n5/metadata.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_n5::Compressor; using ::tensorstore::internal_n5::DecodeChunk; using ::tensorstore::internal_n5::N5Metadata; TEST(BloscCompressionTest, Parse) { for (auto codec : {"lz4", "blosclz", "lz4hc", "snappy", "zlib", "zstd"}) { for (int level = 0; level <= 9; ++level) { for (int shuffle = 0; shuffle <= 2; ++shuffle) { for (int blocksize : {0, 256}) { ::nlohmann::json j{{"type", "blosc"}, {"cname", codec}, {"shuffle", shuffle}, {"clevel", level}, {"blocksize", blocksize}}; tensorstore::TestJsonBinderRoundTripJsonOnly<Compressor>({j}); } } } } EXPECT_THAT( Compressor::FromJson({{"type", "blosc"}, {"shuffle", 0}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson( {{"type", "blosc"}, {"cname", "lz4"}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson( {{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( Compressor::FromJson( {{"type", "blosc"}, {"cname", 3}, {"shuffle", 0}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "invalid"}, {"shuffle", 0}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}, {"clevel", -1}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}, {"clevel", 10}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", -1}, {"clevel", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( Compressor::FromJson( {{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 3}, {"clevel", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}, {"clevel", 3}, {"extra", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscCompressionTest, RoundTrip) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto metadata, N5Metadata::FromJson({{"dimensions", {10, 11, 12}}, {"blockSize", {1, 2, 3}}, {"dataType", "uint16"}, {"compression", {{"type", "blosc"}, {"cname", "lz4"}, {"clevel", 5}, {"shuffle", 0}}}})); auto array = MakeArray<uint16_t>({{{1, 2, 3}, {4, 5, 6}}}); { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto buffer, EncodeChunk(metadata, array)); EXPECT_EQ(array, DecodeChunk(metadata, buffer)); } } TEST(BloscCompressionTest, Golden) { const unsigned char kData[] = { 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x02, 0x01, 0x96, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 0x00, 0x06, }; std::string encoded_data(std::begin(kData), std::end(kData)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, N5Metadata::FromJson({ {"dimensions", {10, 11, 12}}, {"blockSize", {1, 2, 3}}, {"dataType", "uint16"}, {"compression", { {"type", "blosc"}, {"clevel", 3}, {"blocksize", 0}, {"cname", "zstd"}, {"shuffle", 2}, }}, })); auto array = MakeArray<uint16_t>({{{1, 3, 5}, {2, 4, 6}}}); EXPECT_EQ(array, DecodeChunk(metadata, absl::Cord(encoded_data))); { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto buffer, EncodeChunk(metadata, array)); EXPECT_EQ(array, DecodeChunk(metadata, buffer)); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/blosc_compressor.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/n5/blosc_compressor_test.cc
4f887a6430414cd6088e1743555015b10f116d50
800c1f91-fb75-4e4d-b139-9a34c49d661b
cpp
google/cel-cpp
type_type
common/types/type_type.cc
common/types/type_type_test.cc
#include "common/type.h" #include "absl/base/nullability.h" #include "absl/types/span.h" #include "google/protobuf/arena.h" namespace cel { namespace common_internal { struct TypeTypeData final { static TypeTypeData* Create(absl::Nonnull<google::protobuf::Arena*> arena, const Type& type) { return google::protobuf::Arena::Create<TypeTypeData>(arena, type); } explicit TypeTypeData(const Type& type) : type(type) {} TypeTypeData() = delete; TypeTypeData(const TypeTypeData&) = delete; TypeTypeData(TypeTypeData&&) = delete; TypeTypeData& operator=(const TypeTypeData&) = delete; TypeTypeData& operator=(TypeTypeData&&) = delete; const Type type; }; } TypeType::TypeType(absl::Nonnull<google::protobuf::Arena*> arena, const Type& parameter) : TypeType(common_internal::TypeTypeData::Create(arena, parameter)) {} TypeParameters TypeType::GetParameters() const { if (data_) { return TypeParameters(absl::MakeConstSpan(&data_->type, 1)); } return {}; } Type TypeType::GetType() const { if (data_) { return data_->type; } return Type(); } }
#include "common/type.h" #include <sstream> #include "absl/hash/hash.h" #include "internal/testing.h" namespace cel { namespace { TEST(TypeType, Kind) { EXPECT_EQ(TypeType().kind(), TypeType::kKind); EXPECT_EQ(Type(TypeType()).kind(), TypeType::kKind); } TEST(TypeType, Name) { EXPECT_EQ(TypeType().name(), TypeType::kName); EXPECT_EQ(Type(TypeType()).name(), TypeType::kName); } TEST(TypeType, DebugString) { { std::ostringstream out; out << TypeType(); EXPECT_EQ(out.str(), TypeType::kName); } { std::ostringstream out; out << Type(TypeType()); EXPECT_EQ(out.str(), TypeType::kName); } } TEST(TypeType, Hash) { EXPECT_EQ(absl::HashOf(TypeType()), absl::HashOf(TypeType())); } TEST(TypeType, Equal) { EXPECT_EQ(TypeType(), TypeType()); EXPECT_EQ(Type(TypeType()), TypeType()); EXPECT_EQ(TypeType(), Type(TypeType())); EXPECT_EQ(Type(TypeType()), Type(TypeType())); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/type_type.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/type_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
727970ad-3063-4030-bfab-9ed7b4be0677
cpp
tensorflow/tensorflow
backports
tensorflow/tools/graph_transforms/backports.cc
tensorflow/tools/graph_transforms/backports_test.cc
#include "tensorflow/core/common_runtime/constant_folding.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/fold_constants_lib.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status BackportConcatV2Transform(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"ConcatV2"}, [](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& concat_v2_node = match.node; NodeDef concat_node = concat_v2_node; concat_node.set_op("Concat"); concat_node.mutable_input()->Clear(); const string& dim_input = concat_v2_node.input(concat_v2_node.input_size() - 1); concat_node.add_input(dim_input); for (int i = 0; i < (concat_v2_node.input_size() - 1); ++i) { concat_node.add_input(concat_v2_node.input(i)); } concat_node.mutable_attr()->erase("Tidx"); new_nodes->push_back(concat_node); return OkStatus(); }, {true}, output_graph_def)); return OkStatus(); } REGISTER_GRAPH_TRANSFORM("backport_concatv2", BackportConcatV2Transform); Status BackportTensorArrayV3Transform(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { std::map<string, string> inputs_to_rename; GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"TensorArrayV3|TensorArrayGradV3"}, [&inputs_to_rename](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& tensor_array_v3_node = match.node; NodeDef tensor_array_v2_node = tensor_array_v3_node; if (tensor_array_v3_node.op() == "TensorArrayV3") { tensor_array_v2_node.set_op("TensorArrayV2"); } else { tensor_array_v2_node.set_op("TensorArrayGradV2"); } NodeDef replacement_flow_node; replacement_flow_node.set_op("Const"); SetNodeAttr("dtype", DT_FLOAT, &replacement_flow_node); replacement_flow_node.set_name(tensor_array_v3_node.name() + "/replacement_flow_node"); Tensor replacement_flow_tensor(DT_FLOAT, {}); replacement_flow_tensor.flat<float>()(0) = 1.0f; SetNodeTensorAttr<float>("value", replacement_flow_tensor, &replacement_flow_node); inputs_to_rename[tensor_array_v3_node.name() + ":1"] = replacement_flow_node.name(); new_nodes->push_back(tensor_array_v2_node); new_nodes->push_back(replacement_flow_node); return OkStatus(); }, {true}, &replaced_graph_def)); GraphDef renamed_graph_def; TF_RETURN_IF_ERROR(RenameNodeInputs(replaced_graph_def, inputs_to_rename, std::unordered_set<string>(), &renamed_graph_def)); TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( renamed_graph_def, {"TensorArrayWriteV3|TensorArrayReadV3|TensorArrayGatherV3|" "TensorArrayScatterV3|TensorArrayConcatV3|TensorArraySplitV3|" "TensorArraySizeV3|TensorArrayCloseV3"}, [](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& v3_node = match.node; NodeDef v2_node = v3_node; v2_node.set_op(v3_node.op().substr(0, v3_node.op().size() - 1) + "2"); new_nodes->push_back(v2_node); return OkStatus(); }, {true}, output_graph_def)); return OkStatus(); } REGISTER_GRAPH_TRANSFORM("backport_tensor_array_v3", BackportTensorArrayV3Transform); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status BackportConcatV2Transform(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); Status BackportTensorArrayV3Transform(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class BackportConcatV2Test : public ::testing::Test { protected: void TestBackportConcatV2() { GraphDef graph_def; NodeDef* mul_node1 = graph_def.add_node(); mul_node1->set_name("mul_node1"); mul_node1->set_op("Mul"); mul_node1->add_input("add_node2"); mul_node1->add_input("add_node3"); NodeDef* add_node2 = graph_def.add_node(); add_node2->set_name("add_node2"); add_node2->set_op("Add"); add_node2->add_input("const_node1"); add_node2->add_input("const_node2"); NodeDef* add_node3 = graph_def.add_node(); add_node3->set_name("add_node3"); add_node3->set_op("Add"); add_node3->add_input("const_node1"); add_node3->add_input("const_node3"); NodeDef* const_node1 = graph_def.add_node(); const_node1->set_name("const_node1"); const_node1->set_op("Const"); NodeDef* const_node2 = graph_def.add_node(); const_node2->set_name("const_node2"); const_node2->set_op("Const"); NodeDef* const_node3 = graph_def.add_node(); const_node3->set_name("const_node3"); const_node3->set_op("Const"); NodeDef* concat_node = graph_def.add_node(); concat_node->set_name("concat_node"); concat_node->set_op("ConcatV2"); concat_node->add_input("const_node1"); concat_node->add_input("const_node2"); concat_node->add_input("const_node3"); SetNodeAttr("Tidx", DT_INT32, concat_node); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"concat_node"}; TF_ASSERT_OK(BackportConcatV2Transform(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); EXPECT_EQ(1, node_lookup.count("concat_node")); EXPECT_EQ("Concat", node_lookup.at("concat_node")->op()); EXPECT_EQ(0, node_lookup.at("concat_node")->attr().count("Tidx")); EXPECT_EQ("const_node3", node_lookup.at("concat_node")->input(0)); EXPECT_EQ("const_node1", node_lookup.at("concat_node")->input(1)); EXPECT_EQ("const_node2", node_lookup.at("concat_node")->input(2)); EXPECT_EQ(1, node_lookup.count("const_node1")); EXPECT_EQ("Const", node_lookup.at("const_node1")->op()); EXPECT_EQ(1, node_lookup.count("const_node2")); EXPECT_EQ("Const", node_lookup.at("const_node2")->op()); EXPECT_EQ(1, node_lookup.count("const_node3")); EXPECT_EQ("Const", node_lookup.at("const_node3")->op()); } }; TEST_F(BackportConcatV2Test, TestBackportConcatV2) { TestBackportConcatV2(); } TEST(BackportTensorArrayV3Test, TestBackportTensorArrayV3) { GraphDef graph_def; NodeDef* size_node = graph_def.add_node(); size_node->set_name("size_node"); size_node->set_op("Const"); Tensor size_tensor(DT_INT32, {}); size_tensor.flat<int32>()(0) = 1; SetNodeTensorAttr<float>("value", size_tensor, size_node); NodeDef* tensor_array_node = graph_def.add_node(); tensor_array_node->set_name("tensor_array_node"); tensor_array_node->set_op("TensorArrayV3"); tensor_array_node->add_input("size_node"); SetNodeAttr("dtype", DT_FLOAT, tensor_array_node); SetNodeAttr("element_shape", TensorShape({1, 2}), tensor_array_node); SetNodeAttr("dynamic_size", false, tensor_array_node); SetNodeAttr("clear_after_read", true, tensor_array_node); SetNodeAttr("tensor_array_name", "some_name", tensor_array_node); NodeDef* handle_output_node = graph_def.add_node(); handle_output_node->set_name("handle_output_node"); handle_output_node->set_op("Identity"); handle_output_node->add_input("tensor_array_node:0"); NodeDef* flow_output_node = graph_def.add_node(); flow_output_node->set_name("flow_output_node"); flow_output_node->set_op("Identity"); flow_output_node->add_input("tensor_array_node:1"); NodeDef* tensor_array_grad_node = graph_def.add_node(); tensor_array_grad_node->set_name("tensor_array_grad_node"); tensor_array_grad_node->set_op("TensorArrayGradV3"); tensor_array_grad_node->add_input("tensor_array_node:0"); tensor_array_grad_node->add_input("tensor_array_node:1"); SetNodeAttr("source", "foo", tensor_array_grad_node); NodeDef* grad_handle_output_node = graph_def.add_node(); grad_handle_output_node->set_name("grad_handle_output_node"); grad_handle_output_node->set_op("Identity"); grad_handle_output_node->add_input("tensor_array_grad_node:0"); NodeDef* grad_flow_output_node = graph_def.add_node(); grad_flow_output_node->set_name("grad_flow_output_node"); grad_flow_output_node->set_op("Identity"); grad_flow_output_node->add_input("tensor_array_grad_node:1"); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"handle_output_node", "grad_handle_output_node"}; TF_ASSERT_OK(BackportTensorArrayV3Transform(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); ASSERT_EQ(1, node_lookup.count("tensor_array_node")); EXPECT_EQ("TensorArrayV2", node_lookup.at("tensor_array_node")->op()); EXPECT_EQ("TensorArrayGradV2", node_lookup.at("tensor_array_grad_node")->op()); for (const NodeDef& node : result.node()) { for (const string& input : node.input()) { EXPECT_NE("tensor_array_node:1", input); } } } TEST(BackportTensorArrayV3Test, TestBackportTensorArrayV3Subtypes) { const std::vector<string> v3_ops = { "TensorArrayWriteV3", "TensorArrayReadV3", "TensorArrayGatherV3", "TensorArrayScatterV3", "TensorArrayConcatV3", "TensorArraySplitV3", "TensorArraySizeV3", "TensorArrayCloseV3"}; for (const string& v3_op : v3_ops) { GraphDef graph_def; NodeDef* v3_node = graph_def.add_node(); v3_node->set_name("v3_node"); v3_node->set_op(v3_op); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {""}; TF_ASSERT_OK(BackportTensorArrayV3Transform(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); ASSERT_EQ(1, node_lookup.count("v3_node")); EXPECT_TRUE(absl::EndsWith(node_lookup.at("v3_node")->op(), "V2")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/backports.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/backports_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04d9dd6c-f45e-463d-9604-dc577fbebea4
cpp
google/arolla
weak_qtype_operators
arolla/expr/operators/weak_qtype_operators.cc
arolla/expr/operators/weak_qtype_operators_test.cc
#include "arolla/expr/operators/weak_qtype_operators.h" #include <cstdint> #include <memory> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/derived_qtype_cast_operator.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operators/type_meta_eval_strategies.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/standard_type_properties/properties.h" #include "arolla/qtype/weak_qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { namespace { using ::arolla::expr::CallOp; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; class CoreToWeakFloatOp final : public expr::BasicExprOperator { public: CoreToWeakFloatOp() : expr::BasicExprOperator( "core.to_weak_float", ExprOperatorSignature{{"x"}}, "Casts a floating point value to the corresponding weak float " "type.", FingerprintHasher("::arolla::expr_operators::CoreToWeakFloatOp") .Finish()) {} absl::StatusOr<QTypePtr> GetOutputQType( absl::Span<const QTypePtr> inputs) const override { ASSIGN_OR_RETURN(auto scalar_type, GetScalarQType(inputs[0])); if (!(IsNumeric(scalar_type) || IsBoolean(scalar_type) || scalar_type == GetQType<uint64_t>())) { return absl::InvalidArgumentError(absl::StrFormat( "expected a numeric or boolean number, got: %s", inputs[0]->name())); } if (IsOptionalQType(inputs[0])) { return GetOptionalWeakFloatQType(); } if (IsArrayLikeQType(inputs[0])) { ASSIGN_OR_RETURN(auto shape_qtype, GetShapeQType(inputs[0])); return shape_qtype->WithValueQType(GetWeakFloatQType()); } return GetWeakFloatQType(); } absl::StatusOr<ExprNodePtr> ToLowerLevel( const ExprNodePtr& node) const final { RETURN_IF_ERROR(ValidateNodeDepsCount(*node)); auto op = std::make_shared<expr::DerivedQTypeDowncastOperator>(node->qtype()); return CallOp(op, {CallOp("core.to_float64", {node->node_deps()[0]})}); } }; } absl::StatusOr<ExprOperatorPtr> MakeCoreToWeakFloatOperator() { return std::make_shared<CoreToWeakFloatOp>(); } }
#include <optional> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/array/array.h" #include "arolla/array/qtype/types.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/operators/bootstrap_operators.h" #include "arolla/expr/testing/testing.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/typed_value.h" #include "arolla/qtype/weak_qtype.h" namespace arolla::expr_operators { namespace { using ::arolla::expr::ExprOperatorPtr; using ::arolla::testing::InvokeExprOperator; TEST(WeakQTypeOperatorsTest, ToWeakFloat) { ASSERT_OK_AND_ASSIGN(ExprOperatorPtr to_weak_float, GetCoreToWeakFloat()); ASSERT_OK_AND_ASSIGN(auto res, InvokeExprOperator<TypedValue>(to_weak_float, 1.0)); EXPECT_EQ(res.GetType(), GetWeakFloatQType()); } TEST(WeakQTypeOperatorsTest, ToWeakFloat_Float32) { ASSERT_OK_AND_ASSIGN(ExprOperatorPtr to_weak_float, GetCoreToWeakFloat()); ASSERT_OK_AND_ASSIGN(auto res, InvokeExprOperator<TypedValue>(to_weak_float, 1.0f)); EXPECT_EQ(res.GetType(), GetWeakFloatQType()); } TEST(WeakQTypeOperatorsTest, ToWeakFloat_Optional) { ASSERT_OK_AND_ASSIGN(ExprOperatorPtr to_weak_float, GetCoreToWeakFloat()); ASSERT_OK_AND_ASSIGN(auto res, InvokeExprOperator<TypedValue>( to_weak_float, OptionalValue<float>(1.0))); EXPECT_EQ(res.GetType(), GetOptionalWeakFloatQType()); } TEST(WeakQTypeOperatorsTest, ToWeakFloat_Array) { GetArrayWeakFloatQType(); ASSERT_OK_AND_ASSIGN(ExprOperatorPtr to_weak_float, GetCoreToWeakFloat()); auto values = CreateArray<float>({1, std::nullopt, std::nullopt, 2}); ASSERT_OK_AND_ASSIGN(auto res, InvokeExprOperator<TypedValue>(to_weak_float, values)); EXPECT_EQ(res.GetType(), GetArrayWeakFloatQType()); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/weak_qtype_operators.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/weak_qtype_operators_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
853f3f85-8a15-440b-a243-417ea3be940b
cpp
tensorflow/tensorflow
priority_fusion
third_party/xla/xla/service/gpu/transforms/priority_fusion.cc
third_party/xla/xla/service/gpu/transforms/priority_fusion_test.cc
#include "xla/service/gpu/transforms/priority_fusion.h" #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <map> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "llvm/ADT/STLExtras.h" #include "mlir/IR/MLIRContext.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/dump.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusion_deduplication_cache.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/service/gpu/fusions/triton/triton_support.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/model/triton_emitter_constraints.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { namespace { bool IsFusible(const HloInstruction& instr) { if (!instr.IsFusible()) { return false; } if (instr.IsElementwise()) { return true; } switch (instr.opcode()) { case HloOpcode::kFusion: return instr.fusion_kind() != HloInstruction::FusionKind::kCustom; case HloOpcode::kCopy: case HloOpcode::kIota: case HloOpcode::kConstant: case HloOpcode::kReduce: case HloOpcode::kBitcast: case HloOpcode::kBroadcast: case HloOpcode::kConcatenate: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGather: case HloOpcode::kPad: case HloOpcode::kReduceWindow: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kScatter: case HloOpcode::kSlice: case HloOpcode::kTranspose: return true; default: return false; } } GpuBackendConfig GetTritonGpuBackendConfig( const BlockLevelParameters& block_level_parameters) { GpuBackendConfig gpu_backend_config; gpu_backend_config.mutable_fusion_backend_config()->set_kind( std::string(kTritonFusionKind)); *gpu_backend_config.mutable_fusion_backend_config() ->mutable_block_level_fusion_config() = block_level_parameters.ToBlockLevelFusionConfig(); return gpu_backend_config; } class PriorityFusionQueue { using Priority = absl::Duration; using CanFuseCallback = std::function<FusionDecision( HloInstruction* , int64_t )>; public: PriorityFusionQueue(HloComputation* computation, const GpuHloCostAnalysis::Options& cost_analysis_options, const se::DeviceDescription* device_info, FusionProcessDumpProto* fusion_process_dump, tsl::thread::ThreadPool* thread_pool, mlir::MLIRContext* mlir_context, HloFusionAnalysisCache& fusion_analysis_cache, FusionDeduplicationCache& fusion_deduplication_cache, bool triton_softmax_priority_fusion_enabled) : computation_(computation), device_info_(device_info), cost_analysis_(cost_analysis_options, *device_info), gpu_indexing_performance_model_(device_info, &fusion_analysis_cache, cost_analysis_options.shape_size, mlir_context), fusion_process_dump_(fusion_process_dump), thread_pool_(thread_pool), mlir_context_(mlir_context), fusion_analysis_cache_(fusion_analysis_cache), fusion_deduplication_cache_(fusion_deduplication_cache), triton_softmax_priority_fusion_enabled_( triton_softmax_priority_fusion_enabled) { VLOG(2) << "Running full HLO cost analysis for " << computation_->name(); TF_CHECK_OK(computation_->Accept(&cost_analysis_)); dump_fusion_visualization_ = computation->parent() ->config() .debug_options() .xla_dump_fusion_visualization(); std::vector<HloInstruction*> instructions; for (auto* instruction : computation->MakeInstructionPostOrder()) { TF_CHECK_OK(UpdatePerformanceModelCache(instruction)); if (instruction->opcode() == HloOpcode::kParameter || instruction->user_count() == 0 || !instruction->IsFusible() || instruction->opcode() == HloOpcode::kTuple || instruction->opcode() == HloOpcode::kGetTupleElement) { continue; } instructions.push_back(instruction); } ComputeAndSetPriorities(instructions); } void ComputeAndSetPriorities( const std::vector<HloInstruction*>& instructions) { std::vector<Priority> priorities = ComputePriorities(instructions); for (auto [instruction, priority] : llvm::zip(instructions, priorities)) { auto key = std::make_pair(priority, instruction->unique_id()); auto reverse_it = reverse_map_.find(instruction); if (reverse_it != reverse_map_.end()) { const PriorityQueue::iterator& queue_it = reverse_it->second; if (key == queue_it->first) { continue; } producer_priority_queue_.erase(queue_it); reverse_map_.erase(reverse_it); } if (priority < absl::ZeroDuration()) { continue; } auto emplace_result = producer_priority_queue_.emplace(key, instruction); reverse_map_.emplace(instruction, emplace_result.first); } } std::vector<Priority> ComputePriorities( const std::vector<HloInstruction*>& instructions) { auto schedule_or_run = [this](std::function<void()> fn) { if (thread_pool_) { thread_pool_->Schedule(std::move(fn)); } else { fn(); } }; tsl::BlockingCounter counter(instructions.size()); std::vector<Priority> priorities(instructions.size()); for (size_t i = 0; i < instructions.size(); ++i) { schedule_or_run([&, i] { priorities[i] = CalculateProducerPriority(instructions[i]); counter.DecrementCount(); }); } counter.Wait(); return priorities; } bool DequeueNextProducer() { current_producer_ = nullptr; current_consumers_.clear(); while (!producer_priority_queue_.empty() && current_consumers_.empty()) { auto next_it = std::prev(producer_priority_queue_.end()); current_producer_ = next_it->second; producer_priority_queue_.erase(next_it); reverse_map_.erase(current_producer_); current_consumers_ = current_producer_->users(); if (current_producer_->opcode() == HloOpcode::kBitcast) { llvm::erase_if(current_consumers_, [&](HloInstruction* consumer) { return !CanFuseCached(current_producer_, consumer); }); } } return !current_consumers_.empty(); } absl::Status UpdatePerformanceModelCache(HloInstruction* producer) { bool is_triton_fusion = IsGenericTritonFusion(*producer); if (!IsFusible(*producer) && !is_triton_fusion) { return absl::OkStatus(); } if (gpu_performance_model_cache_.Get(*producer)) { return absl::OkStatus(); } EstimateRunTimeData runtime_data; if (is_triton_fusion) { TF_ASSIGN_OR_RETURN( runtime_data, gpu_indexing_performance_model_.EstimateRunTimeForTriton(producer)); } else { auto config = GpuPerformanceModelOptions::PriorityFusion( &fusion_analysis_cache_, &gpu_performance_model_cache_); runtime_data = GpuPerformanceModel::EstimateRunTimeForInstruction( producer, *device_info_, &cost_analysis_, config); } gpu_performance_model_cache_.Set(*producer, runtime_data); return absl::OkStatus(); } absl::Status UpdatePriorities() { for (auto instruction : to_update_priority_) { TF_RETURN_IF_ERROR(cost_analysis_.RevisitInstruction(instruction)); } for (auto producer : to_update_priority_) { TF_RETURN_IF_ERROR(UpdatePerformanceModelCache(producer)); } ComputeAndSetPriorities(std::vector<HloInstruction*>{ to_update_priority_.begin(), to_update_priority_.end()}); to_update_priority_.clear(); operands_to_new_consumers_.clear(); operands_to_removed_consumers_runtimes_.clear(); return absl::OkStatus(); } void PreFusion(HloInstruction* producer, HloInstruction* consumer) { if (dump_fusion_visualization_) { RegisterFusionState( *computation_, absl::StrCat("About to fuse |", producer->name(), "| into |", consumer->name(), "| inside PriorityFusion"), *consumer, producer); } } void InvalidateCaches(HloInstruction* instruction) { can_fuse_cache_.erase(instruction); for (const HloInstruction* operand : instruction->operands()) { auto it = can_fuse_cache_.find(operand); if (it != can_fuse_cache_.end()) { it->second.erase(instruction); } } block_level_parameters_cache_.erase(instruction); for (const HloInstruction* operand : instruction->operands()) { auto it = block_level_parameters_cache_.find(operand); if (it != block_level_parameters_cache_.end()) { it->second.erase(instruction); } } gpu_performance_model_cache_.Invalidate(*instruction); fusion_analysis_cache_.Invalidate(*instruction); fusion_info_cache_.Invalidate(instruction); } void UpdateRuntimes( GpuPerformanceModel::RunTimes& runtimes, const HloInstruction* consumer, const absl::flat_hash_map<const HloInstruction*, absl::Duration>& original_consumers) { auto it = original_consumers.find(consumer); if (it != original_consumers.end()) { runtimes.time_fused += it->second; auto consumer_cache_result = gpu_performance_model_cache_.Get(*consumer); CHECK(consumer_cache_result.has_value()); runtimes.time_unfused += (*consumer_cache_result).exec_time; } } void ComputeRuntimesOfRemovedConsumers() { for (const auto& pair : operands_to_new_consumers_) { auto operand = pair.first; if (!reverse_map_.contains(operand)) { continue; } if (!gpu_performance_model_cache_.ContainsConsumers(*operand)) { continue; } const auto& original_consumers = gpu_performance_model_cache_.GetAllConsumers(*operand); GpuPerformanceModel::RunTimes runtimes; for (auto consumer : current_consumers()) { UpdateRuntimes(runtimes, consumer, original_consumers); } UpdateRuntimes(runtimes, current_producer(), original_consumers); auto operand_cache_result = gpu_performance_model_cache_.Get(*operand); runtimes.time_unfused += (*operand_cache_result).exec_time + GpuPerformanceModel::kKernelLaunchOverhead; operands_to_removed_consumers_runtimes_.emplace(operand, runtimes); } } void OnFusingInstruction(HloInstruction* fusion, HloInstruction* original_producer, HloInstruction* original_consumer) { if (fusion_process_dump_) { auto* fusion_step = fusion_process_dump_->add_fusion_steps()->mutable_fusion(); fusion_step->set_fusion_name(std::string(fusion->name())); fusion_step->set_producer_name(std::string(original_producer->name())); fusion_step->set_consumer_name(std::string(original_consumer->name())); } if (dump_fusion_visualization_) { RegisterFusionState( *computation_, absl::StrCat("Fused |", original_producer->name(), "| into |", fusion->name(), "| inside PriorityFusion"), *fusion); } if (fusion != original_consumer) { RemoveInstruction(original_consumer); } for (HloInstruction* operand : fusion->operands()) { if (operand == original_producer || operand->opcode() == HloOpcode::kConstant || operand->opcode() == HloOpcode::kGetTupleElement) { continue; } if (!operand->IsFusible()) { continue; } to_update_priority_.insert(operand); operands_to_new_consumers_[operand].push_back(fusion); } to_update_priority_.insert(fusion); } void RemoveInstruction(HloInstruction* instruction) { to_update_priority_.erase(instruction); fusion_analysis_cache_.Invalidate(*instruction); auto reverse_it = reverse_map_.find(instruction); if (reverse_it == reverse_map_.end()) { return; } producer_priority_queue_.erase(reverse_it->second); reverse_map_.erase(reverse_it); } absl::flat_hash_map<const HloInstruction*, BlockLevelParameters> GetBlockLevelParametersMap(const HloInstruction* producer) { auto it = block_level_parameters_cache_.find(producer); if (it == block_level_parameters_cache_.end()) { return {}; } return it->second; } HloInstruction* current_producer() { return current_producer_; } const std::vector<HloInstruction*>& current_consumers() { return current_consumers_; } private: Priority CalculateProducerPriority(HloInstruction* producer) { if (producer->opcode() == HloOpcode::kBitcast) { return absl::InfiniteDuration(); } if (producer->opcode() == HloOpcode::kConstant) { return -absl::InfiniteDuration(); } if (auto fusion_decision = CanFuseWithAllNonBitcastUsers(producer); !fusion_decision) { if (fusion_process_dump_) { absl::MutexLock lock(&fusion_process_dump_mutex_); auto* step = fusion_process_dump_->add_fusion_steps() ->mutable_producer_ineligible(); step->set_producer_name(std::string(producer->name())); step->set_reason(fusion_decision.Explain()); } return -absl::InfiniteDuration(); } auto removed_consumers_runtime_it = operands_to_removed_consumers_runtimes_.find(producer); bool is_incremental_update = removed_consumers_runtime_it != operands_to_removed_consumers_runtimes_.end(); absl::Span<HloInstruction* const> fused_consumers = is_incremental_update ? operands_to_new_consumers_.find(producer)->second : absl::MakeConstSpan(producer->users()); GpuPerformanceModel::RunTimes run_times = GpuPerformanceModel::EstimateRunTimesForPriorityFusion( producer, *device_info_, &cost_analysis_, GpuPerformanceModelOptions::PriorityFusion( &fusion_analysis_cache_, &gpu_performance_model_cache_), fused_consumers); Priority current_priority; if (is_incremental_update) { const GpuPerformanceModel::RunTimes& removed_consumers_runtime = removed_consumers_runtime_it->second; run_times.time_unfused -= removed_consumers_runtime.time_unfused; run_times.time_fused -= removed_consumers_runtime.time_fused; const PriorityQueue::iterator& queue_it = FindOrDie(reverse_map_, producer); current_priority = queue_it->first.first; } if (fusion_process_dump_) { absl::MutexLock lock(&fusion_process_dump_mutex_); auto* step = fusion_process_dump_->add_fusion_steps()->mutable_update_priority(); step->set_producer_name(std::string(producer->name())); for (auto* consumer : producer->users()) { step->add_consumer_names(std::string(consumer->name())); } step->set_us_fused(absl::ToDoubleMicroseconds(run_times.time_fused)); step->set_us_unfused(absl::ToDoubleMicroseconds(run_times.time_unfused)); } return current_priority + run_times.time_unfused - run_times.time_fused; } FusionDecision IsTritonSupported(const HloInstruction& instruction) { if (instruction.opcode() != HloOpcode::kFusion) { return IsTritonSupportedInstruction( instruction, device_info_->gpu_compute_capability()); } for (const HloInstruction* instruction : instruction.fused_instructions_computation()->instructions()) { if (auto codegen_decision = IsTritonSupportedInstruction( *instruction, device_info_->gpu_compute_capability()); !codegen_decision) { return codegen_decision; } } return FusionDecision::Allow(); } TiledRunTimeDataOrError GetTiledRunTimeDataCached( const HloInstruction* producer, const HloInstruction* consumer) { FusionDeduplicationCache::FusionId fusion_id = [&]() { absl::MutexLock lock(&fusion_deduplication_cache_mutex_); return fusion_deduplication_cache_.GetFusionId(*producer, *consumer); }(); { absl::MutexLock lock(&tiled_run_time_data_cache_mutex_); auto it = tiled_run_time_data_cache_.find(fusion_id); if (it != tiled_run_time_data_cache_.end()) { return it->second; } } auto fusion = HloFusionAdaptor::ForProducerConsumer(producer, consumer); absl::StatusOr<TiledRunTimeDataOrError> result_or_status = gpu_indexing_performance_model_.TryFindBestTilingForFusion(*fusion); TiledRunTimeDataOrError tiled_run_time_data_or_error = [&]() -> TiledRunTimeDataOrError { if (result_or_status.ok()) { return *result_or_status; } else { return FusionDecision::Forbid( absl::StrCat("TiledRunTimeDataOrError return status: ", result_or_status.status().message())); } }(); if (const auto* fusion_decision = std::get_if<FusionDecision>(&tiled_run_time_data_or_error)) { tiled_run_time_data_or_error = FusionDecision::Forbid( absl::StrCat("Fusion can not be tiled with SymbolicTileAnalysis: ", fusion_decision->Explain())); } absl::MutexLock lock(&tiled_run_time_data_cache_mutex_); tiled_run_time_data_cache_.emplace(fusion_id, tiled_run_time_data_or_error); return tiled_run_time_data_or_error; } FusionDecision CanFuseTriton(HloInstruction* producer, HloInstruction* consumer) { if (!triton_softmax_priority_fusion_enabled_) { return FusionDecision::Forbid("triton softmax fusion is not enabled"); } if (IsGenericTritonFusion(*producer)) { if (!IsFusible(*consumer)) { return FusionDecision::Forbid("the consumer is not fusible"); } if (auto fusion_decision = IsTritonSupported(*consumer); !fusion_decision) { return fusion_decision; } } else { if (!IsFusible(*producer)) { return FusionDecision::Forbid("the producer is not fusible"); } if (auto fusion_decision = IsTritonSupported(*producer); !fusion_decision) { return fusion_decision; } } TiledRunTimeDataOrError tiled_run_time_data_or_error = GetTiledRunTimeDataCached(producer, consumer); if (const auto* fusion_decision = std::get_if<FusionDecision>(&tiled_run_time_data_or_error)) { return *fusion_decision; } TiledRunTimeData tiled_run_time_data = std::get<TiledRunTimeData>(std::move(tiled_run_time_data_or_error)); gpu_performance_model_cache_.Set( *producer, *consumer, tiled_run_time_data.runtime_data.exec_time); { absl::MutexLock lock(&block_level_parameters_cache_mutex_); block_level_parameters_cache_[producer][consumer] = tiled_run_time_data.block_level_parameters; } return FusionDecision::Allow(); } FusionDecision CanFuse(HloInstruction* producer, HloInstruction* consumer) { if (IsGenericTritonFusion(*producer) || IsGenericTritonFusion(*consumer)) { return CanFuseTriton(producer, consumer); } if (!IsFusible(*producer)) { return FusionDecision::Forbid("the producer is not fusible"); } if (!IsFusible(*consumer)) { return FusionDecision::Forbid("the consumer is not fusible"); } if (consumer->opcode() == HloOpcode::kBitcast) { return FusionDecision::Forbid( "not fusing into a single bitcast as consumer"); } if (auto can_fuse = CanEmitInputFusedScatter(*producer, *consumer); !can_fuse) { return can_fuse; } auto contains_significant_reduce = [&](const HloInstruction* instr) { auto fusion = HloFusionAdaptor::ForInstruction(instr); return HloAnyOf(*fusion, [](auto node) { if (!(node.opcode() == HloOpcode::kReduce && node.shape().IsArray())) { return false; } int64_t reduction_size = ShapeUtil::ElementsIn(node.instruction().operand(0)->shape()) / ShapeUtil::ElementsIn(node.shape()); return reduction_size >= 16; }); }; if (contains_significant_reduce(producer) && contains_significant_reduce(consumer)) { return FusionDecision::Forbid( "both the producer and the consumer contain a reduce"); } const auto& analysis = fusion_analysis_cache_.Get(*producer); if (analysis.GetEmitterFusionKind() == HloFusionAnalysis::EmitterFusionKind::kReduction) { const auto& analysis_fused = fusion_analysis_cache_.Get(*producer, *consumer); if (analysis_fused.GetEmitterFusionKind() == HloFusionAnalysis::EmitterFusionKind::kLoop) { return FusionDecision::Forbid( "fusion into output of a reduce fusion would create a loop fusion"); } } if (auto fits_budget = FusionFitsInBudget( *consumer, *producer, *device_info_, true, &fusion_info_cache_); !fits_budget) { return fits_budget; } if (cost_analysis_.ProducerConsumerMergedTooLarge(*producer, *consumer)) { return FusionDecision::Forbid( "the fusion would result in an overly large code duplication"); } if (producer == producer->parent()->root_instruction()) { return FusionDecision::Forbid( "not fusing into the output of the root instruction"); } return InstructionFusion::ShouldFuseInPlaceOp(producer, consumer); } FusionDecision CanFuseCached(HloInstruction* producer, HloInstruction* consumer) { { absl::MutexLock lock(&can_fuse_cache_mutex_); auto& producer_cache = can_fuse_cache_[producer]; auto it = producer_cache.find(consumer); if (it != producer_cache.end()) { return it->second; } } auto fusion_decision = CanFuse(producer, consumer); { absl::MutexLock lock(&can_fuse_cache_mutex_); can_fuse_cache_[producer].insert_or_assign(consumer, fusion_decision); } return fusion_decision; } FusionDecision CanFuseWithAllNonBitcastUsers(HloInstruction* producer) { if (producer->users().empty()) { return FusionDecision::Forbid("No users to fuse"); } bool has_non_bitcast_user = false; for (const auto& user : producer->users()) { if (user->opcode() == HloOpcode::kBitcast) { continue; } has_non_bitcast_user = true; if (auto fusion_decision = CanFuseCached(producer, user); !fusion_decision) { VLOG(10) << "Cannot fuse " << producer->name() << " with " << user->name() << ", because: " << fusion_decision.Explain(); return fusion_decision; } } if (!has_non_bitcast_user) { return FusionDecision::Forbid( "not fusing because there are only bitcast users"); } return FusionDecision::Allow(); } HloComputation* computation_; const se::DeviceDescription* device_info_; GpuHloCostAnalysis cost_analysis_; GpuPerformanceModelWithIndexingAnalysis gpu_indexing_performance_model_; using PriorityQueue = std::map<std::pair<Priority, int>, HloInstruction*>; PriorityQueue producer_priority_queue_; absl::flat_hash_map<HloInstruction*, PriorityQueue::iterator> reverse_map_; HloInstruction* current_producer_; std::vector<HloInstruction*> current_consumers_; absl::flat_hash_set<HloInstruction*> to_update_priority_; absl::flat_hash_map<HloInstruction*, std::vector<HloInstruction*>> operands_to_new_consumers_; absl::flat_hash_map<HloInstruction*, GpuPerformanceModel::RunTimes> operands_to_removed_consumers_runtimes_; FusionProcessDumpProto* fusion_process_dump_; absl::Mutex fusion_process_dump_mutex_; tsl::thread::ThreadPool* thread_pool_; mlir::MLIRContext* mlir_context_; HloFusionAnalysisCache& fusion_analysis_cache_; FusionDeduplicationCache& fusion_deduplication_cache_; absl::Mutex fusion_deduplication_cache_mutex_; absl::flat_hash_map< const HloInstruction*, absl::flat_hash_map<const HloInstruction*, FusionDecision>> can_fuse_cache_; absl::Mutex can_fuse_cache_mutex_; absl::flat_hash_map< const HloInstruction*, absl::flat_hash_map<const HloInstruction*, BlockLevelParameters>> block_level_parameters_cache_; absl::Mutex block_level_parameters_cache_mutex_; absl::flat_hash_map<FusionDeduplicationCache::FusionId, TiledRunTimeDataOrError> tiled_run_time_data_cache_; absl::Mutex tiled_run_time_data_cache_mutex_; GpuPerformanceModelCache gpu_performance_model_cache_; FusionInfoCache fusion_info_cache_; bool triton_softmax_priority_fusion_enabled_; bool dump_fusion_visualization_; }; } bool IsSmallConstant(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kConstant && instr->shape().IsArray() && ShapeUtil::ElementsIn(instr->shape()) <= 1; } bool PriorityFusion::ConsumeFuel(HloInstruction* producer, HloInstruction* consumer) { return xla::ConsumeFuel(name(), [&] { return absl::StrFormat("Not fusing producer %s with consumer %s", producer->name(), consumer->name()); }); }; absl::StatusOr<bool> PriorityFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool dump_enabled = DumpingEnabledForHloPass(name(), module->config().debug_options()); if (dump_enabled) { fusion_process_dump_ = std::make_unique<FusionProcessDumpProto>(); *fusion_process_dump_->mutable_gpu_device_info() = device_info_.ToGpuProto(); } auto fusible_computations = GetFusibleComputations(*module, execution_threads); for (auto* computation : fusible_computations) { for (auto* instruction : computation->instructions()) { module->SetAndUniquifyInstrName(instruction, absl::StrCat(instruction->name(), ".0")); } } if (dump_enabled) { fusion_process_dump_->set_hlo_module_before_fusion( module->ToString(HloPrintOptions::ShortParsable())); } bool triton_softmax_priority_fusion_enabled = module->config() .debug_options() .xla_gpu_experimental_enable_triton_softmax_priority_fusion(); FusionDeduplicationCache fusion_deduplication_cache = FusionDeduplicationCache::Create(*module); int changed = false; for (auto* computation : fusible_computations) { CHECK(!computation->IsFusionComputation()); auto fusion_queue = std::make_unique<PriorityFusionQueue>( computation, cost_analysis_options_, &device_info_, fusion_process_dump_.get(), thread_pool_, &mlir_context_, fusion_analysis_cache_, fusion_deduplication_cache, triton_softmax_priority_fusion_enabled); while (fusion_queue->DequeueNextProducer()) { auto producer = fusion_queue->current_producer(); absl::flat_hash_map<const HloInstruction*, BlockLevelParameters> block_level_parameters_map = fusion_queue->GetBlockLevelParametersMap(producer); for (auto* consumer : fusion_queue->current_consumers()) { if (consumer->opcode() == HloOpcode::kBitcast) { continue; } if (!ConsumeFuel(producer, consumer)) continue; VLOG(5) << "next: " << consumer->name() << "(" << consumer << ") + " << producer->name() << "(" << producer << ")"; int64_t consumer_operand_index = consumer->operand_index(producer); fusion_queue->PreFusion(producer, consumer); auto fusion_instruction = Fuse(producer, consumer); fusion_deduplication_cache.UpdateFusedInstructionId( *fusion_instruction, *producer, *consumer, consumer_operand_index); fusion_queue->OnFusingInstruction(fusion_instruction, producer, consumer); auto backend_config_it = block_level_parameters_map.find(consumer); if (backend_config_it != block_level_parameters_map.end()) { TF_RETURN_IF_ERROR(fusion_instruction->set_backend_config( GetTritonGpuBackendConfig(backend_config_it->second))); } changed = true; } fusion_queue->ComputeRuntimesOfRemovedConsumers(); if (producer->user_count() == 0) { fusion_queue->InvalidateCaches(producer); producer->DetachFromOperandsAndUsers(); fusion_queue->RemoveInstruction(producer); TF_RETURN_IF_ERROR(computation->RemoveInstruction(producer)); } for (auto* consumer : fusion_queue->current_consumers()) { fusion_queue->InvalidateCaches(consumer); } TF_RETURN_IF_ERROR(fusion_queue->UpdatePriorities()); } std::vector<HloInstruction*> constants; for (auto* instruction : computation->instructions()) { if (IsSmallConstant(instruction)) { constants.push_back(instruction); } } for (auto* constant : constants) { auto users = constant->users(); for (auto* user : users) { if ((IsFusible(*user) || IsGenericTritonFusion(*user)) && CanEmitInputFusedScatter(*constant, *user)) { Fuse(constant, user); changed = true; } } } } fusion_analysis_cache_.Clear(); if (dump_enabled) { DumpPerModuleProtobufToFile(*module, *fusion_process_dump_, module->config().debug_options(), "priority_fusion_dump"); } return changed; } HloInstruction::FusionKind PriorityFusion::ChooseKind( const HloInstruction* producer, const HloInstruction* consumer) { const auto& analysis = fusion_analysis_cache_.Get(*producer, *consumer); switch (analysis.GetEmitterFusionKind()) { case HloFusionAnalysis::EmitterFusionKind::kLoop: return HloInstruction::FusionKind::kLoop; case HloFusionAnalysis::EmitterFusionKind::kTriton: case HloFusionAnalysis::EmitterFusionKind::kCustomFusion: case HloFusionAnalysis::EmitterFusionKind::kCuDnn: return HloInstruction::FusionKind::kCustom; case HloFusionAnalysis::EmitterFusionKind::kConcatenate: case HloFusionAnalysis::EmitterFusionKind::kReduction: case HloFusionAnalysis::EmitterFusionKind::kTranspose: case HloFusionAnalysis::EmitterFusionKind::kInputSlices: case HloFusionAnalysis::EmitterFusionKind::kScatter: return HloInstruction::FusionKind::kInput; } } HloInstruction* PriorityFusion::Fuse(HloInstruction* producer, HloInstruction* consumer) { VLOG(2) << "Fusing " << producer->ToString() << " into " << consumer->ToString(); HloComputation* computation = consumer->parent(); auto kind = ChooseKind(producer, consumer); HloInstruction* fusion_instruction = consumer; if (fusion_instruction->opcode() != HloOpcode::kFusion) { fusion_instruction = computation->AddInstruction( HloInstruction::CreateFusion(consumer->shape(), kind, consumer)); TF_CHECK_OK(computation->ReplaceInstruction(consumer, fusion_instruction)); } else if (kind != fusion_instruction->fusion_kind()) { fusion_instruction->set_fusion_kind(kind); } fusion_instruction->set_called_computations_execution_thread( computation->execution_thread(), false); if (producer->opcode() == HloOpcode::kFusion) { fusion_instruction->MergeFusionInstruction(producer); } else { fusion_instruction->FuseInstruction(producer); } if (fusion_instruction != consumer) { VLOG(2) << " created new fusion: " << fusion_instruction->ToString(); } return fusion_instruction; } } }
#include "xla/service/gpu/transforms/priority_fusion.h" #include <stdint.h> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace m = ::xla::match; using ::testing::UnorderedElementsAre; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; namespace xla { namespace gpu { class PriorityFusionTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: std::vector<HloFusionAnalysis::EmitterFusionKind> RunAndGetFusionKinds( absl::string_view hlo) { auto module = ParseAndReturnVerifiedModule(hlo).value(); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->RemoveUnusedComputations(), IsOk()); std::vector<HloFusionAnalysis::EmitterFusionKind> kinds; for (auto computation : module->computations()) { if (!computation->FusionInstruction()) continue; auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto analysis = HloFusionAnalysis::Create( *computation->FusionInstruction(), device_info); kinds.push_back(analysis.GetEmitterFusionKind()); } return kinds; } PriorityFusion priority_fusion_{ nullptr, TestGpuDeviceInfo::RTXA6000DeviceInfo(), GpuHloCostAnalysis::Options{ShapeSizeBytesFunction(), {}, {}, true}}; }; class PriorityFusionWithTritonEnabledTest : public PriorityFusionTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = PriorityFusionTest::GetDebugOptionsForTest(); debug_options .set_xla_gpu_experimental_enable_triton_softmax_priority_fusion(true); return debug_options; } }; TEST_F(PriorityFusionTest, FuseWithSharedArgument) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %subtract = f32[] subtract(%p0, %p1) %compare = pred[] compare(%subtract, %subtract), direction=NE %add = f32[] add(%p0, %p1) %abs = f32[] abs(%subtract) ROOT %select = f32[] select(%compare, %add, %abs) })") .value(); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Fusion())); EXPECT_EQ(root->fusion_kind(), HloInstruction::FusionKind::kLoop); } TEST_F(PriorityFusionTest, FusionFusionWithDuplication) { absl::string_view kHlo = R"( HloModule test_module square { p = f32[16384]{0} parameter(0) ROOT m = f32[16384]{0} multiply(p, p) } exp { p = f32[16384]{0} parameter(0) ROOT e = f32[16384]{0} exponential(p) } log { p = f32[16384]{0} parameter(0) ROOT l = f32[16384]{0} log(p) } ENTRY main { p = f32[16384]{0} parameter(0) s = f32[16384]{0} fusion(p), kind=kLoop, calls=square e = f32[16384]{0} fusion(s), kind=kLoop, calls=exp l = f32[16384]{0} fusion(s), kind=kInput, calls=log ROOT t = (f32[16384], f32[16384]) tuple(l, e) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK-NEXT: %[[PARAM:.*]] = f32[16384]{0} parameter(0) CHECK-NEXT: %[[FUSION_0:.*]] = f32[16384]{0} fusion(%[[PARAM]]) CHECK-NEXT: %[[FUSION_1:.*]] = f32[16384]{0} fusion(%[[PARAM]]) CHECK-NEXT: ROOT {{.*}} tuple(%[[FUSION_0]], %[[FUSION_1]]) )"); } TEST_F(PriorityFusionTest, FuseBroadcastIntoBitcastConsumers) { absl::string_view kHlo = R"( HloModule test_module ENTRY main { param_0 = f32[96]{0} parameter(0) broadcast = f32[8,96,128,7]{3,2,1,0} broadcast(param_0), dimensions={1} bitcast.6079.2 = f32[8,24,4,128,7]{4,3,2,1,0} bitcast(broadcast) ROOT transpose.1990.2 = f32[8,24,128,7,4]{4,3,2,1,0} transpose(bitcast.6079.2), dimensions={0,1,3,4,2} } )"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK-NEXT: %[[PARAM:.*]] = f32[96]{0} parameter(0) CHECK-NEXT: ROOT %{{.*}} fusion(%[[PARAM]]) )"); } TEST_F(PriorityFusionTest, FuseWideningConvertIntoConsumers) { absl::string_view kHlo = R"( HloModule test_module ENTRY main { p = f16[512]{0} parameter(0) a = f16[512]{0} add(p, p) c = f32[512]{0} convert(a) s = f32[512]{0} multiply(c, c) bc = s32[512]{0} bitcast(c) ROOT t = (f32[512], s32[512]) tuple(s, bc) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK-NEXT: %[[PARAM:.*]] = f16[512]{0} parameter(0) CHECK-NEXT: %[[FUSION_F32:.*]] = f32[512]{0} fusion(%[[PARAM]]) CHECK-NEXT: %[[CONVERT_FUSION:.*]] = f32[512]{0} fusion(%[[PARAM]]) CHECK-NEXT: %[[BITCAST:.*]] = s32[512]{0} bitcast(%[[CONVERT_FUSION]]) CHECK-NEXT: ROOT %{{.*}} = (f32[512]{0}, s32[512]{0}) tuple(%[[FUSION_F32]], %[[BITCAST]]) )"); } TEST_F(PriorityFusionTest, FuseConvertIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } ENTRY main { param_0_0.79 = bf16[1024,8192]{1,0} parameter(0) param_1_0.79 = bf16[1024,8192]{1,0} parameter(1) param_2.483 = f32[8192]{0} parameter(2) param_4.2892 = bf16[1024,8192]{1,0} parameter(3) convert.21854 = f32[1024,8192]{1,0} convert(param_0_0.79) convert.21855 = f32[1024,8192]{1,0} convert(param_1_0.79) constant_7773 = f32[] constant(0) broadcast.14555 = f32[1024,8192]{1,0} broadcast(param_2.483), dimensions={1} multiply.6906 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21854) reduce.4813 = f32[1024]{0} reduce(multiply.6906, constant_7773), dimensions={1}, to_apply=add convert.13970 = bf16[1024]{0} convert(reduce.4813) convert.21534 = f32[1024,8192]{1,0} convert(param_4.2892) multiply.6910.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21534) reduce.4811.clone.1 = f32[1024]{0} reduce(multiply.6910.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13967.clone.1 = bf16[1024]{0} convert(reduce.4811.clone.1) multiply.6908.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21855) reduce.4812.clone.1 = f32[1024]{0} reduce(multiply.6908.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13969.clone.1 = bf16[1024]{0} convert(reduce.4812.clone.1) ROOT fusion.241 = (bf16[1024]{0}, bf16[1024]{0}, bf16[1024]{0}) tuple(convert.13970, convert.13967.clone.1, convert.13969.clone.1) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK-COUNT-3: ROOT {{.*}} convert( CHECK: ENTRY %main CHECK-COUNT-3: fusion )"); } TEST_F(PriorityFusionTest, ReductionEpilogueFusionRegressionTest) { absl::string_view kHlo = R"( HloModule test_module add { rhs.407 = f32[] parameter(1) lhs.407 = f32[] parameter(0) ROOT add.24451 = f32[] add(lhs.407, rhs.407) } ENTRY main { param_1.15162 = f32[2752]{0} parameter(1) convert.44829 = bf16[2752]{0} convert(param_1.15162) bitcast.24686 = bf16[1,1,2752]{2,1,0} bitcast(convert.44829) convert.44468 = f32[1,1,2752]{2,1,0} convert(bitcast.24686) constant_13722 = bf16[] constant(1) convert.17451 = f32[] convert(constant_13722) broadcast.17565 = f32[1,1,2752]{2,1,0} broadcast(convert.17451), dimensions={} negate.167 = f32[1,1,2752]{2,1,0} negate(convert.44468) exponential.569 = f32[1,1,2752]{2,1,0} exponential(negate.167) add.1850 = f32[1,1,2752]{2,1,0} add(broadcast.17565, exponential.569) divide.1376 = f32[1,1,2752]{2,1,0} divide(broadcast.17565, add.1850) multiply.9709 = f32[1,1,2752]{2,1,0} multiply(convert.44468, divide.1376) param_0.15005 = f32[2752]{0} parameter(0) convert.44826 = bf16[2752]{0} convert(param_0.15005) bitcast.24683 = bf16[1,1,2752]{2,1,0} bitcast(convert.44826) convert.44467 = f32[1,1,2752]{2,1,0} convert(bitcast.24683) multiply.9708 = f32[1,1,2752]{2,1,0} multiply(multiply.9709, convert.44467) convert.16959 = bf16[1,1,2752]{2,1,0} convert(multiply.9708) fusion.3203 = bf16[2752]{0} bitcast(convert.16959) convert.15093 = f32[2752]{0} convert(fusion.3203) broadcast.13841 = f32[8192,2752]{1,0} broadcast(convert.15093), dimensions={1} param_0.15525 = bf16[8192,2752]{1,0} parameter(2) convert.13738 = f32[8192,2752]{1,0} convert(param_0.15525) multiply.6422 = f32[8192,2752]{1,0} multiply(broadcast.13841, convert.13738) constant_14382 = f32[] constant(0) fusion.339 = f32[8192]{0} reduce(multiply.6422, constant_14382), dimensions={1}, to_apply=add convert.44633 = bf16[8192]{0} convert(fusion.339) ROOT bitcast.24487 = bf16[1,1,8192]{2,1,0} bitcast(convert.44633) } )"; EXPECT_THAT( RunAndGetFusionKinds(kHlo), UnorderedElementsAre(HloFusionAnalysis::EmitterFusionKind::kLoop, HloFusionAnalysis::EmitterFusionKind::kReduction)); RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK: ROOT {{.*}} bitcast({{.*}}fusion{{.*}}) )"); } TEST_F(PriorityFusionTest, DoNotChangeReductionFusionToLoopFusion) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { rhs.407 = f32[] parameter(1) lhs.407 = f32[] parameter(0) ROOT add.24451 = f32[] add(lhs.407, rhs.407) } fused_computation { p0 = f32[16,64]{1,0} parameter(0) zero = f32[] constant(0.0) ROOT reduce = f32[16]{0} reduce(p0, zero), dimensions={1}, to_apply=add } ENTRY main { param0 = f32[16,64]{1,0} parameter(0) fusion = f32[16]{0} fusion(param0), kind=kLoop, calls=fused_computation ROOT slice = f32[8]{0} slice(fusion), slice={[0:8]} })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionTest, DoNotFuseTransposeIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { Arg_1.1046 = f32[] parameter(1) Arg_0.1045 = f32[] parameter(0) ROOT add.3303 = f32[] add(Arg_0.1045, Arg_1.1046) } ENTRY main { param_0.17323 = pred[2048,2048]{1,0} parameter(0) broadcast.22829 = pred[1,12,2048,2048]{3,2,1,0} broadcast(param_0.17323), dimensions={2,3} param_1.19761 = bf16[2048,24576]{1,0} parameter(1) convert.29880.clone.1 = f32[2048,24576]{1,0} convert(param_1.19761) constant_10033_clone_1 = bf16[] constant(0.02002) convert.30056.clone.1 = f32[] convert(constant_10033_clone_1) broadcast.18898.clone.1 = f32[2048,24576]{1,0} broadcast(convert.30056.clone.1), dimensions={} multiply.13451.clone.1 = f32[2048,24576]{1,0} multiply(convert.29880.clone.1, broadcast.18898.clone.1) tanh.798.clone.1 = f32[2048,24576]{1,0} tanh(multiply.13451.clone.1) constant_10244_clone_1 = bf16[] constant(50) convert.30039.clone.1 = f32[] convert(constant_10244_clone_1) broadcast.18310.clone.1 = f32[2048,24576]{1,0} broadcast(convert.30039.clone.1), dimensions={} multiply.12550.clone.1 = f32[2048,24576]{1,0} multiply(tanh.798.clone.1, broadcast.18310.clone.1) convert.29370.clone.1 = bf16[2048,24576]{1,0} convert(multiply.12550.clone.1) bitcast.1 = bf16[2048,2048,12]{2,1,0} bitcast(convert.29370.clone.1) transpose.6582 = bf16[12,2048,2048]{2,1,0} transpose(bitcast.1), dimensions={2,1,0} bitcast = bf16[1,12,2048,2048]{3,2,1,0} bitcast(transpose.6582) convert.33705 = f32[1,12,2048,2048]{3,2,1,0} convert(bitcast) constant_10212 = f32[] constant(-2.38197633e+38) broadcast.22828 = f32[1,12,2048,2048]{3,2,1,0} broadcast(constant_10212), dimensions={} select.589 = f32[1,12,2048,2048]{3,2,1,0} select(broadcast.22829, convert.33705, broadcast.22828) bitcast.22075 = f32[12,2048,2048]{2,1,0} bitcast(select.589) constant_10192 = f32[] constant(-inf) reduce.1614 = f32[12,2048]{1,0} reduce(bitcast.22075, constant_10192), dimensions={2}, to_apply=add predarg = pred[1,1,2048,2048]{3,2,1,0} parameter(2) bitcast.11069 = pred[2048,2048]{1,0} bitcast(predarg) broadcast.22825 = pred[1,12,2048,2048]{3,2,1,0} broadcast(bitcast.11069), dimensions={2,3} transpose.6580 = bf16[12,2048,2048]{2,1,0} transpose(bitcast.1), dimensions={2,1,0} bitcast.2 = bf16[1,12,2048,2048]{3,2,1,0} bitcast(transpose.6580) convert.33703 = f32[1,12,2048,2048]{3,2,1,0} convert(bitcast.2) constant_10213 = f32[] constant(-2.38197633e+38) broadcast.22824 = f32[1,12,2048,2048]{3,2,1,0} broadcast(constant_10213), dimensions={} select.587 = f32[1,12,2048,2048]{3,2,1,0} select(broadcast.22825, convert.33703, broadcast.22824) broadcast.22819 = f32[1,12,2048,2048]{3,2,1,0} broadcast(reduce.1614), dimensions={1,2} subtract.1129 = f32[1,12,2048,2048]{3,2,1,0} subtract(select.587, broadcast.22819) exponential.418 = f32[1,12,2048,2048]{3,2,1,0} exponential(subtract.1129) bitcast.22074 = f32[12,2048,2048]{2,1,0} bitcast(exponential.418) constant_10490 = f32[] constant(0) reduce.1613 = f32[12,2048]{1,0} reduce(bitcast.22074, constant_10490), dimensions={2}, to_apply=add constant_468 = f32[] constant(-2.38197633e+38) broadcast.22833 = pred[1,12,2048,2048]{3,2,1,0} broadcast(bitcast.11069), dimensions={2,3} transpose.6584 = bf16[12,2048,2048]{2,1,0} transpose(bitcast.1), dimensions={2,1,0} bitcast.3 = bf16[1,12,2048,2048]{3,2,1,0} bitcast(transpose.6584) convert.33707 = f32[1,12,2048,2048]{3,2,1,0} convert(bitcast.3) broadcast.22832 = f32[1,12,2048,2048]{3,2,1,0} broadcast(constant_468), dimensions={} select.591 = f32[1,12,2048,2048]{3,2,1,0} select(broadcast.22833, convert.33707, broadcast.22832) broadcast.22821 = f32[1,12,2048,2048]{3,2,1,0} broadcast(reduce.1614), dimensions={1,2} subtract.1131 = f32[1,12,2048,2048]{3,2,1,0} subtract(select.591, broadcast.22821) exponential.420 = f32[1,12,2048,2048]{3,2,1,0} exponential(subtract.1131) broadcast.18351 = f32[1,12,2048,2048]{3,2,1,0} broadcast(reduce.1613), dimensions={1,2} divide.340 = f32[1,12,2048,2048]{3,2,1,0} divide(exponential.420, broadcast.18351) ROOT convert.29418 = bf16[1,12,2048,2048]{3,2,1,0} convert(divide.340) })"; using Kind = HloFusionAnalysis::EmitterFusionKind; EXPECT_THAT( RunAndGetFusionKinds(kHlo), UnorderedElementsAre(Kind::kLoop, Kind::kLoop, Kind::kLoop, Kind::kReduction, Kind::kReduction, Kind::kTranspose, Kind::kTranspose, Kind::kTranspose)); } TEST_F(PriorityFusionTest, DoNotFuseReduceIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } ENTRY main { p0 = f32[8,4,128,226]{3,2,1,0} parameter(0) c0 = f32[] constant(0) r0 = f32[8,4,128]{2,1,0} reduce(p0, c0), dimensions={3}, to_apply=add ROOT r1 = f32[8,4]{1,0} reduce(r0, c0), dimensions={2}, to_apply=add })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} reduce( CHECK: ROOT {{.*}} reduce( )"); } TEST_F(PriorityFusionTest, ConvertFusedIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } ENTRY main { param_0_0.79 = bf16[1024,8192]{1,0} parameter(0) param_1_0.79 = bf16[1024,8192]{1,0} parameter(1) param_2.483 = f32[8192]{0} parameter(2) param_4.2892 = bf16[1024,8192]{1,0} parameter(3) convert.21854 = f32[1024,8192]{1,0} convert(param_0_0.79) convert.21855 = f32[1024,8192]{1,0} convert(param_1_0.79) constant_7773 = f32[] constant(0) broadcast.14555 = f32[1024,8192]{1,0} broadcast(param_2.483), dimensions={1} multiply.6906 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21854) reduce.4813 = f32[1024]{0} reduce(multiply.6906, constant_7773), dimensions={1}, to_apply=add convert.13970 = bf16[1024]{0} convert(reduce.4813) convert.21534 = f32[1024,8192]{1,0} convert(param_4.2892) multiply.6910.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21534) reduce.4811.clone.1 = f32[1024]{0} reduce(multiply.6910.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13967.clone.1 = bf16[1024]{0} convert(reduce.4811.clone.1) multiply.6908.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21855) reduce.4812.clone.1 = f32[1024]{0} reduce(multiply.6908.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13969.clone.1 = bf16[1024]{0} convert(reduce.4812.clone.1) ROOT fusion.241 = (bf16[1024]{0}, bf16[1024]{0}, bf16[1024]{0}) tuple(convert.13970, convert.13967.clone.1, convert.13969.clone.1) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK-COUNT-3: ROOT {{.*}} convert( CHECK: ENTRY %main CHECK-COUNT-3: fusion( CHECK-NOT: fusion( )"); } TEST_F(PriorityFusionTest, DoNotFuseDynamicUpdateSliceIntoReduce) { GTEST_SKIP() << "b/294198633"; absl::string_view kHlo = R"( HloModule test_module add { Arg_1.1046 = f32[] parameter(1) Arg_0.1045 = f32[] parameter(0) ROOT add.3303 = f32[] add(Arg_0.1045, Arg_1.1046) } ENTRY main { param_0.10549 = f32[4,2112]{1,0} parameter(0) param_5.2561 = pred[] parameter(5) broadcast.19725 = pred[4,1]{1,0} broadcast(param_5.2561), dimensions={} param_1.11587 = pred[4]{0} parameter(1) constant_5837 = f32[] constant(1) broadcast.19723 = f32[4]{0} broadcast(constant_5837), dimensions={} param_2.5952 = f32[4,8000]{1,0} parameter(2) param_3.4004 = f32[4]{0} parameter(3) broadcast.19718 = f32[4,8000]{1,0} broadcast(param_3.4004), dimensions={0} subtract.1112 = f32[4,8000]{1,0} subtract(param_2.5952, broadcast.19718) exponential.418 = f32[4,8000]{1,0} exponential(subtract.1112) constant_6254 = f32[] constant(0) reduce.1154 = f32[4]{0} reduce(exponential.418, constant_6254), dimensions={1}, to_apply=add log.38 = f32[4]{0} log(reduce.1154) broadcast.19717 = f32[4,8000]{1,0} broadcast(log.38), dimensions={0} subtract.1111 = f32[4,8000]{1,0} subtract(subtract.1112, broadcast.19717) iota.170 = s32[4,1]{1,0} iota(), iota_dimension=0 constant_6281 = s32[] constant(0) broadcast.19735 = s32[4]{0} broadcast(constant_6281), dimensions={} param_4.3400 = s32[4,8000]{1,0} parameter(4) slice.3186 = s32[4,40]{1,0} slice(param_4.3400), slice={[0:4], [0:40]} iota.168 = s32[4,1]{1,0} iota(), iota_dimension=0 param_7.1596 = s32[4]{0} parameter(7) compare.341 = pred[4]{0} compare(param_7.1596, broadcast.19735), direction=LT constant_5833 = s32[] constant(40) broadcast.19731 = s32[4]{0} broadcast(constant_5833), dimensions={} add.8348 = s32[4]{0} add(param_7.1596, broadcast.19731) select.418 = s32[4]{0} select(compare.341, add.8348, param_7.1596) bitcast.20942 = s32[4,1]{1,0} bitcast(select.418) concatenate.1337 = s32[4,2]{1,0} concatenate(iota.168, bitcast.20942), dimensions={1} gather.43 = s32[4,1,1]{2,1,0} gather(slice.3186, concatenate.1337), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1} bitcast.20941 = s32[4]{0} bitcast(gather.43) select.398 = s32[4]{0} select(param_1.11587, broadcast.19735, bitcast.20941) compare.334 = pred[4]{0} compare(select.398, broadcast.19735), direction=LT constant_6260 = s32[] constant(8000) broadcast.19720 = s32[4]{0} broadcast(constant_6260), dimensions={} add.8336 = s32[4]{0} add(select.398, broadcast.19720) select.396 = s32[4]{0} select(compare.334, add.8336, select.398) bitcast.20830 = s32[4,1]{1,0} bitcast(select.396) concatenate.1308 = s32[4,2]{1,0} concatenate(iota.170, bitcast.20830), dimensions={1} gather.41 = f32[4,1,1]{2,1,0} gather(subtract.1111, concatenate.1308), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1} bitcast.20824 = f32[4]{0} bitcast(gather.41) select.389 = f32[4]{0} select(param_1.11587, broadcast.19723, bitcast.20824) bitcast.20823 = f32[4,1]{1,0} bitcast(select.389) param_6.1719 = s32[] parameter(6) constant_6323 = s32[] constant(2048) add.8549 = s32[] add(param_6.1719, constant_6323) compare.388 = pred[] compare(add.8549, constant_6281), direction=LT constant_5436 = s32[] constant(4160) add.8339 = s32[] add(param_6.1719, constant_5436) select.409 = s32[] select(compare.388, add.8339, add.8549) dynamic-slice.36 = f32[4,1]{1,0} dynamic-slice(param_0.10549, constant_6281, select.409), dynamic_slice_sizes={4,1} select.388 = f32[4,1]{1,0} select(broadcast.19725, bitcast.20823, dynamic-slice.36) ROOT dynamic-update-slice.307 = f32[4,2112]{1,0} dynamic-update-slice(param_0.10549, select.388, constant_6281, select.409) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} dynamic-update-slice( CHECK: %[[REDUCE:.*]] = {{.*}} reduce( CHECK: ROOT {{.*}} log(%[[REDUCE]]) CHECK: ENTRY CHECK-COUNT-2: fusion( )"); } TEST_F(PriorityFusionTest, DontFuseIntoFirstOperandOfScatter) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY FuseIntoScatter { p0 = s32[3,3] parameter(0) operand = s32[3,3] add(p0, p0) p1 = s32[2] parameter(1) indices = s32[2] add(p1, p1) p2 = s32[2,3] parameter(2) updates = s32[2,3] add(p2, p2) scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 ROOT add = s32[3,3] add(scatter, scatter) })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Add(m::Fusion(&fusion), m::Fusion()))); EXPECT_EQ(fusion->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Scatter(m::Parameter(), m::Add(), m::Add()))); } TEST_F(PriorityFusionTest, DontFuseConstantIntoFirstOperandOfScatter) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY FuseIntoScatter { operand = s32[1] constant({0}) indices = s32[24,1] parameter(0) constant = s32[] constant(1) updates = s32[24,1] broadcast(constant) ROOT scatter = s32[1] scatter(operand, indices, updates), to_apply=add, update_window_dims={1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion(m::Constant(), m::Parameter()))); EXPECT_EQ(root->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Scatter(m::Parameter(), m::Parameter(), m::Broadcast(m::Constant())))); } TEST_F(PriorityFusionTest, DoNotFuseReduceIntoReduceEvenIfOccupancyIsHigh) { constexpr absl::string_view kHlo = R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY main { p0 = f32[4,3584,128,168]{3,2,1,0} parameter(0) c = f32[] constant(0) r1 = f32[4,3584,128]{2,1,0} reduce(p0, c), dimensions={3}, to_apply=add ROOT r2 = f32[4,3584]{1,0} reduce(r1, c), dimensions={2}, to_apply=add })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} reduce( CHECK: ROOT {{.*}} reduce( )"); } TEST_F(PriorityFusionTest, FuseReductionEpilogueWithMultipleUsers) { constexpr absl::string_view kHlo = R"( HloModule test_module add { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } fused_computation { p0 = f32[64,16384]{1,0} parameter(0) c0 = f32[] constant(0) ROOT reduce.858 = f32[64]{0} reduce(p0, c0), dimensions={1}, to_apply=add } ENTRY main { p0 = f32[64,16384]{1,0} parameter(0) fusion = f32[64]{0} fusion(p0), kind=kInput, calls=fused_computation log = f32[64]{0} log(fusion) negate = f32[64]{0} custom-call(log), custom_call_target="negate" ROOT add = f32[64]{0} add(negate, log) } )"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK: %[[PARAM:.*]] = {{.*}} parameter(0) CHECK: %[[FUSION:.*]] = {{.*}} fusion(%[[PARAM]]) CHECK: custom-call(%[[FUSION]]) )"); } TEST_F(PriorityFusionTest, EpilogueFusion) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } fused_computation.1 { p0 = f32[8,4,128,226]{3,2,1,0} parameter(0) c0 = f32[] constant(0) ROOT r0 = f32[8,4,128]{2,1,0} reduce(p0, c0), dimensions={3}, to_apply=add } fused_computation.2 { p0 = f32[8,4,128]{2,1,0} parameter(0) r1 = f32[8,4,128]{2,1,0} log(p0) ROOT r2 = f32[8,4,128]{2,1,0} log(r1) } ENTRY main { p0 = f32[8,4,128,226]{3,2,1,0} parameter(0) f1 = f32[8,4,128]{2,1,0} fusion(p0), kind=kInput, calls=%fused_computation.1 ROOT fusion = f32[8,4,128]{2,1,0} fusion(f1), kind=kLoop, calls=%fused_computation.2 })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} = f32[8,4,128]{2,1,0} fusion(%p{{.*}}), kind=kInput, calls=%fused_computation)"); } TEST_F(PriorityFusionTest, EpilogueFusionFails) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } fused_computation.1 { p0 = f32[28672,4096]{1,0} parameter(0) c0 = f32[] constant(0) ROOT r = f32[28672]{0} reduce(p0, c0), dimensions={1}, to_apply=add } fused_computation.2 { p0 = f32[28672]{0} parameter(0) p1 = f32[28672]{0} parameter(1) ROOT a = f32[28672]{0} add(p0, p1) } ENTRY main { p0 = f32[28672,4096]{1,0} parameter(0) p1 = f32[28672]{0} parameter(1) f = f32[28672]{0} fusion(p0), kind=kInput, calls=%fused_computation.1 ROOT fusion = f32[28672]{0} fusion(f,p1), kind=kLoop, calls=%fused_computation.2 })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionTest, DoNotFuseIntoRoot) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY %main (p.0: u32[2], p.1: u32[]) -> u32[2] { %p.0 = u32[2]{0} parameter(0) %p.1 = u32[] parameter(1) ROOT %broadcast = u32[2]{0} broadcast(u32[] %p.1), dimensions={}, sharding={replicated} %add = u32[2]{0} add(u32[2]{0} %p.0, u32[2]{0} %broadcast) %tuple.1 = (u32[2]{0}) tuple(u32[2]{0} %add) %token.0 = token[] after-all() %outfeed.6 = token[] outfeed((u32[2]{0}) %tuple.1, token[] %token.0), outfeed_shape=(u32[2]{0}), sharding={maximal device=0} })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionTest, DontFuseConcat) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule module %maximum (param_0: f32[], param_1: f32[]) -> f32[] { %param_0 = f32[] parameter(0) %param_1 = f32[] parameter(1) ROOT %maximum = f32[] maximum(f32[] %param_0, f32[] %param_1) } %fused_concat (param_0: f32[1,4,401,8,8], param_1: f32[1,1,4,1023,8], param_2: bf16[1,4,1023,8,8]) -> f32[1,4,1424,8,8] { %param_2 = bf16[1,4,1023,8,8]{4,3,2,1,0} parameter(2) %convert = f32[1,4,1023,8,8]{4,3,2,1,0} convert(bf16[1,4,1023,8,8]{4,3,2,1,0} %param_2) %param_1 = f32[1,1,4,1023,8]{4,3,2,1,0} parameter(1) %bitcast = f32[4,1023,8]{2,1,0} bitcast(f32[1,1,4,1023,8]{4,3,2,1,0} %param_1) %broadcast = f32[1,4,1023,8,8]{4,3,2,1,0} broadcast(f32[4,1023,8]{2,1,0} %bitcast), dimensions={1,2,4} %add = f32[1,4,1023,8,8]{4,3,2,1,0} add(f32[1,4,1023,8,8]{4,3,2,1,0} %convert, f32[1,4,1023,8,8]{4,3,2,1,0} %broadcast) %param_0 = f32[1,4,401,8,8]{4,3,2,1,0} parameter(0) ROOT %concatenate = f32[1,4,1424,8,8]{4,3,2,1,0} concatenate(f32[1,4,1023,8,8]{4,3,2,1,0} %add, f32[1,4,401,8,8]{4,3,2,1,0} %param_0), dimensions={2} } %fused_reduce (param_0: f32[], param_1: f32[1,4,1424,8,8]) -> f32[4,8,8] { %param_1 = f32[1,4,1424,8,8]{4,3,2,1,0} parameter(1) %bitcast = f32[4,1424,8,8]{3,2,1,0} bitcast(f32[1,4,1424,8,8]{4,3,2,1,0} %param_1) %param_0 = f32[] parameter(0) ROOT %reduce = f32[4,8,8]{2,1,0} reduce(f32[4,1424,8,8]{3,2,1,0} %bitcast, f32[] %param_0), dimensions={1}, to_apply=%maximum } %fused_broadcast (param_0: f32[1,4,1424,8,8], param_1: f32[4,8,8]) -> f32[1,4,1424,8,8] { %param_0 = f32[1,4,1424,8,8]{4,3,2,1,0} parameter(0) %param_1 = f32[4,8,8]{2,1,0} parameter(1) %broadcast = f32[1,4,1424,8,8]{4,3,2,1,0} broadcast(f32[4,8,8]{2,1,0} %param_1), dimensions={1,3,4} ROOT %subtract = f32[1,4,1424,8,8]{4,3,2,1,0} subtract(f32[1,4,1424,8,8]{4,3,2,1,0} %param_0, f32[1,4,1424,8,8]{4,3,2,1,0} %broadcast) } ENTRY fusion { %param_0 = f32[1,4,401,8,8]{4,3,2,1,0} parameter(0) %param_1 = f32[1,1,4,1023,8]{4,3,2,1,0} parameter(1) %param_2 = bf16[1,4,1023,8,8]{4,3,2,1,0} parameter(2) %concat = f32[1,4,1424,8,8]{4,3,2,1,0} fusion(%param_0, %param_1, %param_2), kind=kLoop, calls=fused_concat %param_3 = f32[] parameter(3) %reduce = f32[4,8,8]{2,1,0} fusion(%param_3, %concat), kind=kLoop, calls=fused_reduce %param_4 = f32[4,8,8]{2,1,0} parameter(4) %broadcast = f32[1,4,1424,8,8]{4,3,2,1,0} fusion(%concat, %param_4), kind=kLoop, calls=fused_broadcast ROOT tuple = (f32[4,8,8]{2,1,0}, f32[1,4,1424,8,8]{4,3,2,1,0}) tuple(%reduce, %broadcast) } )"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionTest, FuseOnlySmallConstant) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule module ENTRY main { param_0 = f32[32,32]{1,0} parameter(0) c_1 = f32[] constant(1) c_2 = f32[32,32] constant({...}) broadcast = f32[32,32]{1,0} broadcast(c_1), dimensions={} add = f32[32,32]{1,0} add(param_0, broadcast) ROOT mul = f32[32,32]{1,0} multiply(c_2, add) } )"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion(m::Constant(), m::Parameter()))); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Multiply( m::Parameter(), m::Add(m::Parameter(), m::Broadcast(m::Constant()))))); } TEST_F(PriorityFusionTest, FuseSmallConstantIntoTritonFusion) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule module add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_computation { param_0 = f32[32,64] parameter(0) param_1 = f32[] parameter(1) ROOT reduce = f32[32] reduce(param_0, param_1), dimensions={1}, to_apply=add } ENTRY main { param_0 = f32[32,64] parameter(0) c_0 = f32[] constant(0) ROOT triton_softmax = f32[32] fusion(param_0, c_0), kind=kCustom, calls=triton_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1"],"num_warps":"1"}}} })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion(m::Parameter()))); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Reduce(m::Parameter(), m::Constant()))); } TEST_F(PriorityFusionTest, DoNotFuseProducerConsumerMergedTooLarge) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule module fused_computation.1 { iota.9.7 = s32[3,1,1]{2,1,0} iota(), iota_dimension=0 param_3.29 = s32[] parameter(2) pad.2.7 = s32[3,1,2]{2,1,0} pad(iota.9.7, param_3.29), padding=0_0x0_0x0_1 param_2.39 = s32[] parameter(1) broadcast.76.1 = s32[3,1,2]{2,1,0} broadcast(param_2.39), dimensions={} compare.9.1 = pred[3,1,2]{2,1,0} compare(pad.2.7, broadcast.76.1), direction=GE param_1.73 = s32[2]{0} parameter(0) broadcast.78.1 = s32[3,2]{1,0} broadcast(param_1.73), dimensions={1} bitcast.1 = s32[3,2]{1,0} bitcast(pad.2.7) compare.10.1 = pred[3,2]{1,0} compare(bitcast.1, broadcast.78.1), direction=LE bitcast.2 = pred[3,1,2]{2,1,0} bitcast(compare.10.1) ROOT and.3.1 = pred[3,1,2]{2,1,0} and(compare.9.1, bitcast.2) } and { x = pred[] parameter(0) y = pred[] parameter(1) ROOT and = pred[] and(x, y) } fused_computation.2 { param0 = pred[3,1,2]{2,1,0} parameter(0) slice = pred[1,1,2]{2,1,0} slice(param0), slice={[0:1], [0:1], [0:2]} bitcast = pred[2]{0} bitcast(slice) init = pred[] constant(true) reduce = pred[2]{0} reduce(param0, init), dimensions={0,1}, to_apply=and and = pred[2]{0} and(bitcast, reduce) pad = pred[3]{0} pad(and, init), padding=0_1 broadcast = pred[3,2]{1,0} broadcast(pad), dimensions={0} bitcast2 = pred[6]{0} bitcast(broadcast) broadcast2 = pred[2,3]{1,0} broadcast(pad), dimensions={1} bitcast3 = pred[6]{0} bitcast(broadcast2) ROOT and2 = pred[6]{0} and(bitcast2, bitcast3) } ENTRY main { p0 = s32[2]{0} parameter(0) p1 = s32[] parameter(1) p2 = s32[] parameter(2) fusion1 = pred[3,1,2]{2,1,0} fusion(p0, p1, p2), kind=kLoop, calls=fused_computation.1 ROOT fusion2 = pred[6]{0} fusion(fusion1), kind=kInput, calls=fused_computation.2 } )"); auto& debug_options = module->mutable_config().mutable_debug_options(); debug_options.set_xla_gpu_mlir_emitter_level(3); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionWithTritonEnabledTest, CanMergeTritonFusionWithBothProducerAndConsumer) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } producer_computation { parameter_0 = f32[125]{0} parameter(0) ROOT broadcast = f32[125,127]{1,0} broadcast(parameter_0), dimensions={0} } consumer_computation { parameter_0 = f32[125,127]{1,0} parameter(0) parameter_1 = f32[125,127]{1,0} parameter(1) ROOT multiply = f32[125,127]{1,0} multiply(parameter_1, parameter_0) } triton_softmax_computation { parameter_0 = f32[125,127]{1,0} parameter(0) multiply_0 = f32[125,127]{1,0} multiply(parameter_0, parameter_0) constant_0 = f32[] constant(0) reduce_0 = f32[125]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[125,127]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[125,127]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[125]{0} parameter(0) param_1 = f32[125,127]{1,0} parameter(1) producer_fusion = f32[125,127]{1,0} fusion(param_0), kind=kLoop, calls=producer_computation triton_softmax = f32[125,127]{1,0} fusion(producer_fusion), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","127"],"num_warps":"1"}}} ROOT consumer_fusion = f32[125,127]{1,0} fusion(param_1, triton_softmax), kind=kLoop, calls=consumer_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloText)); EXPECT_TRUE(priority_fusion_.Run(module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); EXPECT_EQ(root->fusion_kind(), HloInstruction::FusionKind::kCustom); ASSERT_TRUE(IsGenericTritonFusion(*root)); EXPECT_TRUE(root->backend_config<GpuBackendConfig>() ->fusion_backend_config() .has_block_level_fusion_config()); EXPECT_EQ(root->backend_config<GpuBackendConfig>() ->fusion_backend_config() .block_level_fusion_config() .output_tile_sizes_size(), 2); } TEST_F(PriorityFusionWithTritonEnabledTest, FuseTritonProducerWithTwoConsumers) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } producer_computation { parameter_0 = f32[125]{0} parameter(0) ROOT broadcast = f32[125,127] broadcast(parameter_0), dimensions={0} } consumer_computation.1 { parameter_0 = f32[125,127] parameter(0) ROOT log = f32[125,127] log(parameter_0) } consumer_computation.2 { parameter_0 = f32[125,127] parameter(0) ROOT exp = f32[125,127] exponential(parameter_0) } ENTRY main { param_0 = f32[125]{0} parameter(0) producer_fusion = f32[125,127] fusion(param_0), kind=kCustom, calls=producer_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","127"],"num_warps":"1"}}} consumer_fusion.1 = f32[125,127] fusion(producer_fusion), kind=kLoop, calls=consumer_computation.1 consumer_fusion.2 = f32[125,127] fusion(producer_fusion), kind=kLoop, calls=consumer_computation.2 ROOT tuple = (f32[125,127], f32[125,127]) tuple(consumer_fusion.1, consumer_fusion.2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloText)); EXPECT_TRUE(priority_fusion_.Run(module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); HloInstruction* root = module->entry_computation()->root_instruction(); HloInstruction *fusion1, *fusion2; EXPECT_THAT(root, GmockMatch(m::Tuple(m::Fusion(&fusion1, m::Parameter()), m::Fusion(&fusion2, m::Parameter())))); EXPECT_TRUE(IsGenericTritonFusion(*fusion1)); TF_ASSERT_OK_AND_ASSIGN(auto backend_config1, fusion1->backend_config<GpuBackendConfig>()); EXPECT_TRUE( backend_config1.fusion_backend_config().has_block_level_fusion_config()); EXPECT_EQ(backend_config1.fusion_backend_config() .block_level_fusion_config() .output_tile_sizes_size(), 2); EXPECT_TRUE(IsGenericTritonFusion(*fusion2)); TF_ASSERT_OK_AND_ASSIGN(auto backend_config2, fusion2->backend_config<GpuBackendConfig>()); EXPECT_TRUE( backend_config2.fusion_backend_config().has_block_level_fusion_config()); EXPECT_EQ(backend_config2.fusion_backend_config() .block_level_fusion_config() .output_tile_sizes_size(), 2); } TEST_F(PriorityFusionWithTritonEnabledTest, TritonProducerNotSupported_DoNotFuse) { const std::string kHloText = R"( HloModule t producer_computation { parameter_0 = c64[] parameter(0) broadcast = c64[125,127] broadcast(parameter_0), dimensions={} ROOT real = f32[125,127] real(broadcast) } triton_computation { parameter_0 = f32[125,127] parameter(0) parameter_1 = f32[125,127] parameter(1) ROOT add = f32[125,127] add(parameter_0, parameter_1) } ENTRY main { param_0 = c64[] parameter(0) param_1 = f32[125,127] parameter(1) producer_fusion = f32[125,127] fusion(param_0), kind=kLoop, calls=producer_computation ROOT triton_fusion = f32[125,127] fusion(producer_fusion, param_1), kind=kCustom, calls=triton_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","127"],"num_warps":"1"}}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloText)); EXPECT_FALSE(priority_fusion_.Run(module.get()).value()); } TEST_F(PriorityFusionWithTritonEnabledTest, TritonConsumerNotSupported_DoNotFuse) { const std::string kHloText = R"( HloModule t triton_computation { parameter_0 = f32[] parameter(0) ROOT boardcast = f32[125,127] broadcast(parameter_0), dimensions={} } consumer_computation { parameter_0 = c64[] parameter(0) parameter_1 = f32[125,127] parameter(1) broadcast = c64[125,127] broadcast(parameter_0), dimensions={} real = f32[125,127] real(broadcast) ROOT add = f32[125,127] add(real, parameter_1) } ENTRY main { param_0 = f32[] parameter(1) param_1 = c64[] parameter(0) triton_fusion = f32[125,127] fusion(param_0), kind=kCustom, calls=triton_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","127"],"num_warps":"1"}}} ROOT consumer_fusion = f32[125,127] fusion(param_1, triton_fusion), kind=kLoop, calls=consumer_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloText)); EXPECT_FALSE(priority_fusion_.Run(module.get()).value()); } TEST_F(PriorityFusionTest, DoNotFuseInsideReducer) { auto module = *ParseAndReturnVerifiedModule(R"( %reducer { p0 = f32[] parameter(0) p1 = f32[] parameter(1) add = f32[] add(p0, p1) ROOT max = f32[] maximum(add, p0) } %fused_reduce { p0 = f32[256] parameter(0) p1 = f32[] parameter(1) ROOT reduce = f32[] reduce(p0, p1), dimensions={0}, to_apply=%reducer } ENTRY fusion { p0 = f32[256] parameter(0) p1 = f32[] parameter(1) ROOT %reduce = f32[] fusion(p0, p1), kind=kInput, calls=fused_reduce } )"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/priority_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/priority_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce1aac24-e987-4099-af49-172276ddf340
cpp
google/arolla
timeseries
arolla/qexpr/operators/experimental/dense_array/timeseries.h
arolla/qexpr/operators/experimental/dense_array/timeseries_test.cc
#ifndef AROLLA_QEXPR_OPERATORS_EXPERIMENTAL_DENSE_ARRAY_TIMESERIES_H_ #define AROLLA_QEXPR_OPERATORS_EXPERIMENTAL_DENSE_ARRAY_TIMESERIES_H_ #include <cstdint> #include <deque> #include <optional> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/edge.h" #include "arolla/dense_array/ops/dense_group_ops.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/aggregation_ops_interface.h" #include "arolla/qexpr/eval_context.h" #include "arolla/util/meta.h" #include "arolla/util/view_types.h" namespace arolla { namespace moving_average_operator_impl { template <typename ScalarT> class MovingAverageAccumulator final : public Accumulator<AccumulatorType::kPartial, OptionalValue<ScalarT>, meta::type_list<>, meta::type_list<OptionalValue<ScalarT>>> { public: explicit MovingAverageAccumulator(int window_size) : window_size_(window_size) {} void Reset() final { current_window_.clear(); window_sum_ = 0; } void Add(OptionalValue<ScalarT> tail_value) final { if (tail_value.present) { current_window_.push_front(tail_value.value); window_sum_ += tail_value.value; } else { Reset(); } } OptionalValue<ScalarT> GetResult() final { if (current_window_.size() == window_size_) { auto result = window_sum_ / window_size_; window_sum_ -= current_window_.back(); current_window_.pop_back(); return result; } else { return std::nullopt; } } private: std::deque<ScalarT> current_window_; int window_size_; double window_sum_ = 0; }; } struct AggMovingAverageOp { template <typename ScalarT> absl::StatusOr<DenseArray<ScalarT>> operator()( EvaluationContext* ctx, const DenseArray<ScalarT>& series, const int64_t window_size, const DenseArrayEdge& edge) const { using MovingAvgAcc = moving_average_operator_impl::MovingAverageAccumulator<ScalarT>; DenseGroupOps<MovingAvgAcc> agg(&ctx->buffer_factory(), MovingAvgAcc(window_size)); return agg.Apply(edge, series); } }; struct ExponentialWeightedMovingAverageOp { template <typename ScalarT> DenseArray<ScalarT> AdjustedEWMA(const DenseArray<ScalarT>& series, double alpha, bool ignore_missing = false) const { DenseArrayBuilder<ScalarT> builder(series.size()); int64_t previous_non_missing_id = -1; double previous_non_missing_value = 0; double current_ewma_numerator = 0; double current_ewma_denominator = 0; series.ForEach([&](int64_t current_row_id, bool present, view_type_t<ScalarT> tail_value) { if (!present) return; if (previous_non_missing_id >= 0) { for (int64_t i = previous_non_missing_id + 1; i < current_row_id; i++) { builder.Set(i, previous_non_missing_value); if (!ignore_missing) { current_ewma_numerator *= (1.0 - alpha); current_ewma_denominator *= (1.0 - alpha); } } } current_ewma_numerator = tail_value + (1. - alpha) * current_ewma_numerator; current_ewma_denominator = 1. + (1. - alpha) * current_ewma_denominator; previous_non_missing_value = current_ewma_numerator / current_ewma_denominator; builder.Set(current_row_id, previous_non_missing_value); previous_non_missing_id = current_row_id; }); return std::move(builder).Build(); } template <typename ScalarT> DenseArray<ScalarT> UnadjustedEWMA(const DenseArray<ScalarT>& series, double alpha, bool ignore_missing = false) const { DenseArrayBuilder<ScalarT> builder(series.size()); int64_t previous_non_missing_id = -1; double previous_non_missing_value = 0; series.ForEach([&](int64_t current_row_id, bool present, view_type_t<ScalarT> tail_value) { if (!present) return; double previous_weight = (1. - alpha); if (previous_non_missing_id >= 0) { for (int64_t i = previous_non_missing_id + 1; i < current_row_id; i++) { builder.Set(i, previous_non_missing_value); if (!ignore_missing) { previous_weight *= (1. - alpha); } } } else { previous_non_missing_value = tail_value; } previous_non_missing_value = (alpha * tail_value + previous_weight * previous_non_missing_value) / (alpha + previous_weight); builder.Set(current_row_id, previous_non_missing_value); previous_non_missing_id = current_row_id; }); return std::move(builder).Build(); } template <typename ScalarT> absl::StatusOr<DenseArray<ScalarT>> operator()( const DenseArray<ScalarT>& series, double alpha, bool adjust = true, bool ignore_missing = false) const { if (alpha <= 0 || alpha > 1) { return absl::Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("alpha must be in range (0, 1], got %f", alpha)); } if (adjust) { return AdjustedEWMA(series, alpha, ignore_missing); } else { return UnadjustedEWMA(series, alpha, ignore_missing); } } }; } #endif
#include <cstdint> #include <initializer_list> #include <optional> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/edge.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/buffer.h" #include "arolla/qexpr/operators.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::ElementsAre; absl::StatusOr<DenseArrayEdge> CreateEdgeFromSplitPoints( std::initializer_list<int64_t> splits) { return DenseArrayEdge::FromSplitPoints({CreateBuffer<int64_t>(splits)}); } const char kAggMovingAverage[] = "experimental.agg_moving_average"; constexpr auto NA = std::nullopt; TEST(AggMovingAverage, FullTimeSeries) { const auto series = CreateDenseArray<float>({1, 2, 3, 4, 5, 6, 7, 8}); ASSERT_OK_AND_ASSIGN(auto edge, CreateEdgeFromSplitPoints({0, 8})); EXPECT_THAT(InvokeOperator<DenseArray<float>>(kAggMovingAverage, series, int64_t{3}, edge), IsOkAndHolds(ElementsAre(NA, NA, 2, 3, 4, 5, 6, 7))); } TEST(AggMovingAverage, TimeSeriesWithMissingValue) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5, 6, 7, 8}); ASSERT_OK_AND_ASSIGN(auto edge, CreateEdgeFromSplitPoints({0, 8})); EXPECT_THAT(InvokeOperator<DenseArray<float>>(kAggMovingAverage, series, int64_t{3}, edge), IsOkAndHolds(ElementsAre(NA, NA, 2, NA, NA, NA, 6, 7))); } TEST(AggMovingAverage, ZeroWindow) { const auto series = CreateDenseArray<float>({1, 2, 3, 4, 5, 6, 7, 8}); ASSERT_OK_AND_ASSIGN(auto edge, CreateEdgeFromSplitPoints({0, 8})); EXPECT_THAT(InvokeOperator<DenseArray<float>>(kAggMovingAverage, series, int64_t{0}, edge), IsOkAndHolds(ElementsAre(NA, NA, NA, NA, NA, NA, NA, NA))); } TEST(AggMovingAverage, WindowSizeEqualToInputArraySize) { const auto series = CreateDenseArray<float>({1, 2, 3, 4, 5, 6, 7, 8}); ASSERT_OK_AND_ASSIGN(auto edge, CreateEdgeFromSplitPoints({0, 8})); EXPECT_THAT(InvokeOperator<DenseArray<float>>(kAggMovingAverage, series, int64_t{8}, edge), IsOkAndHolds(ElementsAre(NA, NA, NA, NA, NA, NA, NA, 4.5))); } TEST(AggMovingAverage, WindowSizeLargerThanInputArraySize) { const auto series = CreateDenseArray<float>({1, 2, 3, 4, 5, 6, 7, 8}); ASSERT_OK_AND_ASSIGN(auto edge, CreateEdgeFromSplitPoints({0, 8})); EXPECT_THAT(InvokeOperator<DenseArray<float>>(kAggMovingAverage, series, int64_t{9}, edge), IsOkAndHolds(ElementsAre(NA, NA, NA, NA, NA, NA, NA, NA))); } TEST(AggMovingAverage, EmptyTimeSeries) { ASSERT_OK_AND_ASSIGN(auto edge, CreateEdgeFromSplitPoints({0})); EXPECT_THAT(InvokeOperator<DenseArray<float>>( kAggMovingAverage, DenseArray<float>(), int64_t{3}, edge), IsOkAndHolds(ElementsAre())); } TEST(AggMovingAverage, FullTimeSeriesWithTwoGroups) { const auto series = CreateDenseArray<float>({1, 2, 3, 4, 5, 6, 7, 8}); ASSERT_OK_AND_ASSIGN(auto edge, CreateEdgeFromSplitPoints({0, 4, 8})); EXPECT_THAT(InvokeOperator<DenseArray<float>>(kAggMovingAverage, series, int64_t{3}, edge), IsOkAndHolds(ElementsAre(NA, NA, 2, 3, NA, NA, 6, 7))); } TEST(ExponentialWeightedMovingAverageOpTest, MissingValue_Adjust) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5, 6, 7, 8}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, true, false), IsOkAndHolds(ElementsAre(1., 1.71428571, 2.53846154, 2.53846154, 4.50832266, 5.50288031, 6.43861754, 7.39069488))); } TEST(ExponentialWeightedMovingAverageOpTest, MissingValue_Adjust_IgnoreMissing) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5, 6, 7, 8}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, true, true), IsOkAndHolds(ElementsAre(1., 1.71428571, 2.53846154, 2.53846154, 4.05418719, 5.23375364, 6.29786003, 7.32082003))); } TEST(ExponentialWeightedMovingAverageOpTest, FirstMissing_Adjust) { const auto series = CreateDenseArray<float>({NA, 2, 3}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, true, false), IsOkAndHolds(ElementsAre(NA, 2., 2.71428571))); } TEST(ExponentialWeightedMovingAverageOpTest, FirstTwoMissing_Adjust) { const auto series = CreateDenseArray<float>({NA, NA, 3, NA, 5}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, true, false), IsOkAndHolds(ElementsAre(NA, NA, 3., 3., 4.72413793))); } TEST(ExponentialWeightedMovingAverageOpTest, FirstTwoMissing_Adjust_IgnoreMissing) { const auto series = CreateDenseArray<float>({NA, NA, 3, NA, 5}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, true, true), IsOkAndHolds(ElementsAre(NA, NA, 3., 3., 4.42857143))); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaLessThanZero_Adjust) { const auto series = CreateDenseArray<float>({NA, 2, 3}); ASSERT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, -1.2, true, false), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsZero_Adjust) { const auto series = CreateDenseArray<float>({NA, 2, 3}); ASSERT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0., true, false), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaGreaterThanOne_Adjust) { const auto series = CreateDenseArray<float>({NA, 2, 3}); ASSERT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1.2, true, false), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsOne_Adjust) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5}); EXPECT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1., true, false), IsOkAndHolds(ElementsAre(1, 2, 3, 3, 5))); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsOne_Adjust_IgnoreMissing) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5}); EXPECT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1., true, true), IsOkAndHolds(ElementsAre(1, 2, 3, 3, 5))); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsOne_Adjust_FirstMissing) { const auto series = CreateDenseArray<float>({NA, 2, 3, NA, 5}); EXPECT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1., true, false), IsOkAndHolds(ElementsAre(NA, 2, 3, 3, 5))); } TEST(ExponentialWeightedMovingAverageOpTest, EmptyTimeSeries) { EXPECT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", DenseArray<float>(), 1., false, false), IsOkAndHolds(ElementsAre())); } TEST(ExponentialWeightedMovingAverageOpTest, MissingValue) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5, 6, 7, 8}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, false, false), IsOkAndHolds(ElementsAre(1., 1.6, 2.44, 2.44, 4.46105263, 5.38442105, 6.35376842, 7.34150737))); } TEST(ExponentialWeightedMovingAverageOpTest, MissingValue_IgnoreMissing) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5, 6, 7, 8}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, false, true), IsOkAndHolds( ElementsAre(1., 1.6, 2.44, 2.44, 3.976, 5.1904, 6.27616, 7.310464))); } TEST(ExponentialWeightedMovingAverageOpTest, FirstMissing) { const auto series = CreateDenseArray<float>({NA, 2, 3}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, false, false), IsOkAndHolds(ElementsAre(NA, 2., 2.6))); } TEST(ExponentialWeightedMovingAverageOpTest, FirstTwoMissing) { const auto series = CreateDenseArray<float>({NA, NA, 3, NA, 5}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, false, false), IsOkAndHolds(ElementsAre(NA, NA, 3., 3., 4.57894737))); } TEST(ExponentialWeightedMovingAverageOpTest, FirstTwoMissing_IgnoreMissing) { const auto series = CreateDenseArray<float>({NA, NA, 3, NA, 5}); EXPECT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0.6, false, true), IsOkAndHolds(ElementsAre(NA, NA, 3, 3, 4.2))); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaLessThanZero) { const auto series = CreateDenseArray<float>({NA, 2, 3}); ASSERT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, -1.2, false, false), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsZero) { const auto series = CreateDenseArray<float>({NA, 2, 3}); ASSERT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 0., false, false), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaGreaterThanOne) { const auto series = CreateDenseArray<float>({NA, 2, 3}); ASSERT_THAT( InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1.2, false, false), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsOne) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5}); EXPECT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1., false, false), IsOkAndHolds(ElementsAre(1, 2, 3, 3, 5))); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsOne_IgnoreMissing) { const auto series = CreateDenseArray<float>({1, 2, 3, NA, 5}); EXPECT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1., false, true), IsOkAndHolds(ElementsAre(1, 2, 3, 3, 5))); } TEST(ExponentialWeightedMovingAverageOpTest, AlphaEqualsOne_FirstMissing) { const auto series = CreateDenseArray<float>({NA, 2, 3, NA, 5}); EXPECT_THAT(InvokeOperator<DenseArray<float>>("experimental.ewma", series, 1., false, false), IsOkAndHolds(ElementsAre(NA, 2, 3, 3, 5))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/experimental/dense_array/timeseries.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/experimental/dense_array/timeseries_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
df1fb9f3-b27e-4aba-9bd1-117f8935c674
cpp
google/cel-cpp
evaluator_core
eval/eval/evaluator_core.cc
eval/eval/evaluator_core_test.cc
#include "eval/eval/evaluator_core.h" #include <cstddef> #include <limits> #include <memory> #include <utility> #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "absl/utility/utility.h" #include "base/type_provider.h" #include "common/memory.h" #include "common/value.h" #include "common/value_manager.h" #include "runtime/activation_interface.h" #include "runtime/managed_value_factory.h" namespace google::api::expr::runtime { FlatExpressionEvaluatorState::FlatExpressionEvaluatorState( size_t value_stack_size, size_t comprehension_slot_count, const cel::TypeProvider& type_provider, cel::MemoryManagerRef memory_manager) : value_stack_(value_stack_size), comprehension_slots_(comprehension_slot_count), managed_value_factory_(absl::in_place, type_provider, memory_manager), value_factory_(&managed_value_factory_->get()) {} FlatExpressionEvaluatorState::FlatExpressionEvaluatorState( size_t value_stack_size, size_t comprehension_slot_count, cel::ValueManager& value_factory) : value_stack_(value_stack_size), comprehension_slots_(comprehension_slot_count), managed_value_factory_(absl::nullopt), value_factory_(&value_factory) {} void FlatExpressionEvaluatorState::Reset() { value_stack_.Clear(); comprehension_slots_.Reset(); } const ExpressionStep* ExecutionFrame::Next() { while (true) { const size_t end_pos = execution_path_.size(); if (ABSL_PREDICT_TRUE(pc_ < end_pos)) { const auto* step = execution_path_[pc_++].get(); ABSL_ASSUME(step != nullptr); return step; } if (ABSL_PREDICT_TRUE(pc_ == end_pos)) { if (!call_stack_.empty()) { SubFrame& subframe = call_stack_.back(); pc_ = subframe.return_pc; execution_path_ = subframe.return_expression; ABSL_DCHECK_EQ(value_stack().size(), subframe.expected_stack_size); comprehension_slots().Set(subframe.slot_index, value_stack().Peek(), value_stack().PeekAttribute()); call_stack_.pop_back(); continue; } } else { ABSL_LOG(ERROR) << "Attempting to step beyond the end of execution path."; } return nullptr; } } namespace { class EvaluationStatus final { public: explicit EvaluationStatus(absl::Status&& status) { ::new (static_cast<void*>(&status_[0])) absl::Status(std::move(status)); } EvaluationStatus() = delete; EvaluationStatus(const EvaluationStatus&) = delete; EvaluationStatus(EvaluationStatus&&) = delete; EvaluationStatus& operator=(const EvaluationStatus&) = delete; EvaluationStatus& operator=(EvaluationStatus&&) = delete; absl::Status Consume() && { return std::move(*reinterpret_cast<absl::Status*>(&status_[0])); } bool ok() const { return ABSL_PREDICT_TRUE( reinterpret_cast<const absl::Status*>(&status_[0])->ok()); } private: alignas(absl::Status) char status_[sizeof(absl::Status)]; }; } absl::StatusOr<cel::Value> ExecutionFrame::Evaluate( EvaluationListener& listener) { const size_t initial_stack_size = value_stack().size(); if (!listener) { for (const ExpressionStep* expr = Next(); ABSL_PREDICT_TRUE(expr != nullptr); expr = Next()) { if (EvaluationStatus status(expr->Evaluate(this)); !status.ok()) { return std::move(status).Consume(); } } } else { for (const ExpressionStep* expr = Next(); ABSL_PREDICT_TRUE(expr != nullptr); expr = Next()) { if (EvaluationStatus status(expr->Evaluate(this)); !status.ok()) { return std::move(status).Consume(); } if (pc_ == 0 || !expr->comes_from_ast()) { continue; } if (ABSL_PREDICT_FALSE(value_stack().empty())) { ABSL_LOG(ERROR) << "Stack is empty after a ExpressionStep.Evaluate. " "Try to disable short-circuiting."; continue; } if (EvaluationStatus status( listener(expr->id(), value_stack().Peek(), value_factory())); !status.ok()) { return std::move(status).Consume(); } } } const size_t final_stack_size = value_stack().size(); if (ABSL_PREDICT_FALSE(final_stack_size != initial_stack_size + 1 || final_stack_size == 0)) { return absl::InternalError(absl::StrCat( "Stack error during evaluation: expected=", initial_stack_size + 1, ", actual=", final_stack_size)); } cel::Value value = std::move(value_stack().Peek()); value_stack().Pop(1); return value; } FlatExpressionEvaluatorState FlatExpression::MakeEvaluatorState( cel::MemoryManagerRef manager) const { return FlatExpressionEvaluatorState(path_.size(), comprehension_slots_size_, type_provider_, manager); } FlatExpressionEvaluatorState FlatExpression::MakeEvaluatorState( cel::ValueManager& value_factory) const { return FlatExpressionEvaluatorState(path_.size(), comprehension_slots_size_, value_factory); } absl::StatusOr<cel::Value> FlatExpression::EvaluateWithCallback( const cel::ActivationInterface& activation, EvaluationListener listener, FlatExpressionEvaluatorState& state) const { state.Reset(); ExecutionFrame frame(subexpressions_, activation, options_, state, std::move(listener)); return frame.Evaluate(frame.callback()); } cel::ManagedValueFactory FlatExpression::MakeValueFactory( cel::MemoryManagerRef memory_manager) const { return cel::ManagedValueFactory(type_provider_, memory_manager); } }
#include "eval/eval/evaluator_core.h" #include <cstdint> #include <memory> #include <utility> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "base/type_provider.h" #include "eval/compiler/cel_expression_builder_flat_impl.h" #include "eval/eval/cel_expression_flat_impl.h" #include "eval/internal/interop.h" #include "eval/public/activation.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_value.h" #include "extensions/protobuf/memory_manager.h" #include "internal/testing.h" #include "runtime/activation.h" #include "runtime/runtime_options.h" namespace google::api::expr::runtime { using ::cel::IntValue; using ::cel::TypeProvider; using ::cel::extensions::ProtoMemoryManagerRef; using ::cel::interop_internal::CreateIntValue; using ::google::api::expr::v1alpha1::Expr; using ::google::api::expr::runtime::RegisterBuiltinFunctions; using ::testing::_; using ::testing::Eq; class FakeConstExpressionStep : public ExpressionStep { public: FakeConstExpressionStep() : ExpressionStep(0, true) {} absl::Status Evaluate(ExecutionFrame* frame) const override { frame->value_stack().Push(CreateIntValue(0)); return absl::OkStatus(); } }; class FakeIncrementExpressionStep : public ExpressionStep { public: FakeIncrementExpressionStep() : ExpressionStep(0, true) {} absl::Status Evaluate(ExecutionFrame* frame) const override { auto value = frame->value_stack().Peek(); frame->value_stack().Pop(1); EXPECT_TRUE(value->Is<IntValue>()); int64_t val = value.GetInt().NativeValue(); frame->value_stack().Push(CreateIntValue(val + 1)); return absl::OkStatus(); } }; TEST(EvaluatorCoreTest, ExecutionFrameNext) { ExecutionPath path; google::protobuf::Arena arena; auto manager = ProtoMemoryManagerRef(&arena); auto const_step = std::make_unique<const FakeConstExpressionStep>(); auto incr_step1 = std::make_unique<const FakeIncrementExpressionStep>(); auto incr_step2 = std::make_unique<const FakeIncrementExpressionStep>(); path.push_back(std::move(const_step)); path.push_back(std::move(incr_step1)); path.push_back(std::move(incr_step2)); auto dummy_expr = std::make_unique<Expr>(); cel::RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kDisabled; cel::Activation activation; FlatExpressionEvaluatorState state(path.size(), 0, TypeProvider::Builtin(), manager); ExecutionFrame frame(path, activation, options, state); EXPECT_THAT(frame.Next(), Eq(path[0].get())); EXPECT_THAT(frame.Next(), Eq(path[1].get())); EXPECT_THAT(frame.Next(), Eq(path[2].get())); EXPECT_THAT(frame.Next(), Eq(nullptr)); } TEST(EvaluatorCoreTest, SimpleEvaluatorTest) { ExecutionPath path; auto const_step = std::make_unique<FakeConstExpressionStep>(); auto incr_step1 = std::make_unique<FakeIncrementExpressionStep>(); auto incr_step2 = std::make_unique<FakeIncrementExpressionStep>(); path.push_back(std::move(const_step)); path.push_back(std::move(incr_step1)); path.push_back(std::move(incr_step2)); CelExpressionFlatImpl impl(FlatExpression( std::move(path), 0, cel::TypeProvider::Builtin(), cel::RuntimeOptions{})); Activation activation; google::protobuf::Arena arena; auto status = impl.Evaluate(activation, &arena); EXPECT_OK(status); auto value = status.value(); EXPECT_TRUE(value.IsInt64()); EXPECT_THAT(value.Int64OrDie(), Eq(2)); } class MockTraceCallback { public: MOCK_METHOD(void, Call, (int64_t expr_id, const CelValue& value, google::protobuf::Arena*)); }; TEST(EvaluatorCoreTest, TraceTest) { Expr expr; google::api::expr::v1alpha1::SourceInfo source_info; expr.set_id(1); auto and_call = expr.mutable_call_expr(); and_call->set_function("_&&_"); auto true_expr = and_call->add_args(); true_expr->set_id(2); true_expr->mutable_const_expr()->set_int64_value(1); auto comp_expr = and_call->add_args(); comp_expr->set_id(3); auto comp = comp_expr->mutable_comprehension_expr(); comp->set_iter_var("x"); comp->set_accu_var("accu"); auto list_expr = comp->mutable_iter_range(); list_expr->set_id(4); auto el1_expr = list_expr->mutable_list_expr()->add_elements(); el1_expr->set_id(11); el1_expr->mutable_const_expr()->set_int64_value(1); auto el2_expr = list_expr->mutable_list_expr()->add_elements(); el2_expr->set_id(12); el2_expr->mutable_const_expr()->set_int64_value(2); auto el3_expr = list_expr->mutable_list_expr()->add_elements(); el3_expr->set_id(13); el3_expr->mutable_const_expr()->set_int64_value(3); auto accu_init_expr = comp->mutable_accu_init(); accu_init_expr->set_id(20); accu_init_expr->mutable_const_expr()->set_bool_value(true); auto loop_cond_expr = comp->mutable_loop_condition(); loop_cond_expr->set_id(21); loop_cond_expr->mutable_const_expr()->set_bool_value(true); auto loop_step_expr = comp->mutable_loop_step(); loop_step_expr->set_id(22); auto condition = loop_step_expr->mutable_call_expr(); condition->set_function("_>_"); auto iter_expr = condition->add_args(); iter_expr->set_id(23); iter_expr->mutable_ident_expr()->set_name("x"); auto zero_expr = condition->add_args(); zero_expr->set_id(24); zero_expr->mutable_const_expr()->set_int64_value(0); auto result_expr = comp->mutable_result(); result_expr->set_id(25); result_expr->mutable_const_expr()->set_bool_value(true); cel::RuntimeOptions options; options.short_circuiting = false; CelExpressionBuilderFlatImpl builder(options); ASSERT_OK(RegisterBuiltinFunctions(builder.GetRegistry())); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder.CreateExpression(&expr, &source_info)); Activation activation; google::protobuf::Arena arena; MockTraceCallback callback; EXPECT_CALL(callback, Call(accu_init_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(el1_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(el2_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(el3_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(list_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(loop_cond_expr->id(), _, &arena)).Times(3); EXPECT_CALL(callback, Call(iter_expr->id(), _, &arena)).Times(3); EXPECT_CALL(callback, Call(zero_expr->id(), _, &arena)).Times(3); EXPECT_CALL(callback, Call(loop_step_expr->id(), _, &arena)).Times(3); EXPECT_CALL(callback, Call(result_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(comp_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(true_expr->id(), _, &arena)); EXPECT_CALL(callback, Call(expr.id(), _, &arena)); auto eval_status = cel_expr->Trace( activation, &arena, [&](int64_t expr_id, const CelValue& value, google::protobuf::Arena* arena) { callback.Call(expr_id, value, arena); return absl::OkStatus(); }); ASSERT_OK(eval_status); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/evaluator_core.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/evaluator_core_test.cc
4552db5798fb0853b131b783d8875794334fae7f
9d6bf915-a5e4-4331-9539-03281654d5cd
cpp
tensorflow/tensorflow
set_device
tensorflow/tools/graph_transforms/set_device.cc
tensorflow/tools/graph_transforms/set_device_test.cc
#include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status SetDevice(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { string new_device; TF_RETURN_IF_ERROR(context.GetOneStringParameter("device", "", &new_device)); bool if_default; TF_RETURN_IF_ERROR( context.GetOneBoolParameter("if_default", false, &if_default)); output_graph_def->Clear(); for (const NodeDef& node : input_graph_def.node()) { NodeDef* new_node = output_graph_def->mutable_node()->Add(); *new_node = node; if (!if_default || (node.device().empty())) { new_node->set_device(new_device); } } return OkStatus(); } REGISTER_GRAPH_TRANSFORM("set_device", SetDevice); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status SetDevice(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); namespace { GraphDef CreateDeviceGraph() { GraphDef graph_def; NodeDef* mul_node1 = graph_def.add_node(); mul_node1->set_name("mul_node1"); mul_node1->set_op("Mul"); mul_node1->set_device("/device:CPU:0"); mul_node1->add_input("add_node2"); mul_node1->add_input("add_node3"); NodeDef* add_node2 = graph_def.add_node(); add_node2->set_name("add_node2"); add_node2->set_op("Add"); add_node2->add_input("const_node1"); add_node2->add_input("const_node2"); add_node2->set_device("/device:GPU:1"); NodeDef* add_node3 = graph_def.add_node(); add_node3->set_name("add_node3"); add_node3->set_op("Add"); add_node3->add_input("const_node1"); add_node3->add_input("const_node3"); NodeDef* const_node1 = graph_def.add_node(); const_node1->set_name("const_node1"); const_node1->set_op("Const"); NodeDef* const_node2 = graph_def.add_node(); const_node2->set_name("const_node2"); const_node2->set_op("Const"); NodeDef* const_node3 = graph_def.add_node(); const_node3->set_name("const_node3"); const_node3->set_op("Const"); NodeDef* add_node4 = graph_def.add_node(); add_node4->set_name("add_node4"); add_node4->set_op("Add"); add_node4->add_input("add_node2"); add_node4->add_input("add_node3"); return graph_def; } } TEST(SetDeviceTest, TestSetDevice) { GraphDef graph_def = CreateDeviceGraph(); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"mul_node1"}; context.params.insert(std::pair<string, std::vector<string>>( {"device", {string("/device:CPU:0")}})); TF_ASSERT_OK(SetDevice(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); EXPECT_EQ("/device:CPU:0", node_lookup.at("mul_node1")->device()); EXPECT_EQ("/device:CPU:0", node_lookup.at("add_node2")->device()); EXPECT_EQ("/device:CPU:0", node_lookup.at("add_node3")->device()); EXPECT_EQ("/device:CPU:0", node_lookup.at("const_node1")->device()); EXPECT_EQ("/device:CPU:0", node_lookup.at("const_node2")->device()); EXPECT_EQ("/device:CPU:0", node_lookup.at("const_node3")->device()); EXPECT_EQ("/device:CPU:0", node_lookup.at("add_node4")->device()); } TEST(SetDeviceTest, TestSetDeviceIfDefault) { GraphDef graph_def = CreateDeviceGraph(); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"mul_node1"}; context.params.insert(std::pair<string, std::vector<string>>( {"device", {string("/device:GPU:0")}})); context.params.insert( std::pair<string, std::vector<string>>({"if_default", {string("true")}})); TF_ASSERT_OK(SetDevice(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); EXPECT_EQ("/device:CPU:0", node_lookup.at("mul_node1")->device()); EXPECT_EQ("/device:GPU:1", node_lookup.at("add_node2")->device()); EXPECT_EQ("/device:GPU:0", node_lookup.at("add_node3")->device()); EXPECT_EQ("/device:GPU:0", node_lookup.at("const_node1")->device()); EXPECT_EQ("/device:GPU:0", node_lookup.at("const_node2")->device()); EXPECT_EQ("/device:GPU:0", node_lookup.at("const_node3")->device()); EXPECT_EQ("/device:GPU:0", node_lookup.at("add_node4")->device()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/set_device.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/set_device_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
babaf6da-6250-4244-8550-c1c937e9a5b0
cpp
google/tensorstore
poly
tensorstore/internal/poly/poly.h
tensorstore/internal/poly/poly_test.cc
#ifndef TENSORSTORE_INTERNAL_POLY_POLY_H_ #define TENSORSTORE_INTERNAL_POLY_POLY_H_ #include <cstddef> #include <type_traits> #include <typeinfo> #include <utility> #include "absl/meta/type_traits.h" #include "tensorstore/internal/poly/poly_impl.h" namespace tensorstore { namespace poly { template <typename T, typename... Signature> using SupportsPolySignatures = std::conjunction<typename internal_poly::SignatureTraits< Signature>::template IsSupportedBy<T>...>; template <size_t InlineSize, bool Copyable, typename... Signature> class Poly; template <typename T> struct IsPoly : public std::false_type {}; template <size_t InlineSize, bool Copyable, typename... Signature> struct IsPoly<Poly<InlineSize, Copyable, Signature...>> : public std::true_type {}; template <typename T, bool Copyable, typename... Signature> struct IsCompatibleWithPoly : public SupportsPolySignatures<T, Signature...> {}; template <typename T, typename... Signature> struct IsCompatibleWithPoly<T, true, Signature...> : public std::integral_constant< bool, (std::is_copy_constructible<T>::value && SupportsPolySignatures<T, Signature...>::value)> {}; template <size_t InlineSize_, bool Copyable, typename... Signature> class Poly : private internal_poly::PolyImpl<Poly<InlineSize_, Copyable, Signature...>, Signature...> { template <typename, typename...> friend class internal_poly::PolyImpl; template <size_t, bool, typename...> friend class Poly; static constexpr size_t InlineSize = internal_poly_storage::ActualInlineSize(InlineSize_); using Storage = internal_poly_storage::Storage<InlineSize, Copyable>; using Base = internal_poly::PolyImpl<Poly, Signature...>; using VTable = internal_poly::VTableType<Signature...>; template <typename Self> using VTInstance = internal_poly::VTableInstance<typename Storage::template Ops<Self>, Copyable, Signature...>; template <typename... S> using HasConvertibleVTable = std::is_convertible<internal_poly::VTableType<S...>, VTable>; public: template <typename T> using IsCompatible = std::disjunction<std::is_same<Poly, T>, IsCompatibleWithPoly<T, Copyable, Signature...>>; template <typename T> using IsCompatibleAndConstructible = std::disjunction< std::is_same<Poly, absl::remove_cvref_t<T>>, std::conjunction< IsCompatibleWithPoly<absl::remove_cvref_t<T>, Copyable, Signature...>, std::is_constructible<absl::remove_cvref_t<T>, T&&>>>; Poly() = default; Poly(std::nullptr_t) noexcept {} template <typename T, std::enable_if_t<IsCompatibleAndConstructible<T>::value>* = nullptr> Poly(T&& obj) { Construct(std::in_place_type_t<absl::remove_cvref_t<T>>{}, std::forward<T>(obj)); } template <typename T, typename... U, std::enable_if_t<(IsCompatible<T>::value && std::is_constructible_v<T, U&&...>)>* = nullptr> Poly(std::in_place_type_t<T> in_place, U&&... arg) { Construct(in_place, std::forward<U>(arg)...); } Poly(const Poly&) = default; Poly(Poly&&) = default; Poly& operator=(const Poly&) = default; Poly& operator=(Poly&&) noexcept = default; template <typename T, std::enable_if_t<IsCompatibleAndConstructible<T>::value>* = nullptr> Poly& operator=(T&& obj) { emplace(std::forward<T>(obj)); return *this; } Poly& operator=(std::nullptr_t) noexcept { storage_.Destroy(); return *this; } template <typename T, typename... U, std::enable_if_t<(IsCompatible<T>::value && std::is_constructible_v<T, U&&...>)>* = nullptr> void emplace(U&&... arg) { storage_.Destroy(); Construct(std::in_place_type_t<T>{}, std::forward<U>(arg)...); } template <typename T, std::enable_if_t<IsCompatibleAndConstructible<T>::value>* = nullptr> void emplace(T&& obj) { storage_.Destroy(); Construct(std::in_place_type_t<absl::remove_cvref_t<T>>{}, std::forward<T>(obj)); } using Base::operator(); explicit operator bool() const { return !storage_.null(); } template <typename T> T* target() { return storage_.template get_if<T>(); } template <typename T> const T* target() const { return storage_.template get_if<T>(); } friend bool operator==(std::nullptr_t, const Poly& poly) { return static_cast<bool>(poly) == false; } friend bool operator!=(std::nullptr_t, const Poly& poly) { return static_cast<bool>(poly) == true; } friend bool operator==(const Poly& poly, std::nullptr_t) { return static_cast<bool>(poly) == false; } friend bool operator!=(const Poly& poly, std::nullptr_t) { return static_cast<bool>(poly) == true; } private: template <typename T, typename... U> std::enable_if_t<!IsPoly<T>::value> Construct(std::in_place_type_t<T>, U&&... arg) { return storage_.template ConstructT<T>(&VTInstance<T>::vtable, static_cast<U&&>(arg)...); } template <size_t ISize, bool C, typename... S, typename T> void Construct(std::in_place_type_t<Poly<ISize, C, S...>>, T&& poly) { if constexpr (internal_poly_storage::ActualInlineSize(ISize) <= InlineSize && HasConvertibleVTable<S...>::value) { if constexpr (std::is_lvalue_reference_v<decltype(poly)>) { storage_.CopyConstruct(std::forward<T>(poly).storage_); } else { storage_.Construct(std::forward<T>(poly).storage_); } } else { storage_.template ConstructT<Poly<ISize, C, S...>>( &VTInstance<Poly<ISize, C, S...>>::vtable, std::forward<T>(poly)); } } Storage storage_; }; } } #endif
#include "tensorstore/internal/poly/poly.h" #include <functional> #include <memory> #include <optional> #include <string> #include <type_traits> #include <utility> #include <gtest/gtest.h> #include "absl/functional/function_ref.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::internal_poly::CallPolyApplyResult; using ::tensorstore::internal_poly::HasPolyApply; using ::tensorstore::internal_poly::IsCallPolyApplyResultConvertible; using ::tensorstore::poly::Poly; struct GetWidth {}; struct GetHeight {}; struct Scale {}; using PolyRectangle = Poly<sizeof(double), true, double(GetWidth) const, double(GetHeight) const, void(Scale, double scalar)>; struct Rectangle { double width; double height; double operator()(GetWidth) const { return width; } double operator()(GetHeight) const { return height; } void operator()(Scale, double scalar) { width *= scalar; height *= scalar; } }; struct Square { double size; double operator()(GetWidth) const { return size; } double operator()(GetHeight) const { return size; } }; void PolyApply(Square& self, Scale, double scalar) { self.size *= scalar; } template <typename T, typename P> bool IsStoredInline(P& p) { auto min = reinterpret_cast<uintptr_t>(&p); auto t = reinterpret_cast<uintptr_t>(p.template target<T>()); return t >= min && t <= (min + sizeof(p)); } TEST(PolyTest, Example) { PolyRectangle square = Square{5}; EXPECT_EQ(5, square(GetWidth{})); EXPECT_EQ(5, square(GetHeight{})); square(Scale{}, 2); EXPECT_EQ(10, square(GetWidth{})); EXPECT_EQ(10, square(GetHeight{})); PolyRectangle rect = Rectangle{6, 7}; EXPECT_EQ(6, rect(GetWidth{})); EXPECT_EQ(7, rect(GetHeight{})); rect(Scale{}, 2); EXPECT_EQ(12, rect(GetWidth{})); EXPECT_EQ(14, rect(GetHeight{})); } TEST(PolyTest, Interface) { class RectangleInterface { public: RectangleInterface(PolyRectangle poly) : poly(std::move(poly)) {} operator PolyRectangle() { return poly; } double GetHeight() const { return poly(::GetHeight{}); } double GetWidth() const { return poly(::GetWidth{}); } double GetArea() const { return GetHeight() * GetWidth(); } void Scale(double scalar) { poly(::Scale{}, scalar); } private: PolyRectangle poly; }; { RectangleInterface rect(Square{5}); EXPECT_EQ(5, rect.GetWidth()); EXPECT_EQ(5, rect.GetHeight()); EXPECT_EQ(25, rect.GetArea()); rect.Scale(2); EXPECT_EQ(10, rect.GetWidth()); EXPECT_EQ(10, rect.GetHeight()); } { RectangleInterface rect(Rectangle{6, 7}); EXPECT_EQ(6, rect.GetWidth()); EXPECT_EQ(7, rect.GetHeight()); EXPECT_EQ(42, rect.GetArea()); rect.Scale(2); EXPECT_EQ(12, rect.GetWidth()); EXPECT_EQ(14, rect.GetHeight()); } } std::string Foo(Poly<0, true, std::string()> poly) { return "Text: " + poly(); } int Foo(Poly<0, true, int()> poly) { return 3 + poly(); } TEST(PolyTest, ConstructorOverloadResolution) { EXPECT_EQ(6, Foo([] { return 3; })); EXPECT_EQ("Text: Message", Foo([] { return "Message"; })); } struct Add { std::shared_ptr<int> value; Add(std::shared_ptr<int> value) : value(value) {} template <typename T> T operator()(T x) const { return x + *value; } }; TEST(PolyTest, DefaultConstruct) { Poly<1, true, int(int)&, float(float)&> poly; EXPECT_FALSE(poly); EXPECT_EQ(nullptr, poly.target<Add>()); const auto& const_poly = poly; EXPECT_EQ(nullptr, const_poly.target<Add>()); } TEST(PolyTest, NullptrConstruct) { Poly<1, true, int(int)&, float(float)&> poly(nullptr); EXPECT_FALSE(poly); } TEST(PolyTest, NullCopy) { Poly<1, true, int(int)&, float(float)&> poly; EXPECT_FALSE(poly); auto poly2 = poly; EXPECT_FALSE(poly2); } TEST(PolyTest, InlineConstruct) { auto amount = std::make_shared<int>(1); { Poly<sizeof(Add), true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_EQ(2, amount.use_count()); EXPECT_TRUE(poly); EXPECT_TRUE(IsStoredInline<Add>(poly)); auto* contained_obj = poly.target<Add>(); ASSERT_NE(nullptr, contained_obj); EXPECT_EQ(amount, contained_obj->value); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, ConstructInplace) { auto amount = std::make_shared<int>(1); { Poly<sizeof(Add), true, int(int)&, double(double)&> poly( std::in_place_type_t<Add>{}, amount); EXPECT_EQ(2, amount.use_count()); EXPECT_TRUE(poly); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, Emplace) { auto amount = std::make_shared<int>(1); Poly<sizeof(Add), true, int(int)&, double(double)&> poly; poly.emplace(Add{amount}); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); auto amount2 = std::make_shared<int>(2); poly.emplace(Add{amount2}); EXPECT_TRUE(poly); EXPECT_EQ(1, amount.use_count()); EXPECT_EQ(2, amount2.use_count()); EXPECT_EQ(4, poly(2)); EXPECT_EQ(4.5, poly(2.5)); } TEST(PolyTest, EmplaceInplace) { auto amount = std::make_shared<int>(1); Poly<sizeof(Add), true, int(int)&, double(double)&> poly; poly.emplace<Add>(amount); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); auto amount2 = std::make_shared<int>(2); poly.emplace<Add>(amount2); EXPECT_TRUE(poly); EXPECT_EQ(1, amount.use_count()); EXPECT_EQ(2, amount2.use_count()); EXPECT_EQ(4, poly(2)); EXPECT_EQ(4.5, poly(2.5)); } TEST(PolyTest, AssignNullptr) { auto amount = std::make_shared<int>(1); Poly<sizeof(Add), true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_EQ(2, amount.use_count()); EXPECT_TRUE(poly); poly = nullptr; EXPECT_EQ(1, amount.use_count()); EXPECT_FALSE(poly); } TEST(PolyTest, AssignObject) { auto amount = std::make_shared<int>(1); Poly<sizeof(Add), true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); auto amount2 = std::make_shared<int>(2); poly = Add{amount2}; EXPECT_TRUE(poly); EXPECT_EQ(1, amount.use_count()); EXPECT_EQ(2, amount2.use_count()); EXPECT_EQ(4, poly(2)); EXPECT_EQ(4.5, poly(2.5)); } TEST(PolyTest, CopyAssign) { auto amount = std::make_shared<int>(1); Poly<sizeof(Add), true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); auto amount2 = std::make_shared<int>(2); Poly<sizeof(Add), true, int(int)&, double(double)&> poly2(Add{amount2}); EXPECT_TRUE(poly2); EXPECT_EQ(2, amount2.use_count()); poly2 = static_cast<const Poly<sizeof(Add), true, int(int)&, double(double)&>&>( poly); EXPECT_EQ(1, amount2.use_count()); EXPECT_EQ(3, amount.use_count()); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); } TEST(PolyTest, InlineMove) { auto amount = std::make_shared<int>(1); { Poly<sizeof(Add), true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); auto poly2 = std::move(poly); EXPECT_TRUE(poly2); EXPECT_FALSE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly2(2)); EXPECT_EQ(3.5, poly2(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, InlineCopy) { auto amount = std::make_shared<int>(1); { Poly<sizeof(Add), true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_TRUE(IsStoredInline<Add>(poly)); auto poly2 = poly; EXPECT_TRUE(poly2); EXPECT_TRUE(IsStoredInline<Add>(poly2)); EXPECT_TRUE(poly); EXPECT_EQ(3, amount.use_count()); EXPECT_EQ(3, poly2(2)); EXPECT_EQ(3.5, poly2(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, HeapConstruct) { auto amount = std::make_shared<int>(1); { Poly<0, true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_TRUE(poly); EXPECT_TRUE(poly.target<Add>()); EXPECT_FALSE(IsStoredInline<Add>(poly)); EXPECT_EQ(amount, poly.target<Add>()->value); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, HeapMove) { auto amount = std::make_shared<int>(1); { Poly<0, true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_FALSE(IsStoredInline<Add>(poly)); auto poly2 = std::move(poly); EXPECT_TRUE(poly2); EXPECT_FALSE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly2(2)); EXPECT_EQ(3.5, poly2(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, HeapCopy) { auto amount = std::make_shared<int>(1); { Poly<0, true, int(int)&, double(double)&> poly(Add{amount}); EXPECT_TRUE(poly); EXPECT_EQ(2, amount.use_count()); EXPECT_FALSE(IsStoredInline<Add>(poly)); auto poly2 = poly; EXPECT_TRUE(poly2); EXPECT_TRUE(poly); EXPECT_EQ(3, amount.use_count()); EXPECT_EQ(3, poly2(2)); EXPECT_EQ(3.5, poly2(2.5)); } EXPECT_EQ(1, amount.use_count()); } struct AddPolyApply { std::shared_ptr<int> value; template <typename T> friend T PolyApply(const AddPolyApply& self, T x) { return x + *self.value; } }; static_assert(HasPolyApply<AddPolyApply, int>); static_assert(!HasPolyApply<AddPolyApply, int, int>); static_assert(!HasPolyApply<Add, int>); static_assert(!HasPolyApply<Add, int, int>); static_assert(std::is_same_v<CallPolyApplyResult<AddPolyApply, int>, int>); static_assert( std::is_same_v<CallPolyApplyResult<AddPolyApply, double>, double>); static_assert(std::is_same_v<CallPolyApplyResult<Add, int>, int>); static_assert(std::is_same_v<CallPolyApplyResult<Add, double>, double>); static_assert(IsCallPolyApplyResultConvertible<Add, int, double>::value); static_assert(IsCallPolyApplyResultConvertible<Add, double, double>::value); static_assert(!IsCallPolyApplyResultConvertible<Add, int*, double>::value); static_assert(IsCallPolyApplyResultConvertible<Add, void, double>::value); static_assert(!IsCallPolyApplyResultConvertible<Add, void, int, int>::value); static_assert(!IsCallPolyApplyResultConvertible<Add, int, int, int>::value); static_assert( IsCallPolyApplyResultConvertible<AddPolyApply, int, double>::value); static_assert( IsCallPolyApplyResultConvertible<AddPolyApply, double, double>::value); static_assert(IsCallPolyApplyResultConvertible<AddPolyApply, void, int>::value); static_assert( !IsCallPolyApplyResultConvertible<AddPolyApply, int*, int>::value); static_assert( !IsCallPolyApplyResultConvertible<AddPolyApply, void, int, int>::value); TEST(PolyTest, PolyApply) { auto amount = std::make_shared<int>(1); { Poly<sizeof(AddPolyApply), true, int(int)&, double(double)&> poly( AddPolyApply{amount}); EXPECT_EQ(2, amount.use_count()); EXPECT_TRUE(poly); EXPECT_EQ(3, poly(2)); EXPECT_EQ(3.5, poly(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, MoveOnly) { struct Callable { std::unique_ptr<int> value; int operator()() const { return *value; } }; using PolyT = Poly<sizeof(Callable), false, int() const>; static_assert(!std::is_constructible_v<Poly<0, true, int() const>, Callable>); static_assert(std::is_constructible_v<Poly<0, false, int() const>, Callable>); PolyT poly(Callable{std::unique_ptr<int>(new int(5))}); auto poly2 = std::move(poly); EXPECT_FALSE(poly); EXPECT_EQ(5, poly2()); } struct IntGetterSetter { int operator()() { return value; } void operator()(int v) { value = v; } int value; }; TEST(PolyTest, CopyConstructFromPolyWithIncompatibleVTable) { auto amount = std::make_shared<int>(1); { using Poly1 = Poly<sizeof(Add), true, int(int)&, double(double)&>; using Poly2 = Poly<sizeof(Add), true, double(double)&, int(int)&>; Poly1 poly(Add{amount}); EXPECT_EQ(2, amount.use_count()); EXPECT_TRUE(poly.target<Add>()); Poly2 poly2 = poly; EXPECT_TRUE(poly2); EXPECT_FALSE(poly2.target<Add>()); EXPECT_TRUE(poly2.target<Poly1>()); EXPECT_EQ(3, amount.use_count()); EXPECT_EQ(3, poly2(2)); EXPECT_EQ(3.5, poly2(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, MoveConstructFromPolyWithIncompatibleVTable) { auto amount = std::make_shared<int>(1); { using Poly1 = Poly<sizeof(Add), true, int(int)&, double(double)&>; using Poly2 = Poly<sizeof(Add), true, double(double)&, int(int)&>; Poly1 poly(Add{amount}); EXPECT_EQ(2, amount.use_count()); Poly2 poly2 = std::move(poly); EXPECT_FALSE(poly); EXPECT_FALSE(poly2.target<Add>()); EXPECT_TRUE(poly2.target<Poly1>()); EXPECT_TRUE(poly2); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly2(2)); EXPECT_EQ(3.5, poly2(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, EmplaceFromPolyWithIncompatibleVTable) { auto amount = std::make_shared<int>(1); { using Poly1 = Poly<sizeof(Add), true, int(int)&, double(double)&>; using Poly2 = Poly<sizeof(Add), true, double(double)&, int(int)&>; Poly1 poly(Add{amount}); EXPECT_EQ(2, amount.use_count()); Poly2 poly2; poly2.emplace(std::move(poly)); EXPECT_FALSE(poly); EXPECT_FALSE(poly2.target<Add>()); EXPECT_TRUE(poly2.target<Poly1>()); EXPECT_TRUE(poly2); EXPECT_EQ(2, amount.use_count()); EXPECT_EQ(3, poly2(2)); EXPECT_EQ(3.5, poly2(2.5)); } EXPECT_EQ(1, amount.use_count()); } TEST(PolyTest, CopyConstructFromPolyWithCompatibleVTable) { Poly<0, true, void(int), int()> poly1 = IntGetterSetter{5}; EXPECT_EQ(5, poly1()); poly1(6); EXPECT_EQ(6, poly1()); Poly<0, true, int()> poly2{poly1}; EXPECT_TRUE(poly2.target<IntGetterSetter>()); EXPECT_EQ(6, poly2()); } TEST(PolyTest, MoveConstructFromPolyWithCompatibleVTable) { Poly<0, true, void(int), int()> poly1 = IntGetterSetter{5}; EXPECT_EQ(5, poly1()); poly1(6); EXPECT_EQ(6, poly1()); Poly<0, true, int()> poly2{std::move(poly1)}; EXPECT_TRUE(poly2.target<IntGetterSetter>()); EXPECT_EQ(6, poly2()); EXPECT_FALSE(poly1); } TEST(PolyTest, EmplacePolyWithCompatibleVTable) { Poly<0, true, void(int), int()> poly1 = IntGetterSetter{5}; EXPECT_EQ(5, poly1()); poly1(6); EXPECT_EQ(6, poly1()); Poly<0, true, int()> poly2; poly2.emplace(std::move(poly1)); EXPECT_TRUE(poly2.target<IntGetterSetter>()); EXPECT_EQ(6, poly2()); EXPECT_FALSE(poly1); } template <typename T> using SinglePoly = Poly<0, false, T>; template <template <typename> class OptionalLike, template <typename> class FunctionLike> void TestAvoidsSfinaeLoop() { using Poly1 = FunctionLike<void()>; using Poly2 = FunctionLike<OptionalLike<Poly1>()>; struct X { void operator()() const {} }; struct Y { OptionalLike<Poly1> operator()() const { return X{}; } }; auto use_poly2 = [](Poly2) { }; use_poly2(Poly2{Y{}}); } TEST(PolyTest, AvoidsSfinaeLoop) { TestAvoidsSfinaeLoop<tensorstore::Result, absl::FunctionRef>(); TestAvoidsSfinaeLoop<tensorstore::Result, std::function>(); TestAvoidsSfinaeLoop<std::optional, SinglePoly>(); TestAvoidsSfinaeLoop<tensorstore::Result, SinglePoly>(); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/poly/poly.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/poly/poly_test.cc
4f887a6430414cd6088e1743555015b10f116d50
ad4656c8-136d-4a47-88e4-36e8e523ceea
cpp
tensorflow/tensorflow
convert_asset_args
tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.cc
tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args_test.cc
#include "tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.h" #include "absl/algorithm/container.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/quantization/common/func.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace mlir::quant { namespace { using ::mlir::tf_saved_model::AssetOp; using ::mlir::tf_saved_model::kTfSavedModelIndexPathAttr; using ::mlir::tf_saved_model::LookupBoundInputOfType; using ::tensorflow::AssetFileDef; SmallVector<NamedAttribute> ReplaceBoundInputAttrWithIndexPathAttr( const ArrayRef<NamedAttribute> arg_attrs, const StringRef index_path, Builder& builder) { SmallVector<NamedAttribute> new_arg_attrs; for (auto arg_attr : arg_attrs) { if (arg_attr.getName() == "tf_saved_model.bound_input") continue; new_arg_attrs.emplace_back(arg_attr); } const NamedAttribute index_path_attr( builder.getStringAttr(kTfSavedModelIndexPathAttr), builder.getStrArrayAttr({index_path})); new_arg_attrs.emplace_back(index_path_attr); return new_arg_attrs; } StringRef MaybeStripAssetDirectoryPrefix(const StringRef filename) { if (filename.find("assets/") == 0) { return filename.drop_front(7); } else { return filename; } } AssetFileDef CreateAssetFileDef(const StringRef filename, const StringRef tensor_name) { AssetFileDef asset_file_def{}; asset_file_def.set_filename(MaybeStripAssetDirectoryPrefix(filename).str()); tensorflow::TensorInfo tensor_info{}; tensor_info.set_name(tensor_name.str()); *asset_file_def.mutable_tensor_info() = tensor_info; return asset_file_def; } SmallVector<StringRef> GetEntryFunctionInputs(func::FuncOp func_op) { auto entry_function_attr = func_op->getAttrOfType<DictionaryAttr>("tf.entry_function"); SmallVector<StringRef> inputs; mlir::dyn_cast_or_null<StringAttr>(entry_function_attr.get("inputs")) .strref() .split(inputs, ","); return inputs; } void ConvertMainArgAttrs(func::FuncOp main_func_op, const int arg_idx, const StringRef index_path) { const ArrayRef<NamedAttribute> arg_attrs = main_func_op.getArgAttrDict(arg_idx).getValue(); Builder builder(main_func_op.getContext()); SmallVector<NamedAttribute> new_arg_attrs = ReplaceBoundInputAttrWithIndexPathAttr(arg_attrs, index_path, builder); main_func_op.setArgAttrs(arg_idx, new_arg_attrs); } } FailureOr<SmallVector<AssetFileDef>> ConvertAssetArgs(ModuleOp module_op) { func::FuncOp main_func_op = FindMainFuncOp(module_op); if (!main_func_op) return failure(); SmallVector<StringRef> input_names = GetEntryFunctionInputs(main_func_op); SymbolTable symbol_table(module_op); SmallVector<AssetFileDef> asset_file_defs; for (BlockArgument argument : main_func_op.getArguments()) { const int arg_idx = argument.getArgNumber(); auto asset_op = LookupBoundInputOfType<AssetOp>(main_func_op, arg_idx, symbol_table); if (!asset_op) continue; const StringRef input_name = input_names[arg_idx]; ConvertMainArgAttrs(main_func_op, arg_idx, input_name); asset_file_defs.emplace_back(CreateAssetFileDef( asset_op.getFilenameAttr(), input_name)); } return asset_file_defs; } }
#include "tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.h" #include <gmock/gmock.h> #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace mlir::quant { namespace { using ::tensorflow::AssetFileDef; using ::testing::Eq; using ::testing::IsEmpty; using ::testing::IsNull; using ::testing::NotNull; using ::testing::SizeIs; class ConvertAssetArgsTest : public ::testing::Test { protected: ConvertAssetArgsTest() { ctx_.loadDialect<func::FuncDialect, TF::TensorFlowDialect, tf_saved_model::TensorFlowSavedModelDialect>(); } OwningOpRef<ModuleOp> ParseModuleOpString( const absl::string_view module_op_str) { auto module_op_ref = parseSourceString<ModuleOp>(module_op_str, &ctx_); EXPECT_TRUE(module_op_ref); return module_op_ref; } mlir::MLIRContext ctx_{}; }; func::FuncOp GetMainFuncOp(ModuleOp module_op) { for (auto func_op : module_op.getOps<func::FuncOp>()) { if (func_op.getSymName() == "main") { return func_op; } } return {}; } TEST_F(ConvertAssetArgsTest, ConvertsSingleAssetArg) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( module { "tf_saved_model.asset"() {filename = "assets/file_0.txt", sym_name = "__tf_saved_model_asset0"} : () -> () func.func @main(%arg_0: tensor<!tf_type.string> {tf_saved_model.bound_input = @__tf_saved_model_asset0}) -> () attributes {tf.entry_function = {inputs = "arg_0:0", outputs = ""}} { return } } )mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(succeeded(asset_file_defs)); EXPECT_THAT(*asset_file_defs, SizeIs(1)); const AssetFileDef& asset_file_def = *asset_file_defs->begin(); EXPECT_THAT(asset_file_def.filename(), Eq("file_0.txt")); EXPECT_THAT(asset_file_def.tensor_info().name(), Eq("arg_0:0")); func::FuncOp main_func_op = GetMainFuncOp(*module_op); DictionaryAttr arg_attrs = main_func_op.getArgAttrDict(0); EXPECT_THAT(arg_attrs.get("tf_saved_model.bound_input"), IsNull()); const ArrayRef<Attribute> index_path_attrs = mlir::cast<ArrayAttr>(arg_attrs.get("tf_saved_model.index_path")) .getValue(); EXPECT_THAT(index_path_attrs, SizeIs(1)); StringAttr index_path = mlir::dyn_cast_or_null<StringAttr>(index_path_attrs[0]); EXPECT_THAT(index_path, NotNull()); EXPECT_THAT(index_path, Eq("arg_0:0")); } TEST_F(ConvertAssetArgsTest, NonBoundedArgsNotModified) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( module { func.func @main(%arg_0: tensor<!tf_type.string> {tf_saved_model.index_path = ["arg_0:0"]}) -> () attributes {tf.entry_function = {inputs = "arg_0:0", outputs = ""}} { return } } )mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(succeeded(asset_file_defs)); EXPECT_THAT(*asset_file_defs, IsEmpty()); func::FuncOp main_func_op = GetMainFuncOp(*module_op); DictionaryAttr arg_attrs = main_func_op.getArgAttrDict(0); EXPECT_THAT(arg_attrs.get("tf_saved_model.bound_input"), IsNull()); const ArrayRef<Attribute> index_path_attrs = mlir::cast<ArrayAttr>(arg_attrs.get("tf_saved_model.index_path")) .getValue(); EXPECT_THAT(index_path_attrs, SizeIs(1)); StringAttr index_path = mlir::dyn_cast_or_null<StringAttr>(index_path_attrs[0]); EXPECT_THAT(index_path, NotNull()); EXPECT_THAT(index_path, Eq("arg_0:0")); } TEST_F(ConvertAssetArgsTest, ArgsBoundedToGlobalTensorNotModified) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( module { "tf_saved_model.global_tensor"() {type = tensor<2xi32>, value = dense<2> : tensor<2xi32>, sym_name = "__tf_saved_model_x"} : () -> () func.func @main(%arg_0: tensor<!tf_type.resource<tensor<2xi32>>> {tf_saved_model.bound_input = @__tf_saved_model_x}) -> () attributes {tf.entry_function = {inputs = "arg_0:0", outputs = ""}} { return } } )mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(succeeded(asset_file_defs)); EXPECT_THAT(*asset_file_defs, IsEmpty()); func::FuncOp main_func_op = GetMainFuncOp(*module_op); DictionaryAttr arg_attrs = main_func_op.getArgAttrDict(0); EXPECT_THAT(arg_attrs.get("tf_saved_model.bound_input"), NotNull()); } TEST_F(ConvertAssetArgsTest, FailsWhenNoMain) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir(module {})mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(failed(asset_file_defs)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e235071c-7a31-4583-bb84-dc3a97a962d3
cpp
google/tensorstore
function
tensorstore/serialization/function.cc
tensorstore/serialization/function_test.cc
#include "tensorstore/serialization/function.h" #include <string_view> #include <typeinfo> #include "absl/base/no_destructor.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "tensorstore/internal/container/heterogeneous_container.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace serialization { namespace internal_serialization { bool NonSerializableFunctionBase::Encode(EncodeSink& sink) const { sink.Fail(internal_serialization::NonSerializableError()); return false; } void NonSerializableFunctionBase::GarbageCollectionVisit( garbage_collection::GarbageCollectionVisitor& visitor) const { } using SerializableFunctionRegistry = internal::HeterogeneousHashSet<const RegisteredSerializableFunction*, RegisteredSerializableFunction::Key, &RegisteredSerializableFunction::key>; SerializableFunctionRegistry& GetSerializableFunctionRegistry() { static absl::NoDestructor<SerializableFunctionRegistry> registry; return *registry; } void RegisterSerializableFunction(const RegisteredSerializableFunction& r) { if (!GetSerializableFunctionRegistry().insert(&r).second) { ABSL_LOG(FATAL) << "Duplicate SerializableFunction registration: id=" << r.id << ", signature=" << r.signature->name(); } } SerializableFunctionBase::~SerializableFunctionBase() = default; bool DecodeSerializableFunction(DecodeSource& source, SerializableFunctionBase::Ptr& value, const std::type_info& signature) { std::string_view id; if (!serialization::Decode(source, id)) return false; auto& registry = GetSerializableFunctionRegistry(); auto it = registry.find(RegisteredSerializableFunction::Key(signature, id)); if (it == registry.end()) { source.Fail(absl::DataLossError( tensorstore::StrCat("SerializableFunction not registered: ", id))); return false; } return (*it)->decode(source, value); } } } }
#include "tensorstore/serialization/function.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::serialization::BindFront; using ::tensorstore::serialization::NonSerializable; using ::tensorstore::serialization::SerializableFunction; using ::tensorstore::serialization::SerializationRoundTrip; TEST(SerializationTest, Function) { SerializableFunction<int()> func([] { return 3; }); EXPECT_EQ(3, func()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto func_decoded, SerializationRoundTrip(func)); EXPECT_EQ(3, func_decoded()); } TEST(SerializationTest, BindFront) { SerializableFunction<int()> func = BindFront([](int a, int b) { return a + b; }, 2, 5); EXPECT_EQ(7, func()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto func_decoded, SerializationRoundTrip(func)); EXPECT_EQ(7, func_decoded()); } TEST(SerializationTest, NonSerializable) { SerializableFunction<int()> func = NonSerializable{[y = 5] { return y; }}; EXPECT_EQ(5, func()); EXPECT_THAT(SerializationRoundTrip(func), MatchesStatus(absl::StatusCode::kInvalidArgument, "Serialization not supported.*")); } struct FunctionWithId1 { constexpr static const char id[] = "my_test_function1"; int operator()() const { return 1; } }; struct FunctionWithId2 { constexpr static const char id[] = "my_test_function2"; int operator()() const { return 2; } }; TEST(SerializationTest, Id) { SerializableFunction<int()> func1 = FunctionWithId1{}; SerializableFunction<int()> func2 = FunctionWithId2{}; EXPECT_EQ(1, func1()); EXPECT_EQ(2, func2()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto func1_copy, SerializationRoundTrip(func1)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto func2_copy, SerializationRoundTrip(func2)); EXPECT_EQ(1, func1_copy()); EXPECT_EQ(2, func2_copy()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto func1_encoded, tensorstore::serialization::EncodeBatch(func1)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_func1_encoded, tensorstore::serialization::EncodeBatch( std::string_view(FunctionWithId1::id))); EXPECT_EQ(expected_func1_encoded, func1_encoded); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/serialization/function.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/serialization/function_test.cc
4f887a6430414cd6088e1743555015b10f116d50
cd683c63-0679-46b1-95e4-b2624b9ce00a
cpp
google/tensorstore
uint64_sharded
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include <algorithm> #include "absl/base/optimization.h" #include "absl/strings/str_format.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/path.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.h" #include "tensorstore/util/division.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace neuroglancer_uint64_sharded { namespace { namespace jb = tensorstore::internal_json_binding; constexpr auto HashFunctionBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { using HashFunction = ShardingSpec::HashFunction; return jb::Enum<HashFunction, const char*>({ {HashFunction::identity, "identity"}, {HashFunction::murmurhash3_x86_128, "murmurhash3_x86_128"}, })(is_loading, options, obj, j); }; constexpr auto DefaultableDataEncodingJsonBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { using DataEncoding = ShardingSpec::DataEncoding; return jb::DefaultValue<jb::kAlwaysIncludeDefaults>( [](auto* v) { *v = DataEncoding::raw; }, DataEncodingJsonBinder)( is_loading, options, obj, j); }; } TENSORSTORE_DEFINE_JSON_BINDER( DataEncodingJsonBinder, jb::Enum<ShardingSpec::DataEncoding, const char*>({ {ShardingSpec::DataEncoding::raw, "raw"}, {ShardingSpec::DataEncoding::gzip, "gzip"}, })) std::ostream& operator<<(std::ostream& os, ShardingSpec::HashFunction x) { return os << jb::ToJson(x, HashFunctionBinder).value(); } void to_json(::nlohmann::json& out, ShardingSpec::HashFunction x) { out = jb::ToJson(x, HashFunctionBinder).value(); } std::ostream& operator<<(std::ostream& os, ShardingSpec::DataEncoding x) { return os << jb::ToJson(x, DataEncodingJsonBinder).value(); } std::ostream& operator<<(std::ostream& os, const ShardingSpec& x) { return os << jb::ToJson(x).value(); } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ShardingSpec, [](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Object( jb::Member("@type", jb::Constant([] { return "neuroglancer_uint64_sharded_v1"; })), jb::Member("preshift_bits", jb::Projection(&ShardingSpec::preshift_bits, jb::Integer<int>(0, 64))), jb::Member("minishard_bits", jb::Projection(&ShardingSpec::minishard_bits, jb::Integer<int>(0, 32))), jb::Member("shard_bits", jb::Dependent([](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Projection( &ShardingSpec::shard_bits, jb::Integer<int>(0, 64 - obj->minishard_bits)); })), jb::Member("hash", jb::Projection(&ShardingSpec::hash_function, HashFunctionBinder)), jb::Member("data_encoding", jb::Projection(&ShardingSpec::data_encoding, DefaultableDataEncodingJsonBinder)), jb::Member("minishard_index_encoding", jb::Projection(&ShardingSpec::minishard_index_encoding, DefaultableDataEncodingJsonBinder)))( is_loading, options, obj, j); }) bool operator==(const ShardingSpec& a, const ShardingSpec& b) { return a.hash_function == b.hash_function && a.preshift_bits == b.preshift_bits && a.minishard_bits == b.minishard_bits && a.shard_bits == b.shard_bits && a.data_encoding == b.data_encoding && a.minishard_index_encoding == b.minishard_index_encoding; } std::string GetShardKey(const ShardingSpec& sharding_spec, std::string_view prefix, uint64_t shard_number) { return internal::JoinPath( prefix, absl::StrFormat("%0*x.shard", CeilOfRatio(sharding_spec.shard_bits, 4), shard_number)); } namespace { constexpr uint64_t ShiftRightUpTo64(uint64_t x, int amount) { if (amount == 64) return 0; return x >> amount; } uint64_t GetLowBitMask(int num_bits) { if (num_bits == 64) return ~uint64_t(0); return (uint64_t(1) << num_bits) - 1; } } uint64_t HashChunkId(ShardingSpec::HashFunction h, uint64_t key) { switch (h) { case ShardingSpec::HashFunction::identity: return key; case ShardingSpec::HashFunction::murmurhash3_x86_128: { uint32_t out[4] = {0, 0, 0}; MurmurHash3_x86_128Hash64Bits(key, out); return (static_cast<uint64_t>(out[1]) << 32) | out[0]; } } ABSL_UNREACHABLE(); } ChunkCombinedShardInfo GetChunkShardInfo(const ShardingSpec& sharding_spec, ChunkId chunk_id) { ChunkCombinedShardInfo result; const uint64_t hash_input = ShiftRightUpTo64(chunk_id.value, sharding_spec.preshift_bits); const uint64_t hash_output = HashChunkId(sharding_spec.hash_function, hash_input); result.shard_and_minishard = hash_output & GetLowBitMask(sharding_spec.minishard_bits + sharding_spec.shard_bits); return result; } ChunkSplitShardInfo GetSplitShardInfo(const ShardingSpec& sharding_spec, ChunkCombinedShardInfo combined_info) { ChunkSplitShardInfo result; result.minishard = combined_info.shard_and_minishard & GetLowBitMask(sharding_spec.minishard_bits); result.shard = ShiftRightUpTo64(combined_info.shard_and_minishard, sharding_spec.minishard_bits) & GetLowBitMask(sharding_spec.shard_bits); return result; } ChunkCombinedShardInfo GetCombinedShardInfo(const ShardingSpec& sharding_spec, ChunkSplitShardInfo split_info) { ChunkCombinedShardInfo result; result.shard_and_minishard = split_info.minishard; if (sharding_spec.minishard_bits != 64) { result.shard_and_minishard |= (split_info.shard << sharding_spec.minishard_bits); } return result; } int64_t ShardIndexSize(const ShardingSpec& sharding_spec) { return static_cast<int64_t>(16) << sharding_spec.minishard_bits; } Result<ByteRange> GetAbsoluteShardByteRange(ByteRange relative_range, const ShardingSpec& sharding_spec) { const int64_t offset = ShardIndexSize(sharding_spec); ByteRange result; if (internal::AddOverflow(relative_range.inclusive_min, offset, &result.inclusive_min) || internal::AddOverflow(relative_range.exclusive_max, offset, &result.exclusive_max)) { return absl::FailedPreconditionError(tensorstore::StrCat( "Byte range ", relative_range, " relative to the end of the shard index (", offset, ") is not valid")); } return result; } const EncodedChunk* FindChunk(span<const EncodedChunk> chunks, MinishardAndChunkId minishard_and_chunk_id) { const auto chunk_it = std::lower_bound( chunks.begin(), chunks.end(), minishard_and_chunk_id, [](const auto& chunk, const auto& minishard_and_chunk_id) { return chunk.minishard_and_chunk_id < minishard_and_chunk_id; }); if (chunk_it == chunks.end() || chunk_it->minishard_and_chunk_id != minishard_and_chunk_id) { return nullptr; } return &*chunk_it; } } }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::neuroglancer_uint64_sharded::MinishardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardingSpec; TEST(ShardingSpecTest, Comparison) { ShardingSpec a{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec b{ ShardingSpec::HashFunction::murmurhash3_x86_128, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec c{ ShardingSpec::HashFunction::identity, 2, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec d{ ShardingSpec::HashFunction::identity, 1, 5, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec e{ ShardingSpec::HashFunction::identity, 1, 2, 9, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec f{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::gzip, ShardingSpec::DataEncoding::gzip, }; ShardingSpec g{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, }; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_EQ(e, e); EXPECT_EQ(f, f); EXPECT_EQ(g, g); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(a, e); EXPECT_NE(a, f); EXPECT_NE(a, g); } TEST(ShardingSpecTest, ToJson) { ShardingSpec a{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; EXPECT_EQ(::nlohmann::json({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"data_encoding", "raw"}, {"minishard_index_encoding", "gzip"}}), ::nlohmann::json(a)); } TEST(ShardingSpecTest, Parse) { for (auto h : {ShardingSpec::HashFunction::identity, ShardingSpec::HashFunction::murmurhash3_x86_128}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", ::nlohmann::json(h)}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"data_encoding", "raw"}, {"minishard_index_encoding", "gzip"}}), ::testing::Optional(ShardingSpec{ h, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, })); } EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "gzip"}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::murmurhash3_x86_128, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, })); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"data_encoding", "gzip"}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::murmurhash3_x86_128, 1, 2, 3, ShardingSpec::DataEncoding::gzip, ShardingSpec::DataEncoding::raw, })); for (const char* k : {"@type", "hash", "preshift_bits", "minishard_bits", "shard_bits"}) { ::nlohmann::json j{{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "gzip"}}; j.erase(k); EXPECT_THAT(ShardingSpec::FromJson(j), MatchesStatus(absl::StatusCode::kInvalidArgument)); j[k] = nullptr; EXPECT_THAT(ShardingSpec::FromJson(j), MatchesStatus(absl::StatusCode::kInvalidArgument)); } EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v2"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "gzip"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"neuroglancer_uint64_sharded_v2\".*")); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "invalid_hash"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "gzip"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"invalid_hash\".*")); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", 1234}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*1234.*")); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "invalid_encoding"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"invalid_encoding\".*")); for (int i : {0, 1, 63, 64}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", i}, {"minishard_bits", 2}, {"shard_bits", 3}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::identity, i, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, })); } for (int i : {-1, -2, 65, 66}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", i}, {"minishard_bits", 2}, {"shard_bits", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (int i : {0, 1, 31, 32}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", i}, {"shard_bits", 0}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::identity, 1, i, 0, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, })); } for (int i : {-1, -2, 33, 34, 35}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", i}, {"shard_bits", 0}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (int i : {0, 1, 64 - 8, 64 - 7}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 7}, {"shard_bits", i}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::identity, 1, 7, i, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, })); } for (int i : {-1, -2, 64 - 6, 64 - 5, 65, 66}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 7}, {"shard_bits", i}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } EXPECT_THAT(ShardingSpec::FromJson("invalid"), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(MinishardIndexEntryTest, Comparison) { MinishardIndexEntry a{{1}, {2, 3}}; MinishardIndexEntry b{{1}, {3, 4}}; MinishardIndexEntry c{{2}, {2, 3}}; MinishardIndexEntry d{{2}, {3, 4}}; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_FALSE(a != a); EXPECT_FALSE(a == b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(b, c); EXPECT_NE(b, d); EXPECT_NE(c, d); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_test.cc
4f887a6430414cd6088e1743555015b10f116d50
078c6641-034b-4980-8a9d-61b5f28ff7fc
cpp
tensorflow/tensorflow
trt_testutils
tensorflow/compiler/tf2tensorrt/utils/trt_testutils.cc
tensorflow/compiler/tf2tensorrt/utils/trt_testutils_test.cc
#include "tensorflow/compiler/tf2tensorrt/utils/trt_testutils.h" #if GOOGLE_CUDA && GOOGLE_TENSORRT #include <map> #include <string> #include <vector> #include <gmock/gmock.h> namespace tensorflow { namespace tensorrt { namespace convert { ::testing::Matcher<std::vector<float>> ArrayFloatNear( const std::vector<float>& values, float max_abs_error, bool nan_sensitive) { std::vector<::testing::Matcher<float>> matchers; matchers.reserve(values.size()); for (const float& v : values) { if (nan_sensitive) { matchers.emplace_back(::testing::NanSensitiveFloatNear(v, max_abs_error)); } else if (max_abs_error == 0) { matchers.emplace_back(::testing::FloatEq(v)); } else { EXPECT_GE(max_abs_error, 0); matchers.emplace_back(::testing::FloatNear(v, max_abs_error)); } } return ::testing::ElementsAreArray(matchers); } nvinfer1::Dims CreateDims(const std::vector<int>& d) { nvinfer1::Dims dims; dims.nbDims = d.size(); for (int i = 0; i < d.size(); ++i) { dims.d[i] = d[i]; } return dims; } NodeDef MakeNodeDef(const std::string& name, const std::string& op, const std::vector<std::string>& inputs, const std::map<std::string, AttrValue> attrs) { NodeDef node_def; node_def.set_name(name); node_def.set_op(op); for (const auto& input : inputs) { node_def.add_input(input); } for (const auto& attr : attrs) { (*node_def.mutable_attr())[attr.first] = attr.second; } return node_def; } } } } #endif
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/compiler/tf2tensorrt/utils/trt_testutils.h" #include "tensorflow/compiler/tf2tensorrt/common/utils.h" #include "tensorflow/compiler/tf2tensorrt/utils/trt_logger.h" #include "third_party/tensorrt/NvInfer.h" namespace tensorflow { namespace tensorrt { namespace convert { using ::testing::AllOf; using ::testing::AnyOf; using ::testing::Eq; using ::testing::Not; TEST(TrtDimsMatcher, ParameterizedMatchers) { EXPECT_THAT(nvinfer1::Dims4(1, 2, 3, 4), DimsAreArray({1, 2, 3, 4})); EXPECT_THAT(nvinfer1::Dims{}, Not(DimsAreArray({1, 2}))); std::vector<int> empty_dims; EXPECT_THAT(nvinfer1::Dims{}, DimsAreArray(empty_dims)); EXPECT_THAT(nvinfer1::Dims4(1, 2, 3, 4), Not(DimsAreArray({1, 2, 3, 5}))); EXPECT_THAT(nvinfer1::Dims4(1, 2, 3, 4), Not(DimsAreArray({1, 2, 5}))); } TEST(TrtDimsMatcher, EqualityMatcher) { EXPECT_THAT(nvinfer1::Dims4(1, 2, 3, 4), Eq(nvinfer1::Dims4(1, 2, 3, 4))); EXPECT_THAT(nvinfer1::Dims{}, Eq(nvinfer1::Dims())); EXPECT_THAT(nvinfer1::Dims{}, Not(Eq(nvinfer1::DimsHW()))); EXPECT_THAT(nvinfer1::Dims4(1, 2, 3, 4), Not(Eq(nvinfer1::Dims4(1, 2, 3, 3)))); EXPECT_THAT(nvinfer1::Dims4(1, 2, 3, 4), Not(Eq(nvinfer1::Dims2(1, 2)))); } TEST(INetworkDefinitionMatchers, CorrectlyMatch) { Logger& logger = *Logger::GetLogger(); TrtUniquePtrType<nvinfer1::IBuilder> builder( nvinfer1::createInferBuilder(logger)); TrtUniquePtrType<nvinfer1::INetworkDefinition> network( builder->createNetworkV2(0L)); EXPECT_THAT(network.get(), AllOf(Not(LayerNamesAreArray({"some layer"})), LayerNamesNonEmpty())); nvinfer1::Weights weights; weights.type = nvinfer1::DataType::kFLOAT; std::array<float, 1> vals; weights.values = vals.data(); weights.count = 1; auto input = network->addInput("input-tensor", nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{1, 1, 1}); ASSERT_NE(input, nullptr); const char* fc_layer_name = "my-fc-layer"; auto layer = network->addFullyConnected(*input, 1, weights, weights); ASSERT_NE(layer, nullptr); layer->setName(fc_layer_name); EXPECT_THAT(network.get(), AllOf(LayerNamesNonEmpty(), LayerNamesAreArray({fc_layer_name}))); layer = network->addFullyConnected(*input, 1, weights, weights); EXPECT_THAT(network.get(), AllOf(LayerNamesNonEmpty(), Not(LayerNamesAreArray({fc_layer_name})))); } } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/utils/trt_testutils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/utils/trt_testutils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bd8bc1a3-cd69-4c3e-b828-b3739fd2b8e0
cpp
google/quiche
encapsulated_web_transport
quiche/web_transport/encapsulated/encapsulated_web_transport.cc
quiche/web_transport/encapsulated/encapsulated_web_transport_test.cc
#include "quiche/web_transport/encapsulated/encapsulated_web_transport.h" #include <stdbool.h> #include <algorithm> #include <array> #include <cstddef> #include <cstdint> #include <cstring> #include <iterator> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/node_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "quiche/common/capsule.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_buffer_allocator.h" #include "quiche/common/quiche_callbacks.h" #include "quiche/common/quiche_circular_deque.h" #include "quiche/common/quiche_status_utils.h" #include "quiche/common/quiche_stream.h" #include "quiche/web_transport/web_transport.h" namespace webtransport { namespace { using ::quiche::Capsule; using ::quiche::CapsuleType; using ::quiche::CloseWebTransportSessionCapsule; constexpr uint64_t kEncapsulatedMaxDatagramSize = 9000; constexpr StreamPriority kDefaultPriority = StreamPriority{0, 0}; } EncapsulatedSession::EncapsulatedSession( Perspective perspective, FatalErrorCallback fatal_error_callback) : perspective_(perspective), fatal_error_callback_(std::move(fatal_error_callback)), capsule_parser_(this), next_outgoing_bidi_stream_(perspective == Perspective::kClient ? 0 : 1), next_outgoing_unidi_stream_(perspective == Perspective::kClient ? 2 : 3) { QUICHE_DCHECK(IsIdOpenedBy(next_outgoing_bidi_stream_, perspective)); QUICHE_DCHECK(IsIdOpenedBy(next_outgoing_unidi_stream_, perspective)); } void EncapsulatedSession::InitializeClient( std::unique_ptr<SessionVisitor> visitor, quiche::HttpHeaderBlock& , quiche::WriteStream* writer, quiche::ReadStream* reader) { if (state_ != kUninitialized) { OnFatalError("Called InitializeClient() in an invalid state"); return; } if (perspective_ != Perspective::kClient) { OnFatalError("Called InitializeClient() on a server session"); return; } visitor_ = std::move(visitor); writer_ = writer; reader_ = reader; state_ = kWaitingForHeaders; } void EncapsulatedSession::InitializeServer( std::unique_ptr<SessionVisitor> visitor, const quiche::HttpHeaderBlock& , quiche::HttpHeaderBlock& , quiche::WriteStream* writer, quiche::ReadStream* reader) { if (state_ != kUninitialized) { OnFatalError("Called InitializeServer() in an invalid state"); return; } if (perspective_ != Perspective::kServer) { OnFatalError("Called InitializeServer() on a client session"); return; } visitor_ = std::move(visitor); writer_ = writer; reader_ = reader; OpenSession(); } void EncapsulatedSession::ProcessIncomingServerHeaders( const quiche::HttpHeaderBlock& ) { if (state_ != kWaitingForHeaders) { OnFatalError("Called ProcessIncomingServerHeaders() in an invalid state"); return; } OpenSession(); } void EncapsulatedSession::CloseSession(SessionErrorCode error_code, absl::string_view error_message) { switch (state_) { case kUninitialized: case kWaitingForHeaders: OnFatalError(absl::StrCat( "Attempted to close a session before it opened with error 0x", absl::Hex(error_code), ": ", error_message)); return; case kSessionClosing: case kSessionClosed: OnFatalError(absl::StrCat( "Attempted to close a session that is already closed with error 0x", absl::Hex(error_code), ": ", error_message)); return; case kSessionOpen: break; } state_ = kSessionClosing; buffered_session_close_ = BufferedClose{error_code, std::string(error_message)}; OnCanWrite(); } Stream* EncapsulatedSession::AcceptIncomingStream( quiche::QuicheCircularDeque<StreamId>& queue) { while (!queue.empty()) { StreamId id = queue.front(); queue.pop_front(); Stream* stream = GetStreamById(id); if (stream == nullptr) { continue; } return stream; } return nullptr; } Stream* EncapsulatedSession::AcceptIncomingBidirectionalStream() { return AcceptIncomingStream(incoming_bidirectional_streams_); } Stream* EncapsulatedSession::AcceptIncomingUnidirectionalStream() { return AcceptIncomingStream(incoming_unidirectional_streams_); } bool EncapsulatedSession::CanOpenNextOutgoingBidirectionalStream() { return true; } bool EncapsulatedSession::CanOpenNextOutgoingUnidirectionalStream() { return true; } Stream* EncapsulatedSession::OpenOutgoingStream(StreamId& counter) { StreamId stream_id = counter; counter += 4; auto [it, inserted] = streams_.emplace( std::piecewise_construct, std::forward_as_tuple(stream_id), std::forward_as_tuple(this, stream_id)); QUICHE_DCHECK(inserted); return &it->second; } Stream* EncapsulatedSession::OpenOutgoingBidirectionalStream() { if (!CanOpenNextOutgoingBidirectionalStream()) { return nullptr; } return OpenOutgoingStream(next_outgoing_bidi_stream_); } Stream* EncapsulatedSession::OpenOutgoingUnidirectionalStream() { if (!CanOpenNextOutgoingUnidirectionalStream()) { return nullptr; } return OpenOutgoingStream(next_outgoing_unidi_stream_); } Stream* EncapsulatedSession::GetStreamById(StreamId id) { auto it = streams_.find(id); if (it == streams_.end()) { return nullptr; } return &it->second; } DatagramStats EncapsulatedSession::GetDatagramStats() { DatagramStats stats; stats.expired_outgoing = 0; stats.lost_outgoing = 0; return stats; } SessionStats EncapsulatedSession::GetSessionStats() { return SessionStats(); } void EncapsulatedSession::NotifySessionDraining() { SendControlCapsule(quiche::DrainWebTransportSessionCapsule()); OnCanWrite(); } void EncapsulatedSession::SetOnDraining( quiche::SingleUseCallback<void()> callback) { draining_callback_ = std::move(callback); } DatagramStatus EncapsulatedSession::SendOrQueueDatagram( absl::string_view datagram) { if (datagram.size() > GetMaxDatagramSize()) { return DatagramStatus{ DatagramStatusCode::kTooBig, absl::StrCat("Datagram is ", datagram.size(), " bytes long, while the specified maximum size is ", GetMaxDatagramSize())}; } bool write_blocked; switch (state_) { case kUninitialized: write_blocked = true; break; case kWaitingForHeaders: case kSessionOpen: write_blocked = !writer_->CanWrite(); break; case kSessionClosing: case kSessionClosed: return DatagramStatus{DatagramStatusCode::kInternalError, "Writing into an already closed session"}; } if (write_blocked) { control_capsule_queue_.push_back( quiche::SerializeCapsule(Capsule::Datagram(datagram), allocator_)); return DatagramStatus{DatagramStatusCode::kSuccess, ""}; } quiche::QuicheBuffer buffer = quiche::SerializeDatagramCapsuleHeader(datagram.size(), allocator_); std::array spans = {buffer.AsStringView(), datagram}; absl::Status write_status = writer_->Writev(absl::MakeConstSpan(spans), quiche::StreamWriteOptions()); if (!write_status.ok()) { OnWriteError(write_status); return DatagramStatus{ DatagramStatusCode::kInternalError, absl::StrCat("Write error for datagram: ", write_status.ToString())}; } return DatagramStatus{DatagramStatusCode::kSuccess, ""}; } uint64_t EncapsulatedSession::GetMaxDatagramSize() const { return kEncapsulatedMaxDatagramSize; } void EncapsulatedSession::SetDatagramMaxTimeInQueue( absl::Duration ) { } void EncapsulatedSession::OnCanWrite() { if (state_ == kUninitialized || !writer_) { OnFatalError("Trying to write before the session is initialized"); return; } if (state_ == kSessionClosed) { OnFatalError("Trying to write before the session is closed"); return; } if (state_ == kSessionClosing) { if (writer_->CanWrite()) { CloseWebTransportSessionCapsule capsule{ buffered_session_close_.error_code, buffered_session_close_.error_message}; quiche::QuicheBuffer buffer = quiche::SerializeCapsule(Capsule(std::move(capsule)), allocator_); absl::Status write_status = SendFin(buffer.AsStringView()); if (!write_status.ok()) { OnWriteError(quiche::AppendToStatus(write_status, " while writing WT_CLOSE_SESSION")); return; } OnSessionClosed(buffered_session_close_.error_code, buffered_session_close_.error_message); } return; } while (writer_->CanWrite() && !control_capsule_queue_.empty()) { absl::Status write_status = quiche::WriteIntoStream( *writer_, control_capsule_queue_.front().AsStringView()); if (!write_status.ok()) { OnWriteError(write_status); return; } control_capsule_queue_.pop_front(); } while (writer_->CanWrite()) { absl::StatusOr<StreamId> next_id = scheduler_.PopFront(); if (!next_id.ok()) { QUICHE_DCHECK_EQ(next_id.status().code(), absl::StatusCode::kNotFound); return; } auto it = streams_.find(*next_id); if (it == streams_.end()) { QUICHE_BUG(WT_H2_NextStreamNotInTheMap); OnFatalError("Next scheduled stream is not in the map"); return; } QUICHE_DCHECK(it->second.HasPendingWrite()); it->second.FlushPendingWrite(); } } void EncapsulatedSession::OnCanRead() { if (state_ == kSessionClosed || state_ == kSessionClosing) { return; } bool has_fin = quiche::ProcessAllReadableRegions( *reader_, [&](absl::string_view fragment) { capsule_parser_.IngestCapsuleFragment(fragment); }); if (has_fin) { capsule_parser_.ErrorIfThereIsRemainingBufferedData(); OnSessionClosed(0, ""); } if (state_ == kSessionOpen) { GarbageCollectStreams(); } } bool EncapsulatedSession::OnCapsule(const quiche::Capsule& capsule) { switch (capsule.capsule_type()) { case CapsuleType::DATAGRAM: visitor_->OnDatagramReceived( capsule.datagram_capsule().http_datagram_payload); break; case CapsuleType::DRAIN_WEBTRANSPORT_SESSION: if (draining_callback_) { std::move(draining_callback_)(); } break; case CapsuleType::CLOSE_WEBTRANSPORT_SESSION: OnSessionClosed( capsule.close_web_transport_session_capsule().error_code, std::string( capsule.close_web_transport_session_capsule().error_message)); break; case CapsuleType::WT_STREAM: case CapsuleType::WT_STREAM_WITH_FIN: ProcessStreamCapsule(capsule, capsule.web_transport_stream_data().stream_id); break; case CapsuleType::WT_RESET_STREAM: ProcessStreamCapsule(capsule, capsule.web_transport_reset_stream().stream_id); break; case CapsuleType::WT_STOP_SENDING: ProcessStreamCapsule(capsule, capsule.web_transport_stop_sending().stream_id); break; default: break; } return state_ != kSessionClosed; } void EncapsulatedSession::OnCapsuleParseFailure( absl::string_view error_message) { if (state_ == kSessionClosed) { return; } OnFatalError(absl::StrCat("Stream parse error: ", error_message)); } void EncapsulatedSession::ProcessStreamCapsule(const quiche::Capsule& capsule, StreamId stream_id) { bool new_stream_created = false; auto it = streams_.find(stream_id); if (it == streams_.end()) { if (IsOutgoing(stream_id)) { return; } it = streams_.emplace_hint(it, std::piecewise_construct, std::forward_as_tuple(stream_id), std::forward_as_tuple(this, stream_id)); new_stream_created = true; } InnerStream& stream = it->second; stream.ProcessCapsule(capsule); if (new_stream_created) { if (IsBidirectionalId(stream_id)) { incoming_bidirectional_streams_.push_back(stream_id); visitor_->OnIncomingBidirectionalStreamAvailable(); } else { incoming_unidirectional_streams_.push_back(stream_id); visitor_->OnIncomingUnidirectionalStreamAvailable(); } } } void EncapsulatedSession::InnerStream::ProcessCapsule( const quiche::Capsule& capsule) { switch (capsule.capsule_type()) { case CapsuleType::WT_STREAM: case CapsuleType::WT_STREAM_WITH_FIN: { if (fin_received_) { session_->OnFatalError( "Received stream data for a stream that has already received a " "FIN"); return; } if (read_side_closed_) { return; } fin_received_ = capsule.capsule_type() == CapsuleType::WT_STREAM_WITH_FIN; const quiche::WebTransportStreamDataCapsule& data = capsule.web_transport_stream_data(); if (!data.data.empty()) { incoming_reads_.push_back(IncomingRead{data.data, std::string()}); } if (visitor_ != nullptr) { visitor_->OnCanRead(); } for (IncomingRead& read : incoming_reads_) { QUICHE_DCHECK(!read.data.empty()); if (read.storage.empty()) { read.storage = std::string(read.data); read.data = read.storage; } } return; } case CapsuleType::WT_RESET_STREAM: CloseReadSide(capsule.web_transport_reset_stream().error_code); return; case CapsuleType::WT_STOP_SENDING: CloseWriteSide(capsule.web_transport_stop_sending().error_code); return; default: QUICHE_BUG(WT_H2_ProcessStreamCapsule_Unknown) << "Unexpected capsule dispatched to InnerStream: " << capsule; session_->OnFatalError( "Internal error: Unexpected capsule dispatched to InnerStream"); return; } } void EncapsulatedSession::OpenSession() { state_ = kSessionOpen; visitor_->OnSessionReady(); OnCanWrite(); OnCanRead(); } absl::Status EncapsulatedSession::SendFin(absl::string_view data) { QUICHE_DCHECK(!fin_sent_); fin_sent_ = true; quiche::StreamWriteOptions options; options.set_send_fin(true); return quiche::WriteIntoStream(*writer_, data, options); } void EncapsulatedSession::OnSessionClosed(SessionErrorCode error_code, const std::string& error_message) { if (!fin_sent_) { absl::Status status = SendFin(""); if (!status.ok()) { OnWriteError(status); return; } } if (session_close_notified_) { QUICHE_DCHECK_EQ(state_, kSessionClosed); return; } state_ = kSessionClosed; session_close_notified_ = true; if (visitor_ != nullptr) { visitor_->OnSessionClosed(error_code, error_message); } } void EncapsulatedSession::OnFatalError(absl::string_view error_message) { QUICHE_DLOG(ERROR) << "Fatal error in encapsulated WebTransport: " << error_message; state_ = kSessionClosed; if (fatal_error_callback_) { std::move(fatal_error_callback_)(error_message); fatal_error_callback_ = nullptr; } } void EncapsulatedSession::OnWriteError(absl::Status error) { OnFatalError(absl::StrCat( error, " while trying to write encapsulated WebTransport data")); } EncapsulatedSession::InnerStream::InnerStream(EncapsulatedSession* session, StreamId id) : session_(session), id_(id), read_side_closed_(IsUnidirectionalId(id) && IsIdOpenedBy(id, session->perspective_)), write_side_closed_(IsUnidirectionalId(id) && !IsIdOpenedBy(id, session->perspective_)) { if (!write_side_closed_) { absl::Status status = session_->scheduler_.Register(id_, kDefaultPriority); if (!status.ok()) { QUICHE_BUG(WT_H2_FailedToRegisterNewStream) << status; session_->OnFatalError( "Failed to register new stream with the scheduler"); return; } } } quiche::ReadStream::ReadResult EncapsulatedSession::InnerStream::Read( absl::Span<char> output) { const size_t total_size = output.size(); for (const IncomingRead& read : incoming_reads_) { size_t size_to_read = std::min(read.size(), output.size()); if (size_to_read == 0) { break; } memcpy(output.data(), read.data.data(), size_to_read); output = output.subspan(size_to_read); } bool fin_consumed = SkipBytes(total_size); return ReadResult{total_size, fin_consumed}; } quiche::ReadStream::ReadResult EncapsulatedSession::InnerStream::Read( std::string* output) { const size_t total_size = ReadableBytes(); const size_t initial_offset = output->size(); output->resize(initial_offset + total_size); return Read(absl::Span<char>(&((*output)[initial_offset]), total_size)); } size_t EncapsulatedSession::InnerStream::ReadableBytes() const { size_t total_size = 0; for (const IncomingRead& read : incoming_reads_) { total_size += read.size(); } return total_size; } quiche::ReadStream::PeekResult EncapsulatedSession::InnerStream::PeekNextReadableRegion() const { if (incoming_reads_.empty()) { return PeekResult{absl::string_view(), fin_received_, fin_received_}; } return PeekResult{incoming_reads_.front().data, fin_received_ && incoming_reads_.size() == 1, fin_received_}; } bool EncapsulatedSession::InnerStream::SkipBytes(size_t bytes) { size_t remaining = bytes; while (remaining > 0) { if (incoming_reads_.empty()) { QUICHE_BUG(WT_H2_SkipBytes_toomuch) << "Requested to skip " << remaining << " bytes that are not present in the read buffer."; return false; } IncomingRead& current = incoming_reads_.front(); if (remaining < current.size()) { current.data = current.data.substr(remaining); return false; } remaining -= current.size(); incoming_reads_.pop_front(); } if (incoming_reads_.empty() && fin_received_) { fin_consumed_ = true; CloseReadSide(std::nullopt); return true; } return false; } absl::Status EncapsulatedSession::InnerStream::Writev( const absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { if (write_side_closed_) { return absl::FailedPreconditionError( "Trying to write into an already-closed stream"); } if (fin_buffered_) { return absl::FailedPreconditionError("FIN already buffered"); } if (!CanWrite()) { return absl::FailedPreconditionError( "Trying to write into a stream when CanWrite() = false"); } const absl::StatusOr<bool> should_yield = session_->scheduler_.ShouldYield(id_); if (!should_yield.ok()) { QUICHE_BUG(WT_H2_Writev_NotRegistered) << should_yield.status(); session_->OnFatalError("Stream not registered with the scheduler"); return absl::InternalError("Stream not registered with the scheduler"); } const bool write_blocked = !session_->writer_->CanWrite() || *should_yield || !pending_write_.empty(); if (write_blocked) { fin_buffered_ = options.send_fin(); for (absl::string_view chunk : data) { absl::StrAppend(&pending_write_, chunk); } absl::Status status = session_->scheduler_.Schedule(id_); if (!status.ok()) { QUICHE_BUG(WT_H2_Writev_CantSchedule) << status; session_->OnFatalError("Could not schedule a write-blocked stream"); return absl::InternalError("Could not schedule a write-blocked stream"); } return absl::OkStatus(); } size_t bytes_written = WriteInner(data, options.send_fin()); QUICHE_DCHECK(bytes_written == 0 || bytes_written == quiche::TotalStringViewSpanSize(data)); if (bytes_written == 0) { for (absl::string_view chunk : data) { absl::StrAppend(&pending_write_, chunk); } } if (options.send_fin()) { CloseWriteSide(std::nullopt); } return absl::OkStatus(); } bool EncapsulatedSession::InnerStream::CanWrite() const { return session_->state_ != EncapsulatedSession::kSessionClosed && !write_side_closed_ && (pending_write_.size() <= session_->max_stream_data_buffered_); } void EncapsulatedSession::InnerStream::FlushPendingWrite() { QUICHE_DCHECK(!write_side_closed_); QUICHE_DCHECK(session_->writer_->CanWrite()); QUICHE_DCHECK(!pending_write_.empty()); absl::string_view to_write = pending_write_; size_t bytes_written = WriteInner(absl::MakeSpan(&to_write, 1), fin_buffered_); if (bytes_written < to_write.size()) { pending_write_ = pending_write_.substr(bytes_written); return; } pending_write_.clear(); if (fin_buffered_) { CloseWriteSide(std::nullopt); } if (!write_side_closed_ && visitor_ != nullptr) { visitor_->OnCanWrite(); } } size_t EncapsulatedSession::InnerStream::WriteInner( absl::Span<const absl::string_view> data, bool fin) { size_t total_size = quiche::TotalStringViewSpanSize(data); if (total_size == 0 && !fin) { session_->OnFatalError("Attempted to make an empty write with fin=false"); return 0; } quiche::QuicheBuffer header = quiche::SerializeWebTransportStreamCapsuleHeader(id_, fin, total_size, session_->allocator_); std::vector<absl::string_view> views_to_write; views_to_write.reserve(data.size() + 1); views_to_write.push_back(header.AsStringView()); absl::c_copy(data, std::back_inserter(views_to_write)); absl::Status write_status = session_->writer_->Writev( views_to_write, quiche::kDefaultStreamWriteOptions); if (!write_status.ok()) { session_->OnWriteError(write_status); return 0; } return total_size; } void EncapsulatedSession::InnerStream::AbruptlyTerminate(absl::Status error) { QUICHE_DLOG(INFO) << "Abruptly terminating the stream due to error: " << error; ResetDueToInternalError(); } void EncapsulatedSession::InnerStream::ResetWithUserCode( StreamErrorCode error) { if (reset_frame_sent_) { return; } reset_frame_sent_ = true; session_->SendControlCapsule( quiche::WebTransportResetStreamCapsule{id_, error}); CloseWriteSide(std::nullopt); } void EncapsulatedSession::InnerStream::SendStopSending(StreamErrorCode error) { if (stop_sending_sent_) { return; } stop_sending_sent_ = true; session_->SendControlCapsule( quiche::WebTransportStopSendingCapsule{id_, error}); CloseReadSide(std::nullopt); } void EncapsulatedSession::InnerStream::CloseReadSide( std::optional<StreamErrorCode> error) { if (read_side_closed_) { return; } read_side_closed_ = true; incoming_reads_.clear(); if (error.has_value() && visitor_ != nullptr) { visitor_->OnResetStreamReceived(*error); } if (CanBeGarbageCollected()) { session_->streams_to_garbage_collect_.push_back(id_); } } void EncapsulatedSession::InnerStream::CloseWriteSide( std::optional<StreamErrorCode> error) { if (write_side_closed_) { return; } write_side_closed_ = true; pending_write_.clear(); absl::Status status = session_->scheduler_.Unregister(id_); if (!status.ok()) { session_->OnFatalError("Failed to unregister closed stream"); return; } if (error.has_value() && visitor_ != nullptr) { visitor_->OnStopSendingReceived(*error); } if (CanBeGarbageCollected()) { session_->streams_to_garbage_collect_.push_back(id_); } } void EncapsulatedSession::GarbageCollectStreams() { for (StreamId id : streams_to_garbage_collect_) { streams_.erase(id); } streams_to_garbage_collect_.clear(); } void EncapsulatedSession::InnerStream::SetPriority( const StreamPriority& priority) { absl::Status status; status = session_->scheduler_.UpdateSendGroup(id_, priority.send_group_id); QUICHE_BUG_IF(EncapsulatedWebTransport_SetPriority_group, !status.ok()) << status; status = session_->scheduler_.UpdateSendOrder(id_, priority.send_order); QUICHE_BUG_IF(EncapsulatedWebTransport_SetPriority_order, !status.ok()) << status; } }
#include "quiche/web_transport/encapsulated/encapsulated_web_transport.h" #include <array> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/common/capsule.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_buffer_allocator.h" #include "quiche/common/quiche_stream.h" #include "quiche/common/simple_buffer_allocator.h" #include "quiche/common/test_tools/mock_streams.h" #include "quiche/common/test_tools/quiche_test_utils.h" #include "quiche/web_transport/test_tools/mock_web_transport.h" #include "quiche/web_transport/web_transport.h" namespace webtransport::test { namespace { using ::quiche::Capsule; using ::quiche::CapsuleType; using ::quiche::test::StatusIs; using ::testing::_; using ::testing::ElementsAre; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::Return; using ::testing::StrEq; class EncapsulatedWebTransportTest : public quiche::test::QuicheTest, public quiche::CapsuleParser::Visitor { public: EncapsulatedWebTransportTest() : parser_(this), reader_(&read_buffer_) { ON_CALL(fatal_error_callback_, Call(_)) .WillByDefault([](absl::string_view error) { ADD_FAILURE() << "Fatal session error: " << error; }); ON_CALL(writer_, Writev(_, _)) .WillByDefault([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { for (absl::string_view fragment : data) { parser_.IngestCapsuleFragment(fragment); } writer_.ProcessOptions(options); return absl::OkStatus(); }); } std::unique_ptr<EncapsulatedSession> CreateTransport( Perspective perspective) { auto transport = std::make_unique<EncapsulatedSession>( perspective, fatal_error_callback_.AsStdFunction()); session_ = transport.get(); return transport; } std::unique_ptr<SessionVisitor> CreateAndStoreVisitor() { auto visitor = std::make_unique<testing::StrictMock<MockSessionVisitor>>(); visitor_ = visitor.get(); return visitor; } MOCK_METHOD(bool, OnCapsule, (const Capsule&), (override)); void OnCapsuleParseFailure(absl::string_view error_message) override { ADD_FAILURE() << "Written an invalid capsule: " << error_message; } void ProcessIncomingCapsule(const Capsule& capsule) { quiche::QuicheBuffer buffer = quiche::SerializeCapsule(capsule, quiche::SimpleBufferAllocator::Get()); read_buffer_.append(buffer.data(), buffer.size()); session_->OnCanRead(); } template <typename CapsuleType> void ProcessIncomingCapsule(const CapsuleType& capsule) { quiche::QuicheBuffer buffer = quiche::SerializeCapsule( quiche::Capsule(capsule), quiche::SimpleBufferAllocator::Get()); read_buffer_.append(buffer.data(), buffer.size()); session_->OnCanRead(); } void DefaultHandshakeForClient(EncapsulatedSession& session) { quiche::HttpHeaderBlock outgoing_headers, incoming_headers; session.InitializeClient(CreateAndStoreVisitor(), outgoing_headers, &writer_, &reader_); EXPECT_CALL(*visitor_, OnSessionReady()); session.ProcessIncomingServerHeaders(incoming_headers); } protected: quiche::CapsuleParser parser_; quiche::test::MockWriteStream writer_; std::string read_buffer_; quiche::test::ReadStreamFromString reader_; MockSessionVisitor* visitor_ = nullptr; EncapsulatedSession* session_ = nullptr; testing::MockFunction<void(absl::string_view)> fatal_error_callback_; }; TEST_F(EncapsulatedWebTransportTest, IsOpenedBy) { EXPECT_EQ(IsIdOpenedBy(0x00, Perspective::kClient), true); EXPECT_EQ(IsIdOpenedBy(0x01, Perspective::kClient), false); EXPECT_EQ(IsIdOpenedBy(0x02, Perspective::kClient), true); EXPECT_EQ(IsIdOpenedBy(0x03, Perspective::kClient), false); EXPECT_EQ(IsIdOpenedBy(0x00, Perspective::kServer), false); EXPECT_EQ(IsIdOpenedBy(0x01, Perspective::kServer), true); EXPECT_EQ(IsIdOpenedBy(0x02, Perspective::kServer), false); EXPECT_EQ(IsIdOpenedBy(0x03, Perspective::kServer), true); } TEST_F(EncapsulatedWebTransportTest, SetupClientSession) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); quiche::HttpHeaderBlock outgoing_headers, incoming_headers; EXPECT_EQ(session->state(), EncapsulatedSession::kUninitialized); session->InitializeClient(CreateAndStoreVisitor(), outgoing_headers, &writer_, &reader_); EXPECT_EQ(session->state(), EncapsulatedSession::kWaitingForHeaders); EXPECT_CALL(*visitor_, OnSessionReady()); session->ProcessIncomingServerHeaders(incoming_headers); EXPECT_EQ(session->state(), EncapsulatedSession::kSessionOpen); } TEST_F(EncapsulatedWebTransportTest, SetupServerSession) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kServer); quiche::HttpHeaderBlock outgoing_headers, incoming_headers; EXPECT_EQ(session->state(), EncapsulatedSession::kUninitialized); std::unique_ptr<SessionVisitor> visitor = CreateAndStoreVisitor(); EXPECT_CALL(*visitor_, OnSessionReady()); session->InitializeServer(std::move(visitor), outgoing_headers, incoming_headers, &writer_, &reader_); EXPECT_EQ(session->state(), EncapsulatedSession::kSessionOpen); } TEST_F(EncapsulatedWebTransportTest, CloseSession) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::CLOSE_WEBTRANSPORT_SESSION); EXPECT_EQ(capsule.close_web_transport_session_capsule().error_code, 0x1234); EXPECT_EQ(capsule.close_web_transport_session_capsule().error_message, "test close"); return true; }); EXPECT_EQ(session->state(), EncapsulatedSession::kSessionOpen); EXPECT_CALL(*visitor_, OnSessionClosed(0x1234, StrEq("test close"))); session->CloseSession(0x1234, "test close"); EXPECT_EQ(session->state(), EncapsulatedSession::kSessionClosed); EXPECT_TRUE(writer_.fin_written()); EXPECT_CALL(fatal_error_callback_, Call(_)) .WillOnce([](absl::string_view error) { EXPECT_THAT(error, HasSubstr("close a session that is already closed")); }); session->CloseSession(0x1234, "test close"); } TEST_F(EncapsulatedWebTransportTest, CloseSessionWriteBlocked) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(writer_, CanWrite()).WillOnce(Return(false)); EXPECT_CALL(*this, OnCapsule(_)).Times(0); EXPECT_EQ(session->state(), EncapsulatedSession::kSessionOpen); session->CloseSession(0x1234, "test close"); EXPECT_EQ(session->state(), EncapsulatedSession::kSessionClosing); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::CLOSE_WEBTRANSPORT_SESSION); EXPECT_EQ(capsule.close_web_transport_session_capsule().error_code, 0x1234); EXPECT_EQ(capsule.close_web_transport_session_capsule().error_message, "test close"); return true; }); EXPECT_CALL(writer_, CanWrite()).WillOnce(Return(true)); EXPECT_CALL(*visitor_, OnSessionClosed(0x1234, StrEq("test close"))); session->OnCanWrite(); EXPECT_EQ(session->state(), EncapsulatedSession::kSessionClosed); EXPECT_TRUE(writer_.fin_written()); } TEST_F(EncapsulatedWebTransportTest, ReceiveFin) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnSessionClosed(0, IsEmpty())); reader_.set_fin(); session->OnCanRead(); EXPECT_TRUE(writer_.fin_written()); } TEST_F(EncapsulatedWebTransportTest, ReceiveCloseSession) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnSessionClosed(0x1234, StrEq("test"))); ProcessIncomingCapsule(Capsule::CloseWebTransportSession(0x1234, "test")); EXPECT_TRUE(writer_.fin_written()); reader_.set_fin(); session->OnCanRead(); } TEST_F(EncapsulatedWebTransportTest, ReceiveMalformedData) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(fatal_error_callback_, Call(HasSubstr("too much capsule data"))) .WillOnce([] {}); read_buffer_ = std::string(2 * 1024 * 1024, '\xff'); session->OnCanRead(); } TEST_F(EncapsulatedWebTransportTest, SendDatagrams) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), quiche::CapsuleType::DATAGRAM); EXPECT_EQ(capsule.datagram_capsule().http_datagram_payload, "test"); return true; }); DatagramStatus status = session->SendOrQueueDatagram("test"); EXPECT_EQ(status.code, DatagramStatusCode::kSuccess); } TEST_F(EncapsulatedWebTransportTest, SendDatagramsEarly) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); quiche::HttpHeaderBlock outgoing_headers; session->InitializeClient(CreateAndStoreVisitor(), outgoing_headers, &writer_, &reader_); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), quiche::CapsuleType::DATAGRAM); EXPECT_EQ(capsule.datagram_capsule().http_datagram_payload, "test"); return true; }); ASSERT_EQ(session->state(), EncapsulatedSession::kWaitingForHeaders); session->SendOrQueueDatagram("test"); } TEST_F(EncapsulatedWebTransportTest, SendDatagramsBeforeInitialization) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); quiche::HttpHeaderBlock outgoing_headers; EXPECT_CALL(*this, OnCapsule(_)).Times(0); ASSERT_EQ(session->state(), EncapsulatedSession::kUninitialized); session->SendOrQueueDatagram("test"); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::DATAGRAM); EXPECT_EQ(capsule.datagram_capsule().http_datagram_payload, "test"); return true; }); DefaultHandshakeForClient(*session); } TEST_F(EncapsulatedWebTransportTest, SendDatagramsTooBig) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*this, OnCapsule(_)).Times(0); std::string long_string(16 * 1024, 'a'); DatagramStatus status = session->SendOrQueueDatagram(long_string); EXPECT_EQ(status.code, DatagramStatusCode::kTooBig); } TEST_F(EncapsulatedWebTransportTest, ReceiveDatagrams) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnDatagramReceived(_)) .WillOnce([](absl::string_view data) { EXPECT_EQ(data, "test"); }); ProcessIncomingCapsule(Capsule::Datagram("test")); } TEST_F(EncapsulatedWebTransportTest, SendDraining) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::DRAIN_WEBTRANSPORT_SESSION); return true; }); session->NotifySessionDraining(); } TEST_F(EncapsulatedWebTransportTest, ReceiveDraining) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); testing::MockFunction<void()> callback; session->SetOnDraining(callback.AsStdFunction()); EXPECT_CALL(callback, Call()); ProcessIncomingCapsule(Capsule(quiche::DrainWebTransportSessionCapsule())); } TEST_F(EncapsulatedWebTransportTest, WriteErrorDatagram) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(writer_, Writev(_, _)) .WillOnce(Return(absl::InternalError("Test write error"))); EXPECT_CALL(fatal_error_callback_, Call(_)) .WillOnce([](absl::string_view error) { EXPECT_THAT(error, HasSubstr("Test write error")); }); DatagramStatus status = session->SendOrQueueDatagram("test"); EXPECT_EQ(status.code, DatagramStatusCode::kInternalError); } TEST_F(EncapsulatedWebTransportTest, WriteErrorControlCapsule) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(writer_, Writev(_, _)) .WillOnce(Return(absl::InternalError("Test write error"))); EXPECT_CALL(fatal_error_callback_, Call(_)) .WillOnce([](absl::string_view error) { EXPECT_THAT(error, HasSubstr("Test write error")); }); session->NotifySessionDraining(); } TEST_F(EncapsulatedWebTransportTest, SimpleRead) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); bool stream_received = false; EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()) .WillOnce([&] { stream_received = true; }); std::string data = "test"; ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{1, data, false}); data[0] = 'q'; EXPECT_TRUE(stream_received); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_EQ(stream->GetStreamId(), 1u); EXPECT_EQ(stream->visitor(), nullptr); EXPECT_EQ(stream->ReadableBytes(), 4u); quiche::ReadStream::PeekResult peek = stream->PeekNextReadableRegion(); EXPECT_EQ(peek.peeked_data, "test"); EXPECT_FALSE(peek.fin_next); EXPECT_FALSE(peek.all_data_received); std::string buffer; quiche::ReadStream::ReadResult read = stream->Read(&buffer); EXPECT_EQ(read.bytes_read, 4); EXPECT_FALSE(read.fin); EXPECT_EQ(buffer, "test"); EXPECT_EQ(stream->ReadableBytes(), 0u); } class MockStreamVisitorWithDestructor : public MockStreamVisitor { public: ~MockStreamVisitorWithDestructor() { OnDelete(); } MOCK_METHOD(void, OnDelete, (), ()); }; MockStreamVisitorWithDestructor* SetupVisitor(Stream& stream) { auto visitor = std::make_unique<MockStreamVisitorWithDestructor>(); MockStreamVisitorWithDestructor* result = visitor.get(); stream.SetVisitor(std::move(visitor)); return result; } TEST_F(EncapsulatedWebTransportTest, ImmediateRead) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()); ProcessIncomingCapsule( quiche::WebTransportStreamDataCapsule{1, "abcd", false}); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_EQ(stream->ReadableBytes(), 4u); MockStreamVisitor* visitor = SetupVisitor(*stream); EXPECT_CALL(*visitor, OnCanRead()).WillOnce([&] { std::string output; (void)stream->Read(&output); EXPECT_EQ(output, "abcdef"); }); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{1, "ef", false}); } TEST_F(EncapsulatedWebTransportTest, FinPeek) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()); ProcessIncomingCapsule( quiche::WebTransportStreamDataCapsule{1, "abcd", false}); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_EQ(stream->ReadableBytes(), 4u); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{1, "ef", true}); quiche::ReadStream::PeekResult peek = stream->PeekNextReadableRegion(); EXPECT_EQ(peek.peeked_data, "abcd"); EXPECT_FALSE(peek.fin_next); EXPECT_TRUE(peek.all_data_received); EXPECT_FALSE(stream->SkipBytes(2)); peek = stream->PeekNextReadableRegion(); EXPECT_FALSE(peek.fin_next); EXPECT_TRUE(peek.all_data_received); EXPECT_FALSE(stream->SkipBytes(2)); peek = stream->PeekNextReadableRegion(); EXPECT_EQ(peek.peeked_data, "ef"); EXPECT_TRUE(peek.fin_next); EXPECT_TRUE(peek.all_data_received); EXPECT_TRUE(stream->SkipBytes(2)); } TEST_F(EncapsulatedWebTransportTest, FinRead) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()); ProcessIncomingCapsule( quiche::WebTransportStreamDataCapsule{1, "abcdef", true}); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_EQ(stream->ReadableBytes(), 6u); std::array<char, 3> buffer; quiche::ReadStream::ReadResult read = stream->Read(absl::MakeSpan(buffer)); EXPECT_THAT(buffer, ElementsAre('a', 'b', 'c')); EXPECT_EQ(read.bytes_read, 3); EXPECT_FALSE(read.fin); read = stream->Read(absl::MakeSpan(buffer)); EXPECT_THAT(buffer, ElementsAre('d', 'e', 'f')); EXPECT_EQ(read.bytes_read, 3); EXPECT_TRUE(read.fin); } TEST_F(EncapsulatedWebTransportTest, LargeRead) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{ 1, std::string(64 * 1024, 'a'), true}); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_EQ(stream->ReadableBytes(), 65536u); for (int i = 0; i < 64; i++) { std::array<char, 1024> buffer; quiche::ReadStream::ReadResult read = stream->Read(absl::MakeSpan(buffer)); EXPECT_EQ(read.bytes_read, 1024); EXPECT_EQ(read.fin, i == 63); } } TEST_F(EncapsulatedWebTransportTest, DoubleFinReceived) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{1, "abc", true}); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_CALL(fatal_error_callback_, Call(_)) .WillOnce([](absl::string_view error) { EXPECT_THAT(error, HasSubstr("has already received a FIN")); }); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{1, "def", true}); } TEST_F(EncapsulatedWebTransportTest, CanWriteUnidiBidi) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()); EXPECT_CALL(*visitor_, OnIncomingUnidirectionalStreamAvailable()); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{1, "abc", true}); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{3, "abc", true}); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_TRUE(stream->CanWrite()); stream = session->AcceptIncomingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_FALSE(stream->CanWrite()); stream = session->OpenOutgoingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_TRUE(stream->CanWrite()); stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_TRUE(stream->CanWrite()); } TEST_F(EncapsulatedWebTransportTest, ReadOnlyGarbageCollection) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingUnidirectionalStreamAvailable()); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{3, "abc", true}); Stream* stream = session->AcceptIncomingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_TRUE(stream->SkipBytes(3)); MockStreamVisitorWithDestructor* visitor = SetupVisitor(*stream); bool deleted = false; EXPECT_CALL(*visitor, OnDelete()).WillOnce([&] { deleted = true; }); session->GarbageCollectStreams(); EXPECT_TRUE(deleted); } TEST_F(EncapsulatedWebTransportTest, WriteOnlyGarbageCollection) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); MockStreamVisitorWithDestructor* visitor = SetupVisitor(*stream); bool deleted = false; EXPECT_CALL(*visitor, OnDelete()).WillOnce([&] { deleted = true; }); EXPECT_CALL(*this, OnCapsule(_)).WillOnce(Return(true)); quiche::StreamWriteOptions options; options.set_send_fin(true); EXPECT_THAT(stream->Writev(absl::Span<const absl::string_view>(), options), StatusIs(absl::StatusCode::kOk)); session->GarbageCollectStreams(); EXPECT_TRUE(deleted); } TEST_F(EncapsulatedWebTransportTest, SimpleWrite) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingBidirectionalStreamAvailable()); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{1, "", true}); Stream* stream = session->AcceptIncomingBidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_STREAM); EXPECT_EQ(capsule.web_transport_stream_data().stream_id, 1u); EXPECT_EQ(capsule.web_transport_stream_data().fin, false); EXPECT_EQ(capsule.web_transport_stream_data().data, "test"); return true; }); absl::Status status = quiche::WriteIntoStream(*stream, "test"); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); } TEST_F(EncapsulatedWebTransportTest, WriteWithFin) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_STREAM_WITH_FIN); EXPECT_EQ(capsule.web_transport_stream_data().stream_id, 2u); EXPECT_EQ(capsule.web_transport_stream_data().fin, true); EXPECT_EQ(capsule.web_transport_stream_data().data, "test"); return true; }); quiche::StreamWriteOptions options; options.set_send_fin(true); EXPECT_TRUE(stream->CanWrite()); absl::Status status = quiche::WriteIntoStream(*stream, "test", options); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); EXPECT_FALSE(stream->CanWrite()); } TEST_F(EncapsulatedWebTransportTest, FinOnlyWrite) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_STREAM_WITH_FIN); EXPECT_EQ(capsule.web_transport_stream_data().stream_id, 2u); EXPECT_EQ(capsule.web_transport_stream_data().fin, true); EXPECT_EQ(capsule.web_transport_stream_data().data, ""); return true; }); quiche::StreamWriteOptions options; options.set_send_fin(true); EXPECT_TRUE(stream->CanWrite()); absl::Status status = stream->Writev(absl::Span<const absl::string_view>(), options); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); EXPECT_FALSE(stream->CanWrite()); } TEST_F(EncapsulatedWebTransportTest, BufferedWriteThenUnbuffer) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_CALL(writer_, CanWrite()).WillOnce(Return(false)); absl::Status status = quiche::WriteIntoStream(*stream, "abc"); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); EXPECT_TRUE(stream->CanWrite()); EXPECT_CALL(writer_, CanWrite()).WillRepeatedly(Return(true)); status = quiche::WriteIntoStream(*stream, "def"); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_STREAM); EXPECT_EQ(capsule.web_transport_stream_data().stream_id, 2u); EXPECT_EQ(capsule.web_transport_stream_data().data, "abcdef"); return true; }); session_->OnCanWrite(); } TEST_F(EncapsulatedWebTransportTest, BufferedWriteThenFlush) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); EXPECT_CALL(writer_, CanWrite()).Times(2).WillRepeatedly(Return(false)); absl::Status status = quiche::WriteIntoStream(*stream, "abc"); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); status = quiche::WriteIntoStream(*stream, "def"); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); EXPECT_CALL(writer_, CanWrite()).WillRepeatedly(Return(true)); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_STREAM); EXPECT_EQ(capsule.web_transport_stream_data().stream_id, 2u); EXPECT_EQ(capsule.web_transport_stream_data().data, "abcdef"); return true; }); session_->OnCanWrite(); } TEST_F(EncapsulatedWebTransportTest, BufferedStreamBlocksAnother) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream1 = session->OpenOutgoingUnidirectionalStream(); Stream* stream2 = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream1 != nullptr); ASSERT_TRUE(stream2 != nullptr); EXPECT_CALL(*this, OnCapsule(_)).Times(0); EXPECT_CALL(writer_, CanWrite()).WillOnce(Return(false)); absl::Status status = quiche::WriteIntoStream(*stream1, "abc"); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); EXPECT_CALL(writer_, CanWrite()).WillRepeatedly(Return(true)); status = quiche::WriteIntoStream(*stream2, "abc"); EXPECT_THAT(status, StatusIs(absl::StatusCode::kOk)); std::vector<StreamId> writes; EXPECT_CALL(*this, OnCapsule(_)).WillRepeatedly([&](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_STREAM); writes.push_back(capsule.web_transport_stream_data().stream_id); return true; }); session_->OnCanWrite(); EXPECT_THAT(writes, ElementsAre(2, 6)); } TEST_F(EncapsulatedWebTransportTest, SendReset) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); MockStreamVisitorWithDestructor* visitor = SetupVisitor(*stream); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([&](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_RESET_STREAM); EXPECT_EQ(capsule.web_transport_reset_stream().stream_id, 2u); EXPECT_EQ(capsule.web_transport_reset_stream().error_code, 1234u); return true; }); stream->ResetWithUserCode(1234u); bool deleted = false; EXPECT_CALL(*visitor, OnDelete()).WillOnce([&] { deleted = true; }); session->GarbageCollectStreams(); EXPECT_TRUE(deleted); } TEST_F(EncapsulatedWebTransportTest, ReceiveReset) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingUnidirectionalStreamAvailable()); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{3, "", true}); Stream* stream = session->AcceptIncomingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); MockStreamVisitorWithDestructor* visitor = SetupVisitor(*stream); EXPECT_CALL(*visitor, OnResetStreamReceived(1234u)); EXPECT_TRUE(session->GetStreamById(3) != nullptr); ProcessIncomingCapsule(quiche::WebTransportResetStreamCapsule{3u, 1234u}); EXPECT_TRUE(session->GetStreamById(3) == nullptr); } TEST_F(EncapsulatedWebTransportTest, SendStopSending) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); EXPECT_CALL(*visitor_, OnIncomingUnidirectionalStreamAvailable()); ProcessIncomingCapsule(quiche::WebTransportStreamDataCapsule{3, "", true}); Stream* stream = session->AcceptIncomingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); MockStreamVisitorWithDestructor* visitor = SetupVisitor(*stream); EXPECT_CALL(*this, OnCapsule(_)).WillOnce([&](const Capsule& capsule) { EXPECT_EQ(capsule.capsule_type(), CapsuleType::WT_STOP_SENDING); EXPECT_EQ(capsule.web_transport_stop_sending().stream_id, 3u); EXPECT_EQ(capsule.web_transport_stop_sending().error_code, 1234u); return true; }); stream->SendStopSending(1234u); bool deleted = false; EXPECT_CALL(*visitor, OnDelete()).WillOnce([&] { deleted = true; }); session->GarbageCollectStreams(); EXPECT_TRUE(deleted); } TEST_F(EncapsulatedWebTransportTest, ReceiveStopSending) { std::unique_ptr<EncapsulatedSession> session = CreateTransport(Perspective::kClient); DefaultHandshakeForClient(*session); Stream* stream = session->OpenOutgoingUnidirectionalStream(); ASSERT_TRUE(stream != nullptr); MockStreamVisitorWithDestructor* visitor = SetupVisitor(*stream); EXPECT_CALL(*visitor, OnStopSendingReceived(1234u)); EXPECT_TRUE(session->GetStreamById(2) != nullptr); ProcessIncomingCapsule(quiche::WebTransportStopSendingCapsule{2u, 1234u}); EXPECT_TRUE(session->GetStreamById(2) == nullptr); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/web_transport/encapsulated/encapsulated_web_transport.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/web_transport/encapsulated/encapsulated_web_transport_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
518e59a4-3440-4e8e-8be3-93932fb4ac2c
cpp
google/quiche
hpack_block_builder
quiche/http2/test_tools/hpack_block_builder.cc
quiche/http2/test_tools/hpack_block_builder_test.cc
#include "quiche/http2/test_tools/hpack_block_builder.h" #include "quiche/http2/hpack/varint/hpack_varint_encoder.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { void HpackBlockBuilder::AppendHighBitsAndVarint(uint8_t high_bits, uint8_t prefix_length, uint64_t varint) { EXPECT_LE(3, prefix_length); EXPECT_LE(prefix_length, 8); HpackVarintEncoder::Encode(high_bits, prefix_length, varint, &buffer_); } void HpackBlockBuilder::AppendEntryTypeAndVarint(HpackEntryType entry_type, uint64_t varint) { uint8_t high_bits; uint8_t prefix_length; switch (entry_type) { case HpackEntryType::kIndexedHeader: high_bits = 0x80; prefix_length = 7; break; case HpackEntryType::kDynamicTableSizeUpdate: high_bits = 0x20; prefix_length = 5; break; case HpackEntryType::kIndexedLiteralHeader: high_bits = 0x40; prefix_length = 6; break; case HpackEntryType::kUnindexedLiteralHeader: high_bits = 0x00; prefix_length = 4; break; case HpackEntryType::kNeverIndexedLiteralHeader: high_bits = 0x10; prefix_length = 4; break; default: QUICHE_BUG(http2_bug_110_1) << "Unreached, entry_type=" << entry_type; high_bits = 0; prefix_length = 0; break; } AppendHighBitsAndVarint(high_bits, prefix_length, varint); } void HpackBlockBuilder::AppendString(bool is_huffman_encoded, absl::string_view str) { uint8_t high_bits = is_huffman_encoded ? 0x80 : 0; uint8_t prefix_length = 7; AppendHighBitsAndVarint(high_bits, prefix_length, str.size()); buffer_.append(str.data(), str.size()); } } }
#include "quiche/http2/test_tools/hpack_block_builder.h" #include <string> #include "absl/strings/escaping.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { const bool kUncompressed = false; const bool kCompressed = true; const uint32_t kStaticTableMethodGET = 2; const uint32_t kStaticTablePathSlash = 4; const uint32_t kStaticTableSchemeHttp = 6; TEST(HpackBlockBuilderTest, ExamplesFromSpecC2) { { HpackBlockBuilder b; b.AppendLiteralNameAndValue(HpackEntryType::kIndexedLiteralHeader, kUncompressed, "custom-key", kUncompressed, "custom-header"); EXPECT_EQ(26u, b.size()); const char kExpected[] = "\x40" "\x0a" "custom-key" "\x0d" "custom-header"; EXPECT_EQ(kExpected, b.buffer()); } { HpackBlockBuilder b; b.AppendNameIndexAndLiteralValue(HpackEntryType::kUnindexedLiteralHeader, 4, kUncompressed, "/sample/path"); EXPECT_EQ(14u, b.size()); const char kExpected[] = "\x04" "\x0c" "/sample/path"; EXPECT_EQ(kExpected, b.buffer()); } { HpackBlockBuilder b; b.AppendLiteralNameAndValue(HpackEntryType::kNeverIndexedLiteralHeader, kUncompressed, "password", kUncompressed, "secret"); EXPECT_EQ(17u, b.size()); const char kExpected[] = "\x10" "\x08" "password" "\x06" "secret"; EXPECT_EQ(kExpected, b.buffer()); } { HpackBlockBuilder b; b.AppendIndexedHeader(2); EXPECT_EQ(1u, b.size()); const char kExpected[] = "\x82"; EXPECT_EQ(kExpected, b.buffer()); } } TEST(HpackBlockBuilderTest, ExamplesFromSpecC3) { { HpackBlockBuilder b; b.AppendIndexedHeader(2); b.AppendIndexedHeader(6); b.AppendIndexedHeader(4); b.AppendNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 1, kUncompressed, "www.example.com"); EXPECT_EQ(20u, b.size()); std::string expected; ASSERT_TRUE(absl::HexStringToBytes( "828684410f7777772e6578616d706c652e636f6d", &expected)); EXPECT_EQ(expected, b.buffer()); } } TEST(HpackBlockBuilderTest, ExamplesFromSpecC4) { { HpackBlockBuilder b; b.AppendIndexedHeader(kStaticTableMethodGET); b.AppendIndexedHeader(kStaticTableSchemeHttp); b.AppendIndexedHeader(kStaticTablePathSlash); const char kHuffmanWwwExampleCom[] = {'\xf1', '\xe3', '\xc2', '\xe5', '\xf2', '\x3a', '\x6b', '\xa0', '\xab', '\x90', '\xf4', '\xff'}; b.AppendNameIndexAndLiteralValue( HpackEntryType::kIndexedLiteralHeader, 1, kCompressed, absl::string_view(kHuffmanWwwExampleCom, sizeof kHuffmanWwwExampleCom)); EXPECT_EQ(17u, b.size()); std::string expected; ASSERT_TRUE(absl::HexStringToBytes("828684418cf1e3c2e5f23a6ba0ab90f4ff", &expected)); EXPECT_EQ(expected, b.buffer()); } } TEST(HpackBlockBuilderTest, DynamicTableSizeUpdate) { { HpackBlockBuilder b; b.AppendDynamicTableSizeUpdate(0); EXPECT_EQ(1u, b.size()); const char kData[] = {'\x20'}; absl::string_view expected(kData, sizeof kData); EXPECT_EQ(expected, b.buffer()); } { HpackBlockBuilder b; b.AppendDynamicTableSizeUpdate(4096); EXPECT_EQ(3u, b.size()); const char kData[] = {'\x3f', '\xe1', '\x1f'}; absl::string_view expected(kData, sizeof kData); EXPECT_EQ(expected, b.buffer()); } { HpackBlockBuilder b; b.AppendDynamicTableSizeUpdate(1000000000000); EXPECT_EQ(7u, b.size()); const char kData[] = {'\x3f', '\xe1', '\x9f', '\x94', '\xa5', '\x8d', '\x1d'}; absl::string_view expected(kData, sizeof kData); EXPECT_EQ(expected, b.buffer()); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/test_tools/hpack_block_builder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/test_tools/hpack_block_builder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
61d551f4-8228-487d-8b81-1ef3db72f442
cpp
google/quiche
quic_stream_id_manager
quiche/quic/core/quic_stream_id_manager.cc
quiche/quic/core/quic_stream_id_manager_test.cc
#include "quiche/quic/core/quic_stream_id_manager.h" #include <algorithm> #include <cstdint> #include <string> #include "absl/strings/str_cat.h" #include "quiche/quic/core/quic_connection.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { #define ENDPOINT \ (perspective_ == Perspective::IS_SERVER ? " Server: " : " Client: ") QuicStreamIdManager::QuicStreamIdManager( DelegateInterface* delegate, bool unidirectional, Perspective perspective, ParsedQuicVersion version, QuicStreamCount max_allowed_outgoing_streams, QuicStreamCount max_allowed_incoming_streams) : delegate_(delegate), unidirectional_(unidirectional), perspective_(perspective), version_(version), outgoing_max_streams_(max_allowed_outgoing_streams), next_outgoing_stream_id_(GetFirstOutgoingStreamId()), outgoing_stream_count_(0), incoming_actual_max_streams_(max_allowed_incoming_streams), incoming_advertised_max_streams_(max_allowed_incoming_streams), incoming_initial_max_open_streams_(max_allowed_incoming_streams), incoming_stream_count_(0), largest_peer_created_stream_id_( QuicUtils::GetInvalidStreamId(version.transport_version)), stop_increasing_incoming_max_streams_(false) {} QuicStreamIdManager::~QuicStreamIdManager() {} bool QuicStreamIdManager::OnStreamsBlockedFrame( const QuicStreamsBlockedFrame& frame, std::string* error_details) { QUICHE_DCHECK_EQ(frame.unidirectional, unidirectional_); if (frame.stream_count > incoming_advertised_max_streams_) { *error_details = absl::StrCat( "StreamsBlockedFrame's stream count ", frame.stream_count, " exceeds incoming max stream ", incoming_advertised_max_streams_); return false; } QUICHE_DCHECK_LE(incoming_advertised_max_streams_, incoming_actual_max_streams_); if (incoming_advertised_max_streams_ == incoming_actual_max_streams_) { return true; } if (frame.stream_count < incoming_actual_max_streams_ && delegate_->CanSendMaxStreams()) { SendMaxStreamsFrame(); } return true; } bool QuicStreamIdManager::MaybeAllowNewOutgoingStreams( QuicStreamCount max_open_streams) { if (max_open_streams <= outgoing_max_streams_) { return false; } outgoing_max_streams_ = std::min(max_open_streams, QuicUtils::GetMaxStreamCount()); return true; } void QuicStreamIdManager::SetMaxOpenIncomingStreams( QuicStreamCount max_open_streams) { QUIC_BUG_IF(quic_bug_12413_1, incoming_stream_count_ > 0) << "non-zero incoming stream count " << incoming_stream_count_ << " when setting max incoming stream to " << max_open_streams; QUIC_DLOG_IF(WARNING, incoming_initial_max_open_streams_ != max_open_streams) << absl::StrCat(unidirectional_ ? "unidirectional " : "bidirectional: ", "incoming stream limit changed from ", incoming_initial_max_open_streams_, " to ", max_open_streams); incoming_actual_max_streams_ = max_open_streams; incoming_advertised_max_streams_ = max_open_streams; incoming_initial_max_open_streams_ = max_open_streams; } void QuicStreamIdManager::MaybeSendMaxStreamsFrame() { int divisor = GetQuicFlag(quic_max_streams_window_divisor); if (divisor > 0) { if ((incoming_advertised_max_streams_ - incoming_stream_count_) > (incoming_initial_max_open_streams_ / divisor)) { return; } } if (delegate_->CanSendMaxStreams() && incoming_advertised_max_streams_ < incoming_actual_max_streams_) { SendMaxStreamsFrame(); } } void QuicStreamIdManager::SendMaxStreamsFrame() { QUIC_BUG_IF(quic_bug_12413_2, incoming_advertised_max_streams_ >= incoming_actual_max_streams_); incoming_advertised_max_streams_ = incoming_actual_max_streams_; delegate_->SendMaxStreams(incoming_advertised_max_streams_, unidirectional_); } void QuicStreamIdManager::OnStreamClosed(QuicStreamId stream_id) { QUICHE_DCHECK_NE(QuicUtils::IsBidirectionalStreamId(stream_id, version_), unidirectional_); if (QuicUtils::IsOutgoingStreamId(version_, stream_id, perspective_)) { return; } if (incoming_actual_max_streams_ == QuicUtils::GetMaxStreamCount()) { return; } if (!stop_increasing_incoming_max_streams_) { incoming_actual_max_streams_++; MaybeSendMaxStreamsFrame(); } } QuicStreamId QuicStreamIdManager::GetNextOutgoingStreamId() { QUIC_BUG_IF(quic_bug_12413_3, outgoing_stream_count_ >= outgoing_max_streams_) << "Attempt to allocate a new outgoing stream that would exceed the " "limit (" << outgoing_max_streams_ << ")"; QuicStreamId id = next_outgoing_stream_id_; next_outgoing_stream_id_ += QuicUtils::StreamIdDelta(version_.transport_version); outgoing_stream_count_++; return id; } bool QuicStreamIdManager::CanOpenNextOutgoingStream() const { QUICHE_DCHECK(VersionHasIetfQuicFrames(version_.transport_version)); return outgoing_stream_count_ < outgoing_max_streams_; } bool QuicStreamIdManager::MaybeIncreaseLargestPeerStreamId( const QuicStreamId stream_id, std::string* error_details) { QUICHE_DCHECK_NE(QuicUtils::IsBidirectionalStreamId(stream_id, version_), unidirectional_); QUICHE_DCHECK_NE(QuicUtils::IsServerInitiatedStreamId( version_.transport_version, stream_id), perspective_ == Perspective::IS_SERVER); if (available_streams_.erase(stream_id) == 1) { return true; } if (largest_peer_created_stream_id_ != QuicUtils::GetInvalidStreamId(version_.transport_version)) { QUICHE_DCHECK_GT(stream_id, largest_peer_created_stream_id_); } const QuicStreamCount delta = QuicUtils::StreamIdDelta(version_.transport_version); const QuicStreamId least_new_stream_id = largest_peer_created_stream_id_ == QuicUtils::GetInvalidStreamId(version_.transport_version) ? GetFirstIncomingStreamId() : largest_peer_created_stream_id_ + delta; const QuicStreamCount stream_count_increment = (stream_id - least_new_stream_id) / delta + 1; if (incoming_stream_count_ + stream_count_increment > incoming_advertised_max_streams_) { QUIC_DLOG(INFO) << ENDPOINT << "Failed to create a new incoming stream with id:" << stream_id << ", reaching MAX_STREAMS limit: " << incoming_advertised_max_streams_ << "."; *error_details = absl::StrCat("Stream id ", stream_id, " would exceed stream count limit ", incoming_advertised_max_streams_); return false; } for (QuicStreamId id = least_new_stream_id; id < stream_id; id += delta) { available_streams_.insert(id); } incoming_stream_count_ += stream_count_increment; largest_peer_created_stream_id_ = stream_id; return true; } bool QuicStreamIdManager::IsAvailableStream(QuicStreamId id) const { QUICHE_DCHECK_NE(QuicUtils::IsBidirectionalStreamId(id, version_), unidirectional_); if (QuicUtils::IsOutgoingStreamId(version_, id, perspective_)) { return id >= next_outgoing_stream_id_; } return largest_peer_created_stream_id_ == QuicUtils::GetInvalidStreamId(version_.transport_version) || id > largest_peer_created_stream_id_ || available_streams_.contains(id); } QuicStreamId QuicStreamIdManager::GetFirstOutgoingStreamId() const { return (unidirectional_) ? QuicUtils::GetFirstUnidirectionalStreamId( version_.transport_version, perspective_) : QuicUtils::GetFirstBidirectionalStreamId( version_.transport_version, perspective_); } QuicStreamId QuicStreamIdManager::GetFirstIncomingStreamId() const { return (unidirectional_) ? QuicUtils::GetFirstUnidirectionalStreamId( version_.transport_version, QuicUtils::InvertPerspective(perspective_)) : QuicUtils::GetFirstBidirectionalStreamId( version_.transport_version, QuicUtils::InvertPerspective(perspective_)); } QuicStreamCount QuicStreamIdManager::available_incoming_streams() const { return incoming_advertised_max_streams_ - incoming_stream_count_; } }
#include "quiche/quic/core/quic_stream_id_manager.h" #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_stream_id_manager_peer.h" using testing::_; using testing::StrictMock; namespace quic { namespace test { namespace { class MockDelegate : public QuicStreamIdManager::DelegateInterface { public: MOCK_METHOD(void, SendMaxStreams, (QuicStreamCount stream_count, bool unidirectional), (override)); MOCK_METHOD(bool, CanSendMaxStreams, (), (override)); }; struct TestParams { TestParams(ParsedQuicVersion version, Perspective perspective, bool is_unidirectional) : version(version), perspective(perspective), is_unidirectional(is_unidirectional) {} ParsedQuicVersion version; Perspective perspective; bool is_unidirectional; }; std::string PrintToString(const TestParams& p) { return absl::StrCat( ParsedQuicVersionToString(p.version), "_", (p.perspective == Perspective::IS_CLIENT ? "Client" : "Server"), (p.is_unidirectional ? "Unidirectional" : "Bidirectional")); } std::vector<TestParams> GetTestParams() { std::vector<TestParams> params; for (const ParsedQuicVersion& version : AllSupportedVersions()) { if (!version.HasIetfQuicFrames()) { continue; } for (Perspective perspective : {Perspective::IS_CLIENT, Perspective::IS_SERVER}) { for (bool is_unidirectional : {true, false}) { params.push_back(TestParams(version, perspective, is_unidirectional)); } } } return params; } class QuicStreamIdManagerTest : public QuicTestWithParam<TestParams> { protected: QuicStreamIdManagerTest() : stream_id_manager_(&delegate_, IsUnidirectional(), perspective(), GetParam().version, 0, kDefaultMaxStreamsPerConnection) { QUICHE_DCHECK(VersionHasIetfQuicFrames(transport_version())); } QuicTransportVersion transport_version() const { return GetParam().version.transport_version; } QuicStreamId GetNthIncomingStreamId(int n) { return QuicUtils::StreamIdDelta(transport_version()) * n + (IsUnidirectional() ? QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), QuicUtils::InvertPerspective(perspective())) : QuicUtils::GetFirstBidirectionalStreamId( transport_version(), QuicUtils::InvertPerspective(perspective()))); } bool IsUnidirectional() { return GetParam().is_unidirectional; } Perspective perspective() { return GetParam().perspective; } StrictMock<MockDelegate> delegate_; QuicStreamIdManager stream_id_manager_; }; INSTANTIATE_TEST_SUITE_P(Tests, QuicStreamIdManagerTest, ::testing::ValuesIn(GetTestParams()), ::testing::PrintToStringParamName()); TEST_P(QuicStreamIdManagerTest, Initialization) { EXPECT_EQ(0u, stream_id_manager_.outgoing_max_streams()); EXPECT_EQ(kDefaultMaxStreamsPerConnection, stream_id_manager_.incoming_actual_max_streams()); EXPECT_EQ(kDefaultMaxStreamsPerConnection, stream_id_manager_.incoming_advertised_max_streams()); EXPECT_EQ(kDefaultMaxStreamsPerConnection, stream_id_manager_.incoming_initial_max_open_streams()); } TEST_P(QuicStreamIdManagerTest, CheckMaxStreamsWindowForSingleStream) { stream_id_manager_.SetMaxOpenIncomingStreams(1); EXPECT_EQ(1u, stream_id_manager_.incoming_initial_max_open_streams()); EXPECT_EQ(1u, stream_id_manager_.incoming_actual_max_streams()); } TEST_P(QuicStreamIdManagerTest, CheckMaxStreamsBadValuesOverMaxFailsOutgoing) { QuicStreamCount implementation_max = QuicUtils::GetMaxStreamCount(); EXPECT_LT(stream_id_manager_.outgoing_max_streams(), implementation_max); EXPECT_TRUE( stream_id_manager_.MaybeAllowNewOutgoingStreams(implementation_max + 1)); EXPECT_EQ(implementation_max, stream_id_manager_.outgoing_max_streams()); } TEST_P(QuicStreamIdManagerTest, ProcessStreamsBlockedOk) { QuicStreamCount stream_count = stream_id_manager_.incoming_initial_max_open_streams(); QuicStreamsBlockedFrame frame(0, stream_count - 1, IsUnidirectional()); EXPECT_CALL(delegate_, SendMaxStreams(stream_count, IsUnidirectional())) .Times(0); std::string error_details; EXPECT_TRUE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); } TEST_P(QuicStreamIdManagerTest, ProcessStreamsBlockedNoOp) { QuicStreamCount stream_count = stream_id_manager_.incoming_initial_max_open_streams(); QuicStreamsBlockedFrame frame(0, stream_count, IsUnidirectional()); EXPECT_CALL(delegate_, SendMaxStreams(_, _)).Times(0); } TEST_P(QuicStreamIdManagerTest, ProcessStreamsBlockedTooBig) { EXPECT_CALL(delegate_, SendMaxStreams(_, _)).Times(0); QuicStreamCount stream_count = stream_id_manager_.incoming_initial_max_open_streams() + 1; QuicStreamsBlockedFrame frame(0, stream_count, IsUnidirectional()); std::string error_details; EXPECT_FALSE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); EXPECT_EQ( error_details, "StreamsBlockedFrame's stream count 101 exceeds incoming max stream 100"); } TEST_P(QuicStreamIdManagerTest, IsIncomingStreamIdValidBelowLimit) { QuicStreamId stream_id = GetNthIncomingStreamId( stream_id_manager_.incoming_actual_max_streams() - 2); EXPECT_TRUE( stream_id_manager_.MaybeIncreaseLargestPeerStreamId(stream_id, nullptr)); } TEST_P(QuicStreamIdManagerTest, IsIncomingStreamIdValidAtLimit) { QuicStreamId stream_id = GetNthIncomingStreamId( stream_id_manager_.incoming_actual_max_streams() - 1); EXPECT_TRUE( stream_id_manager_.MaybeIncreaseLargestPeerStreamId(stream_id, nullptr)); } TEST_P(QuicStreamIdManagerTest, IsIncomingStreamIdInValidAboveLimit) { QuicStreamId stream_id = GetNthIncomingStreamId(stream_id_manager_.incoming_actual_max_streams()); std::string error_details; EXPECT_FALSE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId( stream_id, &error_details)); EXPECT_EQ(error_details, absl::StrCat("Stream id ", stream_id, " would exceed stream count limit 100")); } TEST_P(QuicStreamIdManagerTest, OnStreamsBlockedFrame) { QuicStreamCount advertised_stream_count = stream_id_manager_.incoming_advertised_max_streams(); QuicStreamsBlockedFrame frame; frame.unidirectional = IsUnidirectional(); frame.stream_count = advertised_stream_count; std::string error_details; EXPECT_TRUE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); frame.stream_count = advertised_stream_count + 1; EXPECT_FALSE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); EXPECT_EQ( error_details, "StreamsBlockedFrame's stream count 101 exceeds incoming max stream 100"); QuicStreamCount actual_stream_count = stream_id_manager_.incoming_actual_max_streams(); stream_id_manager_.OnStreamClosed( QuicStreamIdManagerPeer::GetFirstIncomingStreamId(&stream_id_manager_)); EXPECT_EQ(actual_stream_count + 1u, stream_id_manager_.incoming_actual_max_streams()); EXPECT_EQ(stream_id_manager_.incoming_actual_max_streams(), stream_id_manager_.incoming_advertised_max_streams() + 1u); frame.stream_count = advertised_stream_count; EXPECT_CALL(delegate_, CanSendMaxStreams()).WillOnce(testing::Return(true)); EXPECT_CALL(delegate_, SendMaxStreams(stream_id_manager_.incoming_actual_max_streams(), IsUnidirectional())); EXPECT_TRUE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); EXPECT_EQ(stream_id_manager_.incoming_actual_max_streams(), stream_id_manager_.incoming_advertised_max_streams()); } TEST_P(QuicStreamIdManagerTest, OnStreamsBlockedFrameCantSend) { QuicStreamCount advertised_stream_count = stream_id_manager_.incoming_advertised_max_streams(); QuicStreamsBlockedFrame frame; frame.unidirectional = IsUnidirectional(); QuicStreamCount actual_stream_count = stream_id_manager_.incoming_actual_max_streams(); stream_id_manager_.OnStreamClosed( QuicStreamIdManagerPeer::GetFirstIncomingStreamId(&stream_id_manager_)); EXPECT_EQ(actual_stream_count + 1u, stream_id_manager_.incoming_actual_max_streams()); EXPECT_EQ(stream_id_manager_.incoming_actual_max_streams(), stream_id_manager_.incoming_advertised_max_streams() + 1u); frame.stream_count = advertised_stream_count; EXPECT_CALL(delegate_, CanSendMaxStreams()).WillOnce(testing::Return(false)); EXPECT_CALL(delegate_, SendMaxStreams(_, _)).Times(0); const QuicStreamCount advertised_max_streams = stream_id_manager_.incoming_advertised_max_streams(); std::string error_details; EXPECT_TRUE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); EXPECT_EQ(advertised_max_streams, stream_id_manager_.incoming_advertised_max_streams()); } TEST_P(QuicStreamIdManagerTest, GetNextOutgoingStream) { size_t number_of_streams = kDefaultMaxStreamsPerConnection; EXPECT_TRUE( stream_id_manager_.MaybeAllowNewOutgoingStreams(number_of_streams)); QuicStreamId stream_id = IsUnidirectional() ? QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), perspective()) : QuicUtils::GetFirstBidirectionalStreamId( transport_version(), perspective()); EXPECT_EQ(number_of_streams, stream_id_manager_.outgoing_max_streams()); while (number_of_streams) { EXPECT_TRUE(stream_id_manager_.CanOpenNextOutgoingStream()); EXPECT_EQ(stream_id, stream_id_manager_.GetNextOutgoingStreamId()); stream_id += QuicUtils::StreamIdDelta(transport_version()); number_of_streams--; } EXPECT_FALSE(stream_id_manager_.CanOpenNextOutgoingStream()); EXPECT_QUIC_BUG( stream_id_manager_.GetNextOutgoingStreamId(), "Attempt to allocate a new outgoing stream that would exceed the limit"); } TEST_P(QuicStreamIdManagerTest, MaybeIncreaseLargestPeerStreamId) { QuicStreamId max_stream_id = GetNthIncomingStreamId( stream_id_manager_.incoming_actual_max_streams() - 1); EXPECT_TRUE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId(max_stream_id, nullptr)); QuicStreamId first_stream_id = GetNthIncomingStreamId(0); EXPECT_TRUE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId( first_stream_id, nullptr)); std::string error_details; EXPECT_FALSE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId( max_stream_id + QuicUtils::StreamIdDelta(transport_version()), &error_details)); EXPECT_EQ(error_details, absl::StrCat( "Stream id ", max_stream_id + QuicUtils::StreamIdDelta(transport_version()), " would exceed stream count limit 100")); } TEST_P(QuicStreamIdManagerTest, MaxStreamsWindow) { int stream_count = stream_id_manager_.incoming_initial_max_open_streams() / GetQuicFlag(quic_max_streams_window_divisor) - 1; EXPECT_CALL(delegate_, CanSendMaxStreams()).Times(0); EXPECT_CALL(delegate_, SendMaxStreams(_, _)).Times(0); QuicStreamId stream_id = GetNthIncomingStreamId(0); size_t old_available_incoming_streams = stream_id_manager_.available_incoming_streams(); auto i = stream_count; while (i) { EXPECT_TRUE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId(stream_id, nullptr)); old_available_incoming_streams--; EXPECT_EQ(old_available_incoming_streams, stream_id_manager_.available_incoming_streams()); i--; stream_id += QuicUtils::StreamIdDelta(transport_version()); } stream_id = GetNthIncomingStreamId(0); QuicStreamCount expected_actual_max = stream_id_manager_.incoming_actual_max_streams(); QuicStreamCount expected_advertised_max_streams = stream_id_manager_.incoming_advertised_max_streams(); while (stream_count) { stream_id_manager_.OnStreamClosed(stream_id); stream_count--; stream_id += QuicUtils::StreamIdDelta(transport_version()); expected_actual_max++; EXPECT_EQ(expected_actual_max, stream_id_manager_.incoming_actual_max_streams()); EXPECT_EQ(expected_advertised_max_streams, stream_id_manager_.incoming_advertised_max_streams()); } EXPECT_EQ(old_available_incoming_streams, stream_id_manager_.available_incoming_streams()); EXPECT_CALL(delegate_, CanSendMaxStreams()).WillOnce(testing::Return(true)); EXPECT_CALL(delegate_, SendMaxStreams(_, IsUnidirectional())); EXPECT_TRUE( stream_id_manager_.MaybeIncreaseLargestPeerStreamId(stream_id, nullptr)); stream_id_manager_.OnStreamClosed(stream_id); } TEST_P(QuicStreamIdManagerTest, MaxStreamsWindowCantSend) { int stream_count = stream_id_manager_.incoming_initial_max_open_streams() / GetQuicFlag(quic_max_streams_window_divisor) - 1; EXPECT_CALL(delegate_, CanSendMaxStreams()).Times(0); EXPECT_CALL(delegate_, SendMaxStreams(_, _)).Times(0); QuicStreamId stream_id = GetNthIncomingStreamId(0); size_t old_available_incoming_streams = stream_id_manager_.available_incoming_streams(); auto i = stream_count; while (i) { EXPECT_TRUE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId(stream_id, nullptr)); old_available_incoming_streams--; EXPECT_EQ(old_available_incoming_streams, stream_id_manager_.available_incoming_streams()); i--; stream_id += QuicUtils::StreamIdDelta(transport_version()); } stream_id = GetNthIncomingStreamId(0); QuicStreamCount expected_actual_max = stream_id_manager_.incoming_actual_max_streams(); QuicStreamCount expected_advertised_max_streams = stream_id_manager_.incoming_advertised_max_streams(); while (stream_count) { stream_id_manager_.OnStreamClosed(stream_id); stream_count--; stream_id += QuicUtils::StreamIdDelta(transport_version()); expected_actual_max++; EXPECT_EQ(expected_actual_max, stream_id_manager_.incoming_actual_max_streams()); EXPECT_EQ(expected_advertised_max_streams, stream_id_manager_.incoming_advertised_max_streams()); } EXPECT_EQ(old_available_incoming_streams, stream_id_manager_.available_incoming_streams()); EXPECT_CALL(delegate_, CanSendMaxStreams()).WillOnce(testing::Return(false)); EXPECT_CALL(delegate_, SendMaxStreams(_, IsUnidirectional())).Times(0); EXPECT_TRUE( stream_id_manager_.MaybeIncreaseLargestPeerStreamId(stream_id, nullptr)); stream_id_manager_.OnStreamClosed(stream_id); EXPECT_EQ(expected_advertised_max_streams, stream_id_manager_.incoming_advertised_max_streams()); } TEST_P(QuicStreamIdManagerTest, MaxStreamsWindowStopsIncreasing) { QuicStreamId stream_count = stream_id_manager_.incoming_initial_max_open_streams(); QuicStreamId stream_id = GetNthIncomingStreamId(0); for (QuicStreamCount i = 0; i < stream_count; ++i) { EXPECT_TRUE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId(stream_id, nullptr)); stream_id += QuicUtils::StreamIdDelta(transport_version()); } stream_id_manager_.StopIncreasingIncomingMaxStreams(); EXPECT_CALL(delegate_, CanSendMaxStreams()).Times(0); EXPECT_CALL(delegate_, SendMaxStreams(_, _)).Times(0); stream_id = GetNthIncomingStreamId(0); QuicStreamCount expected_actual_max = stream_id_manager_.incoming_actual_max_streams(); QuicStreamCount expected_advertised_max_streams = stream_id_manager_.incoming_advertised_max_streams(); for (QuicStreamCount i = 0; i < stream_count; ++i) { stream_id_manager_.OnStreamClosed(stream_id); stream_id += QuicUtils::StreamIdDelta(transport_version()); EXPECT_EQ(expected_actual_max, stream_id_manager_.incoming_actual_max_streams()); EXPECT_EQ(expected_advertised_max_streams, stream_id_manager_.incoming_advertised_max_streams()); } } TEST_P(QuicStreamIdManagerTest, StreamsBlockedEdgeConditions) { QuicStreamsBlockedFrame frame; frame.unidirectional = IsUnidirectional(); EXPECT_CALL(delegate_, CanSendMaxStreams()).Times(0); EXPECT_CALL(delegate_, SendMaxStreams(_, _)).Times(0); stream_id_manager_.SetMaxOpenIncomingStreams(0); frame.stream_count = 0; std::string error_details; EXPECT_TRUE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); EXPECT_CALL(delegate_, CanSendMaxStreams()).WillOnce(testing::Return(true)); EXPECT_CALL(delegate_, SendMaxStreams(123u, IsUnidirectional())); QuicStreamIdManagerPeer::set_incoming_actual_max_streams(&stream_id_manager_, 123); frame.stream_count = 0; EXPECT_TRUE(stream_id_manager_.OnStreamsBlockedFrame(frame, &error_details)); } TEST_P(QuicStreamIdManagerTest, MaxStreamsSlidingWindow) { QuicStreamCount first_advert = stream_id_manager_.incoming_advertised_max_streams(); int i = static_cast<int>(stream_id_manager_.incoming_initial_max_open_streams() / GetQuicFlag(quic_max_streams_window_divisor)); QuicStreamId id = QuicStreamIdManagerPeer::GetFirstIncomingStreamId(&stream_id_manager_); EXPECT_CALL(delegate_, CanSendMaxStreams()).WillOnce(testing::Return(true)); EXPECT_CALL(delegate_, SendMaxStreams(first_advert + i, IsUnidirectional())); while (i) { EXPECT_TRUE( stream_id_manager_.MaybeIncreaseLargestPeerStreamId(id, nullptr)); stream_id_manager_.OnStreamClosed(id); i--; id += QuicUtils::StreamIdDelta(transport_version()); } } TEST_P(QuicStreamIdManagerTest, NewStreamDoesNotExceedLimit) { EXPECT_TRUE(stream_id_manager_.MaybeAllowNewOutgoingStreams(100)); size_t stream_count = stream_id_manager_.outgoing_max_streams(); EXPECT_NE(0u, stream_count); while (stream_count) { EXPECT_TRUE(stream_id_manager_.CanOpenNextOutgoingStream()); stream_id_manager_.GetNextOutgoingStreamId(); stream_count--; } EXPECT_EQ(stream_id_manager_.outgoing_stream_count(), stream_id_manager_.outgoing_max_streams()); EXPECT_FALSE(stream_id_manager_.CanOpenNextOutgoingStream()); } TEST_P(QuicStreamIdManagerTest, AvailableStreams) { stream_id_manager_.MaybeIncreaseLargestPeerStreamId(GetNthIncomingStreamId(3), nullptr); EXPECT_TRUE(stream_id_manager_.IsAvailableStream(GetNthIncomingStreamId(1))); EXPECT_TRUE(stream_id_manager_.IsAvailableStream(GetNthIncomingStreamId(2))); EXPECT_FALSE(stream_id_manager_.IsAvailableStream(GetNthIncomingStreamId(3))); EXPECT_TRUE(stream_id_manager_.IsAvailableStream(GetNthIncomingStreamId(4))); } TEST_P(QuicStreamIdManagerTest, ExtremeMaybeIncreaseLargestPeerStreamId) { QuicStreamId too_big_stream_id = GetNthIncomingStreamId( stream_id_manager_.incoming_actual_max_streams() + 20); std::string error_details; EXPECT_FALSE(stream_id_manager_.MaybeIncreaseLargestPeerStreamId( too_big_stream_id, &error_details)); EXPECT_EQ(error_details, absl::StrCat("Stream id ", too_big_stream_id, " would exceed stream count limit 100")); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_stream_id_manager.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_stream_id_manager_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
1845ed00-285e-4dc8-82c8-8c2389d5ebe9
cpp
google/quiche
data_payload_decoder
quiche/http2/decoder/payload_decoders/data_payload_decoder.cc
quiche/http2/decoder/payload_decoders/data_payload_decoder_test.cc
#include "quiche/http2/decoder/payload_decoders/data_payload_decoder.h" #include <stddef.h> #include <ostream> #include "absl/base/macros.h" #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/http2_structures.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { std::ostream& operator<<(std::ostream& out, DataPayloadDecoder::PayloadState v) { switch (v) { case DataPayloadDecoder::PayloadState::kReadPadLength: return out << "kReadPadLength"; case DataPayloadDecoder::PayloadState::kReadPayload: return out << "kReadPayload"; case DataPayloadDecoder::PayloadState::kSkipPadding: return out << "kSkipPadding"; } int unknown = static_cast<int>(v); QUICHE_BUG(http2_bug_174_1) << "Invalid DataPayloadDecoder::PayloadState: " << unknown; return out << "DataPayloadDecoder::PayloadState(" << unknown << ")"; } DecodeStatus DataPayloadDecoder::StartDecodingPayload(FrameDecoderState* state, DecodeBuffer* db) { const Http2FrameHeader& frame_header = state->frame_header(); const uint32_t total_length = frame_header.payload_length; QUICHE_DVLOG(2) << "DataPayloadDecoder::StartDecodingPayload: " << frame_header; QUICHE_DCHECK_EQ(Http2FrameType::DATA, frame_header.type); QUICHE_DCHECK_LE(db->Remaining(), total_length); QUICHE_DCHECK_EQ(0, frame_header.flags & ~(Http2FrameFlag::END_STREAM | Http2FrameFlag::PADDED)); QUICHE_DVLOG(2) << "StartDecodingPayload total_length=" << total_length; if (!frame_header.IsPadded()) { QUICHE_DVLOG(2) << "StartDecodingPayload !IsPadded"; if (db->Remaining() == total_length) { QUICHE_DVLOG(2) << "StartDecodingPayload all present"; state->listener()->OnDataStart(frame_header); if (total_length > 0) { state->listener()->OnDataPayload(db->cursor(), total_length); db->AdvanceCursor(total_length); } state->listener()->OnDataEnd(); return DecodeStatus::kDecodeDone; } payload_state_ = PayloadState::kReadPayload; } else { payload_state_ = PayloadState::kReadPadLength; } state->InitializeRemainders(); state->listener()->OnDataStart(frame_header); return ResumeDecodingPayload(state, db); } DecodeStatus DataPayloadDecoder::ResumeDecodingPayload(FrameDecoderState* state, DecodeBuffer* db) { QUICHE_DVLOG(2) << "DataPayloadDecoder::ResumeDecodingPayload payload_state_=" << payload_state_; const Http2FrameHeader& frame_header = state->frame_header(); QUICHE_DCHECK_EQ(Http2FrameType::DATA, frame_header.type); QUICHE_DCHECK_LE(state->remaining_payload_and_padding(), frame_header.payload_length); QUICHE_DCHECK_LE(db->Remaining(), state->remaining_payload_and_padding()); DecodeStatus status; size_t avail; switch (payload_state_) { case PayloadState::kReadPadLength: status = state->ReadPadLength(db, true); if (status != DecodeStatus::kDecodeDone) { return status; } ABSL_FALLTHROUGH_INTENDED; case PayloadState::kReadPayload: avail = state->AvailablePayload(db); if (avail > 0) { state->listener()->OnDataPayload(db->cursor(), avail); db->AdvanceCursor(avail); state->ConsumePayload(avail); } if (state->remaining_payload() > 0) { payload_state_ = PayloadState::kReadPayload; return DecodeStatus::kDecodeInProgress; } ABSL_FALLTHROUGH_INTENDED; case PayloadState::kSkipPadding: if (state->SkipPadding(db)) { state->listener()->OnDataEnd(); return DecodeStatus::kDecodeDone; } payload_state_ = PayloadState::kSkipPadding; return DecodeStatus::kDecodeInProgress; } QUICHE_BUG(http2_bug_174_2) << "PayloadState: " << payload_state_; return DecodeStatus::kDecodeError; } }
#include "quiche/http2/decoder/payload_decoders/data_payload_decoder.h" #include <stddef.h> #include <string> #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/http2_structures.h" #include "quiche/http2/test_tools/frame_parts.h" #include "quiche/http2/test_tools/frame_parts_collector.h" #include "quiche/http2/test_tools/http2_frame_builder.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/http2_structures_test_util.h" #include "quiche/http2/test_tools/payload_decoder_base_test_util.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/common/platform/api/quiche_expect_bug.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { class DataPayloadDecoderPeer { public: static constexpr Http2FrameType FrameType() { return Http2FrameType::DATA; } static constexpr uint8_t FlagsAffectingPayloadDecoding() { return Http2FrameFlag::PADDED; } }; namespace { struct Listener : public FramePartsCollector { void OnDataStart(const Http2FrameHeader& header) override { QUICHE_VLOG(1) << "OnDataStart: " << header; StartFrame(header)->OnDataStart(header); } void OnDataPayload(const char* data, size_t len) override { QUICHE_VLOG(1) << "OnDataPayload: len=" << len; CurrentFrame()->OnDataPayload(data, len); } void OnDataEnd() override { QUICHE_VLOG(1) << "OnDataEnd"; EndFrame()->OnDataEnd(); } void OnPadLength(size_t pad_length) override { QUICHE_VLOG(1) << "OnPadLength: " << pad_length; CurrentFrame()->OnPadLength(pad_length); } void OnPadding(const char* padding, size_t skipped_length) override { QUICHE_VLOG(1) << "OnPadding: " << skipped_length; CurrentFrame()->OnPadding(padding, skipped_length); } void OnPaddingTooLong(const Http2FrameHeader& header, size_t missing_length) override { QUICHE_VLOG(1) << "OnPaddingTooLong: " << header << " missing_length: " << missing_length; EndFrame()->OnPaddingTooLong(header, missing_length); } }; class DataPayloadDecoderTest : public AbstractPaddablePayloadDecoderTest< DataPayloadDecoder, DataPayloadDecoderPeer, Listener> { protected: AssertionResult CreateAndDecodeDataOfSize(size_t data_size) { Reset(); uint8_t flags = RandFlags(); std::string data_payload = Random().RandString(data_size); frame_builder_.Append(data_payload); MaybeAppendTrailingPadding(); Http2FrameHeader frame_header(frame_builder_.size(), Http2FrameType::DATA, flags, RandStreamId()); set_frame_header(frame_header); ScrubFlagsOfHeader(&frame_header); FrameParts expected(frame_header, data_payload, total_pad_length_); return DecodePayloadAndValidateSeveralWays(frame_builder_.buffer(), expected); } }; INSTANTIATE_TEST_SUITE_P(VariousPadLengths, DataPayloadDecoderTest, ::testing::Values(0, 1, 2, 3, 4, 254, 255, 256)); TEST_P(DataPayloadDecoderTest, VariousDataPayloadSizes) { for (size_t data_size : {0, 1, 2, 3, 255, 256, 1024}) { EXPECT_TRUE(CreateAndDecodeDataOfSize(data_size)); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/payload_decoders/data_payload_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/payload_decoders/data_payload_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
307db5e8-a1cf-4674-a56e-967b9a33e171
cpp
tensorflow/tensorflow
benchmark_utils
tensorflow/lite/tools/benchmark/benchmark_utils.cc
tensorflow/lite/tools/benchmark/benchmark_utils_test.cc
#include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include "tensorflow/lite/profiling/time.h" namespace tflite { namespace benchmark { namespace util { void SleepForSeconds(double sleep_seconds) { if (sleep_seconds <= 0.0) { return; } tflite::profiling::time::SleepForMicros( static_cast<uint64_t>(sleep_seconds * 1e6)); } } } }
#include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/profiling/time.h" namespace tflite { namespace benchmark { namespace { TEST(BenchmarkHelpersTest, SleepForNegativeSeconds) { const auto start_ts = tflite::profiling::time::NowMicros(); util::SleepForSeconds(-5.0); const auto end_ts = tflite::profiling::time::NowMicros(); EXPECT_LT(end_ts - start_ts, 1000000); } TEST(BenchmarkHelpersTest, SleepForSomeSeconds) { const auto start_ts = tflite::profiling::time::NowMicros(); util::SleepForSeconds(2.0); const auto end_ts = tflite::profiling::time::NowMicros(); EXPECT_GT(end_ts - start_ts, 1900000); } TEST(BenchmarkHelpersTest, SplitAndParseFailed) { std::vector<int> results; const bool splitted = util::SplitAndParse("hello;world", ';', &results); EXPECT_FALSE(splitted); } TEST(BenchmarkHelpersTest, SplitAndParseString) { std::vector<std::string> results; const bool splitted = util::SplitAndParse("hello,world", ',', &results); EXPECT_TRUE(splitted); EXPECT_EQ(2, results.size()); EXPECT_EQ("hello", results[0]); EXPECT_EQ("world", results[1]); } TEST(BenchmarkHelpersTest, SplitAndParseInts) { std::vector<int> results; const bool splitted = util::SplitAndParse("1,2", ',', &results); EXPECT_TRUE(splitted); EXPECT_EQ(2, results.size()); EXPECT_EQ(1, results[0]); EXPECT_EQ(2, results[1]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/benchmark_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/benchmark_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
25ce80e0-cfc7-41c8-8494-1706993cefd2
cpp
google/tensorstore
neuroglancer_uint64_sharded
tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <cstring> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/internal/endian.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/kvs_backed_cache.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/internal/path.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_modify_write.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/transaction.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/estimate_heap_usage/std_vector.h" #include "tensorstore/util/execution/result_sender.h" namespace tensorstore { namespace neuroglancer_uint64_sharded { namespace { using ::tensorstore::internal::ConvertInvalidArgumentToFailedPrecondition; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore::kvstore::SupportedFeatures; class MinishardIndexKeyValueStore : public kvstore::Driver { public: explicit MinishardIndexKeyValueStore(kvstore::DriverPtr base, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec) : base_(std::move(base)), executor_(std::move(executor)), key_prefix_(key_prefix), sharding_spec_(sharding_spec) {} Future<ReadResult> Read(Key key, ReadOptions options) override; std::string DescribeKey(std::string_view key) override { ChunkCombinedShardInfo combined_info; if (key.size() != sizeof(combined_info)) { return tensorstore::StrCat("invalid key ", tensorstore::QuoteString(key)); } std::memcpy(&combined_info, key.data(), sizeof(combined_info)); auto split_info = GetSplitShardInfo(sharding_spec_, combined_info); return tensorstore::StrCat( "minishard ", split_info.minishard, " in ", base_->DescribeKey( GetShardKey(sharding_spec_, key_prefix_, split_info.shard))); } void GarbageCollectionVisit( garbage_collection::GarbageCollectionVisitor& visitor) const final { } kvstore::Driver* base() { return base_.get(); } const ShardingSpec& sharding_spec() { return sharding_spec_; } const std::string& key_prefix() const { return key_prefix_; } const Executor& executor() const { return executor_; } kvstore::DriverPtr base_; Executor executor_; std::string key_prefix_; ShardingSpec sharding_spec_; }; namespace { using ShardIndex = uint64_t; using MinishardIndex = uint64_t; class MinishardIndexReadOperationState; using MinishardIndexReadOperationStateBase = internal_kvstore_batch::BatchReadEntry< MinishardIndexKeyValueStore, internal_kvstore_batch::ReadRequest<MinishardIndex>, ShardIndex, kvstore::ReadGenerationConditions>; ; class MinishardIndexReadOperationState : public MinishardIndexReadOperationStateBase, public internal::AtomicReferenceCount<MinishardIndexReadOperationState> { public: explicit MinishardIndexReadOperationState(BatchEntryKey&& batch_entry_key_) : MinishardIndexReadOperationStateBase(std::move(batch_entry_key_)), internal::AtomicReferenceCount<MinishardIndexReadOperationState>( 1) {} private: Batch retry_batch_{no_batch}; void Submit(Batch::View batch) override { const auto& executor = driver().executor(); executor( [this, batch = Batch(batch)] { this->ProcessBatch(std::move(batch)); }); } void ProcessBatch(Batch batch) { internal::IntrusivePtr<MinishardIndexReadOperationState> self( this, internal::adopt_object_ref); retry_batch_ = Batch::New(); auto minishard_fetch_batch = Batch::New(); for (auto& request : request_batch.requests) { ProcessMinishard(batch, request, minishard_fetch_batch); } } std::string ShardKey() { const auto& sharding_spec = driver().sharding_spec(); return GetShardKey(sharding_spec, driver().key_prefix(), std::get<ShardIndex>(batch_entry_key)); } void ProcessMinishard(Batch::View batch, Request& request, Batch minishard_fetch_batch) { kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions = std::get<kvstore::ReadGenerationConditions>(this->batch_entry_key); kvstore_read_options.staleness_bound = this->request_batch.staleness_bound; auto key = std::get<MinishardIndex>(request); kvstore_read_options.byte_range = OptionalByteRangeRequest{ static_cast<int64_t>(key * 16), static_cast<int64_t>((key + 1) * 16)}; kvstore_read_options.batch = batch; auto shard_index_read_future = this->driver().base()->Read( this->ShardKey(), std::move(kvstore_read_options)); shard_index_read_future.Force(); shard_index_read_future.ExecuteWhenReady( [self = internal::IntrusivePtr<MinishardIndexReadOperationState>(this), minishard_fetch_batch = std::move(minishard_fetch_batch), &request](ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), &request, minishard_fetch_batch = std::move(minishard_fetch_batch), future = std::move(future)] { OnShardIndexReady(std::move(self), request, std::move(minishard_fetch_batch), std::move(future.result())); }); }); } static void OnShardIndexReady( internal::IntrusivePtr<MinishardIndexReadOperationState> self, Request& request, Batch minishard_fetch_batch, Result<kvstore::ReadResult>&& result) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); const auto set_error = [&](absl::Status status) { byte_range_request.promise.SetResult(MaybeAnnotateStatus( ConvertInvalidArgumentToFailedPrecondition(std::move(status)), "Error retrieving shard index entry")); }; TENSORSTORE_ASSIGN_OR_RETURN(auto&& read_result, result, set_error(std::move(_))); if ( read_result.aborted() || read_result.not_found()) { byte_range_request.promise.SetResult(std::move(read_result)); return; } TENSORSTORE_ASSIGN_OR_RETURN( auto byte_range, DecodeShardIndexEntry(read_result.value.Flatten()), set_error(std::move(_))); TENSORSTORE_ASSIGN_OR_RETURN( byte_range, GetAbsoluteShardByteRange(byte_range, self->driver().sharding_spec()), set_error(std::move(_))); if (byte_range.size() == 0) { read_result.value.Clear(); read_result.state = kvstore::ReadResult::kMissing; byte_range_request.promise.SetResult(std::move(read_result)); return; } kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions.if_equal = std::move(read_result.stamp.generation); kvstore_read_options.staleness_bound = self->request_batch.staleness_bound; kvstore_read_options.byte_range = byte_range; kvstore_read_options.batch = std::move(minishard_fetch_batch); auto read_future = self->driver().base()->Read( self->ShardKey(), std::move(kvstore_read_options)); read_future.Force(); read_future.ExecuteWhenReady( [self = std::move(self), &request](ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), &request, future = std::move(future)]() mutable { self->OnMinishardIndexReadReady(request, std::move(future.result())); }); }); } void OnMinishardIndexReadReady(Request& request, Result<kvstore::ReadResult>&& result) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); TENSORSTORE_ASSIGN_OR_RETURN( auto&& read_result, result, static_cast<void>(byte_range_request.promise.SetResult( internal::ConvertInvalidArgumentToFailedPrecondition( std::move(_))))); if (read_result.aborted()) { MakeRequest<MinishardIndexReadOperationState>( driver(), std::get<ShardIndex>(batch_entry_key), kvstore::ReadGenerationConditions( std::get<kvstore::ReadGenerationConditions>(batch_entry_key)), retry_batch_, read_result.stamp.time, std::move(request)); return; } byte_range_request.promise.SetResult(std::move(read_result)); } }; } Future<kvstore::ReadResult> MinishardIndexKeyValueStore::Read( Key key, ReadOptions options) { ChunkCombinedShardInfo combined_info; if (key.size() != sizeof(combined_info)) { return absl::InvalidArgumentError("Key does not specify a minishard"); } std::memcpy(&combined_info, key.data(), sizeof(combined_info)); auto split_info = GetSplitShardInfo(sharding_spec_, combined_info); if (options.byte_range != OptionalByteRangeRequest()) { return absl::InvalidArgumentError("Byte ranges not supported"); } auto [promise, future] = PromiseFuturePair<ReadResult>::Make(); MinishardIndexReadOperationState::MakeRequest< MinishardIndexReadOperationState>( *this, split_info.shard, std::move(options.generation_conditions), options.batch, options.staleness_bound, MinishardIndexReadOperationState::Request{{std::move(promise)}, split_info.minishard}); return std::move(future); } class MinishardIndexCache : public internal::KvsBackedCache<MinishardIndexCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<MinishardIndexCache, internal::AsyncCache>; public: using ReadData = std::vector<MinishardIndexEntry>; class Entry : public Base::Entry { public: using OwningCache = MinishardIndexCache; ChunkSplitShardInfo shard_info() { ChunkCombinedShardInfo combined_info; assert(this->key().size() == sizeof(combined_info)); std::memcpy(&combined_info, this->key().data(), sizeof(combined_info)); return GetSplitShardInfo(GetOwningCache(*this).sharding_spec(), combined_info); } size_t ComputeReadDataSizeInBytes(const void* read_data) override { return internal::EstimateHeapUsage( *static_cast<const ReadData*>(read_data)); } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { std::shared_ptr<ReadData> read_data; if (value) { if (auto result = DecodeMinishardIndexAndAdjustByteRanges( *value, GetOwningCache(*this).sharding_spec()); result.ok()) { read_data = std::make_shared<ReadData>(*std::move(result)); } else { execution::set_error(receiver, ConvertInvalidArgumentToFailedPrecondition( std::move(result).status())); return; } } execution::set_value(receiver, std::move(read_data)); }); } }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } explicit MinishardIndexCache(kvstore::DriverPtr base_kvstore, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec) : Base(kvstore::DriverPtr(new MinishardIndexKeyValueStore( std::move(base_kvstore), executor, std::move(key_prefix), sharding_spec))) {} MinishardIndexKeyValueStore* kvstore_driver() { return static_cast<MinishardIndexKeyValueStore*>( this->Base::kvstore_driver()); } const ShardingSpec& sharding_spec() { return kvstore_driver()->sharding_spec(); } kvstore::Driver* base_kvstore_driver() { return kvstore_driver()->base(); } const Executor& executor() { return kvstore_driver()->executor(); } const std::string& key_prefix() { return kvstore_driver()->key_prefix(); } }; MinishardAndChunkId GetMinishardAndChunkId(std::string_view key) { assert(key.size() == 16); return {absl::big_endian::Load64(key.data()), {absl::big_endian::Load64(key.data() + 8)}}; } class ShardedKeyValueStoreWriteCache : public internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache>; public: using ReadData = EncodedChunks; static std::string ShardToKey(ShardIndex shard) { std::string key; key.resize(sizeof(ShardIndex)); absl::big_endian::Store64(key.data(), shard); return key; } static ShardIndex KeyToShard(std::string_view key) { assert(key.size() == sizeof(ShardIndex)); return absl::big_endian::Load64(key.data()); } class Entry : public Base::Entry { public: using OwningCache = ShardedKeyValueStoreWriteCache; ShardIndex shard() { return KeyToShard(key()); } size_t ComputeReadDataSizeInBytes(const void* data) override { return internal::EstimateHeapUsage(*static_cast<const ReadData*>(data)); } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { EncodedChunks chunks; if (value) { if (auto result = SplitShard(GetOwningCache(*this).sharding_spec(), *value); result.ok()) { chunks = *std::move(result); } else { execution::set_error(receiver, ConvertInvalidArgumentToFailedPrecondition( std::move(result).status())); return; } } execution::set_value( receiver, std::make_shared<EncodedChunks>(std::move(chunks))); }); } void DoEncode(std::shared_ptr<const EncodedChunks> data, EncodeReceiver receiver) override { execution::set_value( receiver, EncodeShard(GetOwningCache(*this).sharding_spec(), *data)); } std::string GetKeyValueStoreKey() override { auto& cache = GetOwningCache(*this); return GetShardKey(cache.sharding_spec(), cache.key_prefix(), this->shard()); } }; class TransactionNode : public Base::TransactionNode, public internal_kvstore::AtomicMultiPhaseMutation { public: using OwningCache = ShardedKeyValueStoreWriteCache; using Base::TransactionNode::TransactionNode; absl::Mutex& mutex() override { return this->mutex_; } void PhaseCommitDone(size_t next_phase) override {} internal::TransactionState::Node& GetTransactionNode() override { return *this; } void Abort() override { this->AbortRemainingPhases(); Base::TransactionNode::Abort(); } std::string DescribeKey(std::string_view key) override { auto& entry = GetOwningEntry(*this); auto& cache = GetOwningCache(entry); auto minishard_and_chunk_id = GetMinishardAndChunkId(key); return tensorstore::StrCat( "chunk ", minishard_and_chunk_id.chunk_id.value, " in minishard ", minishard_and_chunk_id.minishard, " in ", cache.kvstore_driver()->DescribeKey(entry.GetKeyValueStoreKey())); } void DoApply(ApplyOptions options, ApplyReceiver receiver) override; void AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) override; void RecordEntryWritebackError( internal_kvstore::ReadModifyWriteEntry& entry, absl::Status error) override { absl::MutexLock lock(&mutex_); if (apply_status_.ok()) { apply_status_ = std::move(error); } } void Revoke() override { Base::TransactionNode::Revoke(); { UniqueWriterLock(*this); } this->RevokeAllEntries(); } void WritebackSuccess(ReadState&& read_state) override; void WritebackError() override; void InvalidateReadState() override; bool MultiPhaseReadsCommitted() override { return this->reads_committed_; } void Read( internal_kvstore::ReadModifyWriteEntry& entry, kvstore::ReadModifyWriteTarget::TransactionalReadOptions&& options, kvstore::ReadModifyWriteTarget::ReadReceiver&& receiver) override { this->AsyncCache::TransactionNode::Read({options.staleness_bound}) .ExecuteWhenReady(WithExecutor( GetOwningCache(*this).executor(), [&entry, if_not_equal = std::move(options.generation_conditions.if_not_equal), receiver = std::move(receiver)]( ReadyFuture<const void> future) mutable { if (!future.result().ok()) { execution::set_error(receiver, future.result().status()); return; } execution::submit(HandleShardReadSuccess(entry, if_not_equal), receiver); })); } static Result<kvstore::ReadResult> HandleShardReadSuccess( internal_kvstore::ReadModifyWriteEntry& entry, const StorageGeneration& if_not_equal) { auto& self = static_cast<TransactionNode&>(entry.multi_phase()); TimestampedStorageGeneration stamp; std::shared_ptr<const EncodedChunks> encoded_chunks; { AsyncCache::ReadLock<EncodedChunks> lock{self}; stamp = lock.stamp(); encoded_chunks = lock.shared_data(); } if (!StorageGeneration::IsUnknown(stamp.generation) && stamp.generation == if_not_equal) { return kvstore::ReadResult::Unspecified(std::move(stamp)); } if (StorageGeneration::IsDirty(stamp.generation)) { stamp.generation = StorageGeneration::AddLayer(std::move(stamp.generation)); } auto* chunk = FindChunk(*encoded_chunks, GetMinishardAndChunkId(entry.key_)); if (!chunk) { return kvstore::ReadResult::Missing(std::move(stamp)); } else { TENSORSTORE_ASSIGN_OR_RETURN( absl::Cord value, DecodeData(chunk->encoded_data, GetOwningCache(self).sharding_spec().data_encoding)); return kvstore::ReadResult::Value(std::move(value), std::move(stamp)); } } void Writeback(internal_kvstore::ReadModifyWriteEntry& entry, internal_kvstore::ReadModifyWriteEntry& source_entry, kvstore::ReadResult&& read_result) override { auto& value = read_result.value; if (read_result.state == kvstore::ReadResult::kValue) { value = EncodeData(value, GetOwningCache(*this).sharding_spec().data_encoding); } internal_kvstore::AtomicMultiPhaseMutation::Writeback( entry, entry, std::move(read_result)); } ApplyReceiver apply_receiver_; ApplyOptions apply_options_; absl::Status apply_status_; }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } explicit ShardedKeyValueStoreWriteCache( internal::CachePtr<MinishardIndexCache> minishard_index_cache, GetMaxChunksPerShardFunction get_max_chunks_per_shard) : Base(kvstore::DriverPtr(minishard_index_cache->base_kvstore_driver())), minishard_index_cache_(std::move(minishard_index_cache)), get_max_chunks_per_shard_(std::move(get_max_chunks_per_shard)) {} const ShardingSpec& sharding_spec() const { return minishard_index_cache()->sharding_spec(); } const std::string& key_prefix() const { return minishard_index_cache()->key_prefix(); } const internal::CachePtr<MinishardIndexCache>& minishard_index_cache() const { return minishard_index_cache_; } const Executor& executor() { return minishard_index_cache()->executor(); } internal::CachePtr<MinishardIndexCache> minishard_index_cache_; GetMaxChunksPerShardFunction get_max_chunks_per_shard_; }; void ShardedKeyValueStoreWriteCache::TransactionNode::InvalidateReadState() { Base::TransactionNode::InvalidateReadState(); internal_kvstore::InvalidateReadState(phases_); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackSuccess( ReadState&& read_state) { for (auto& entry : phases_.entries_) { internal_kvstore::WritebackSuccess( static_cast<internal_kvstore::ReadModifyWriteEntry&>(entry), read_state.stamp); } internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackSuccess(std::move(read_state)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackError() { internal_kvstore::WritebackError(phases_); internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackError(); } namespace { void StartApply(ShardedKeyValueStoreWriteCache::TransactionNode& node) { node.RetryAtomicWriteback(node.apply_options_.staleness_bound); } void MergeForWriteback(ShardedKeyValueStoreWriteCache::TransactionNode& node, bool conditional) { TimestampedStorageGeneration stamp; std::shared_ptr<const EncodedChunks> shared_existing_chunks; span<const EncodedChunk> existing_chunks; if (conditional) { auto lock = internal::AsyncCache::ReadLock<EncodedChunks>{node}; stamp = lock.stamp(); shared_existing_chunks = lock.shared_data(); existing_chunks = *shared_existing_chunks; } else { stamp = TimestampedStorageGeneration::Unconditional(); } std::vector<EncodedChunk> chunks; size_t existing_index = 0; bool mismatch = false; bool changed = false; for (auto& entry : node.phases_.entries_) { auto& buffered_entry = static_cast<internal_kvstore::AtomicMultiPhaseMutation:: BufferedReadModifyWriteEntry&>(entry); auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation) && StorageGeneration::Clean(entry_stamp.generation) != StorageGeneration::Clean(stamp.generation)) { mismatch = true; break; } if (buffered_entry.value_state_ == kvstore::ReadResult::kUnspecified || !StorageGeneration::IsInnerLayerDirty(entry_stamp.generation)) { continue; } auto minishard_and_chunk_id = GetMinishardAndChunkId(buffered_entry.key_); while (existing_index < static_cast<size_t>(existing_chunks.size())) { auto& existing_chunk = existing_chunks[existing_index]; if (existing_chunk.minishard_and_chunk_id < minishard_and_chunk_id) { chunks.push_back(existing_chunk); ++existing_index; } else if (existing_chunk.minishard_and_chunk_id == minishard_and_chunk_id) { changed = true; ++existing_index; break; } else { break; } } if (buffered_entry.value_state_ == kvstore::ReadResult::kValue) { chunks.push_back( EncodedChunk{minishard_and_chunk_id, buffered_entry.value_}); changed = true; } } if (mismatch) { node.apply_options_.staleness_bound = absl::Now(); StartApply(node); return; } chunks.insert(chunks.end(), existing_chunks.begin() + existing_index, existing_chunks.end()); internal::AsyncCache::ReadState update; update.stamp = std::move(stamp); if (changed) { update.stamp.generation.MarkDirty(); } update.data = std::make_shared<EncodedChunks>(std::move(chunks)); execution::set_value(std::exchange(node.apply_receiver_, {}), std::move(update)); } } void ShardedKeyValueStoreWriteCache::TransactionNode::DoApply( ApplyOptions options, ApplyReceiver receiver) { apply_receiver_ = std::move(receiver); apply_options_ = options; apply_status_ = absl::Status(); GetOwningCache(*this).executor()([this] { StartApply(*this); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) { if (!apply_status_.ok()) { execution::set_error(std::exchange(apply_receiver_, {}), std::exchange(apply_status_, {})); return; } auto& self = *this; GetOwningCache(*this).executor()([&self] { TimestampedStorageGeneration stamp; bool mismatch = false; bool modified = false; size_t num_chunks = 0; for (auto& entry : self.phases_.entries_) { auto& buffered_entry = static_cast<AtomicMultiPhaseMutation::BufferedReadModifyWriteEntry&>( entry); if (buffered_entry.value_state_ != kvstore::ReadResult::kUnspecified) { modified = true; ++num_chunks; } auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation)) { if (!StorageGeneration::IsUnknown(stamp.generation) && StorageGeneration::Clean(stamp.generation) != StorageGeneration::Clean(entry_stamp.generation)) { mismatch = true; break; } else { stamp = entry_stamp; } } } if (mismatch) { self.apply_options_.staleness_bound = absl::Now(); StartApply(self); return; } auto& cache = GetOwningCache(self); if (!modified && StorageGeneration::IsUnknown(stamp.generation) && self.apply_options_.apply_mode != ApplyOptions::ApplyMode::kSpecifyUnchanged) { internal::AsyncCache::ReadState update; update.stamp = TimestampedStorageGeneration::Unconditional(); execution::set_value(std::exchange(self.apply_receiver_, {}), std::move(update)); return; } if (!StorageGeneration::IsUnknown(stamp.generation) || !cache.get_max_chunks_per_shard_ || cache.get_max_chunks_per_shard_(GetOwningEntry(self).shard()) != num_chunks) { self.internal::AsyncCache::TransactionNode::Read( {self.apply_options_.staleness_bound}) .ExecuteWhenReady([&self](ReadyFuture<const void> future) { if (!future.result().ok()) { execution::set_error(std::exchange(self.apply_receiver_, {}), future.result().status()); return; } GetOwningCache(self).executor()( [&self] { MergeForWriteback(self, true); }); }); return; } MergeForWriteback(self, false); }); } Result<ChunkId> KeyToChunkIdOrError(std::string_view key) { if (auto chunk_id = KeyToChunkId(key)) { return *chunk_id; } return absl::InvalidArgumentError( tensorstore::StrCat("Invalid key: ", tensorstore::QuoteString(key))); } } struct ShardedKeyValueStoreSpecData { Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; kvstore::Spec base; ShardingSpec metadata; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ShardedKeyValueStoreSpecData, internal_json_binding::NoOptions, IncludeDefaults, ::nlohmann::json::object_t) constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.cache_pool, x.data_copy_concurrency, x.base, x.metadata); }; }; namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( ShardedKeyValueStoreSpecData, jb::Object( jb::Member("base", jb::Projection<&ShardedKeyValueStoreSpecData::base>()), jb::Initialize([](auto* obj) { internal::EnsureDirectoryPath(obj->base.path); return absl::OkStatus(); }), jb::Member("metadata", jb::Projection<&ShardedKeyValueStoreSpecData::metadata>( jb::DefaultInitializedValue())), jb::Member(internal::CachePoolResource::id, jb::Projection<&ShardedKeyValueStoreSpecData::cache_pool>()), jb::Member( internal::DataCopyConcurrencyResource::id, jb::Projection< &ShardedKeyValueStoreSpecData::data_copy_concurrency>()))); class ShardedKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec< ShardedKeyValueStoreSpec, ShardedKeyValueStoreSpecData> { public: static constexpr char id[] = "neuroglancer_uint64_sharded"; Future<kvstore::DriverPtr> DoOpen() const override; Result<kvstore::Spec> GetBase(std::string_view path) const override { return data_.base; } }; class ShardedKeyValueStore : public internal_kvstore::RegisteredDriver<ShardedKeyValueStore, ShardedKeyValueStoreSpec> { public: explicit ShardedKeyValueStore( kvstore::DriverPtr base_kvstore, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec, internal::CachePool::WeakPtr cache_pool, GetMaxChunksPerShardFunction get_max_chunks_per_shard = {}) : write_cache_(internal::GetCache<ShardedKeyValueStoreWriteCache>( cache_pool.get(), "", [&] { return std::make_unique<ShardedKeyValueStoreWriteCache>( internal::GetCache<MinishardIndexCache>( cache_pool.get(), "", [&] { return std::make_unique<MinishardIndexCache>( std::move(base_kvstore), std::move(executor), std::move(key_prefix), sharding_spec); }), std::move(get_max_chunks_per_shard)); })), is_raw_encoding_(sharding_spec.data_encoding == ShardingSpec::DataEncoding::raw) {} Future<ReadResult> Read(Key key, ReadOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override { struct State { ListReceiver receiver_; Promise<void> promise_; Future<void> future_; ListOptions options_; explicit State(ListReceiver&& receiver, ListOptions&& options) : receiver_(std::move(receiver)), options_(std::move(options)) { auto [promise, future] = PromiseFuturePair<void>::Make(MakeResult()); this->promise_ = std::move(promise); this->future_ = std::move(future); future_.Force(); execution::set_starting(receiver_, [promise = promise_] { promise.SetResult(absl::CancelledError("")); }); } ~State() { auto& r = promise_.raw_result(); if (r.ok()) { execution::set_done(receiver_); } else { execution::set_error(receiver_, r.status()); } execution::set_stopping(receiver_); } }; auto state = std::make_shared<State>(std::move(receiver), std::move(options)); ShardIndex num_shards = ShardIndex{1} << sharding_spec().shard_bits; for (ShardIndex shard = 0; shard < num_shards; ++shard) { auto entry = GetCacheEntry( write_cache_, ShardedKeyValueStoreWriteCache::ShardToKey(shard)); LinkValue( [state, entry, is_raw_encoding = is_raw_encoding_]( Promise<void> promise, ReadyFuture<const void> future) { auto chunks = internal::AsyncCache::ReadLock<EncodedChunks>(*entry) .shared_data(); if (!chunks) return; for (auto& chunk : *chunks) { auto key = ChunkIdToKey(chunk.minishard_and_chunk_id.chunk_id); if (!Contains(state->options_.range, key)) continue; key.erase(0, state->options_.strip_prefix_length); execution::set_value( state->receiver_, ListEntry{ std::move(key), is_raw_encoding ? ListEntry::checked_size(chunk.encoded_data.size()) : -1, }); } }, state->promise_, entry->Read({absl::InfiniteFuture()})); } } Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override { return internal_kvstore::WriteViaTransaction( this, std::move(key), std::move(value), std::move(options)); } absl::Status ReadModifyWrite(internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) override { TENSORSTORE_ASSIGN_OR_RETURN(ChunkId chunk_id, KeyToChunkIdOrError(key)); const auto& sharding_spec = this->sharding_spec(); const auto shard_info = GetSplitShardInfo( sharding_spec, GetChunkShardInfo(sharding_spec, chunk_id)); const ShardIndex shard = shard_info.shard; auto entry = GetCacheEntry( write_cache_, ShardedKeyValueStoreWriteCache::ShardToKey(shard)); std::string key_within_shard; key_within_shard.resize(16); absl::big_endian::Store64(key_within_shard.data(), shard_info.minishard); absl::big_endian::Store64(key_within_shard.data() + 8, chunk_id.value); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->ReadModifyWrite(phase, std::move(key_within_shard), source); if (!transaction) { transaction.reset(node.unlock()->transaction()); } return absl::OkStatus(); } absl::Status TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) override { return absl::UnimplementedError("DeleteRange not supported"); } std::string DescribeKey(std::string_view key) override { auto chunk_id_opt = KeyToChunkId(key); if (!chunk_id_opt) { return tensorstore::StrCat("invalid key ", tensorstore::QuoteString(key)); } const auto& sharding_spec = this->sharding_spec(); const auto shard_info = GetSplitShardInfo( sharding_spec, GetChunkShardInfo(sharding_spec, *chunk_id_opt)); return tensorstore::StrCat( "chunk ", chunk_id_opt->value, " in minishard ", shard_info.minishard, " in ", base_kvstore_driver()->DescribeKey( GetShardKey(sharding_spec, key_prefix(), shard_info.shard))); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return base_kvstore_driver()->GetSupportedFeatures( KeyRange::Prefix(key_prefix())); } Result<KvStore> GetBase(std::string_view path, const Transaction& transaction) const override { return KvStore(kvstore::DriverPtr(base_kvstore_driver()), key_prefix(), transaction); } kvstore::Driver* base_kvstore_driver() const { return minishard_index_cache()->base_kvstore_driver(); } const ShardingSpec& sharding_spec() const { return minishard_index_cache()->sharding_spec(); } const Executor& executor() const { return minishard_index_cache()->executor(); } const std::string& key_prefix() const { return minishard_index_cache()->key_prefix(); } const internal::CachePtr<MinishardIndexCache>& minishard_index_cache() const { return write_cache_->minishard_index_cache_; } absl::Status GetBoundSpecData(ShardedKeyValueStoreSpecData& spec) const; internal::CachePtr<ShardedKeyValueStoreWriteCache> write_cache_; Context::Resource<internal::CachePoolResource> cache_pool_resource_; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency_resource_; bool is_raw_encoding_ = false; }; namespace { class ReadOperationState; using ReadOperationStateBase = internal_kvstore_batch::BatchReadEntry< ShardedKeyValueStore, internal_kvstore_batch::ReadRequest<MinishardAndChunkId, kvstore::ReadGenerationConditions>, ShardIndex>; class ReadOperationState : public ReadOperationStateBase, public internal::AtomicReferenceCount<ReadOperationState> { public: explicit ReadOperationState(BatchEntryKey&& batch_entry_key_) : ReadOperationStateBase(std::move(batch_entry_key_)), internal::AtomicReferenceCount<ReadOperationState>( 1) {} private: Batch retry_batch_{no_batch}; void Submit(Batch::View batch) override { const auto& executor = driver().executor(); executor( [this, batch = Batch(batch)] { this->ProcessBatch(std::move(batch)); }); } void ProcessBatch(Batch batch) { internal::IntrusivePtr<ReadOperationState> self(this, internal::adopt_object_ref); span<Request> requests = request_batch.requests; std::sort(request_batch.requests.begin(), request_batch.requests.end(), [](const Request& a, const Request& b) { return std::get<MinishardAndChunkId>(a) < std::get<MinishardAndChunkId>(b); }); if (ShouldReadEntireShard()) { ReadEntireShard(std::move(self), std::move(batch)); return; } retry_batch_ = Batch::New(); Batch data_fetch_batch{no_batch}; for (size_t minishard_start_i = 0; minishard_start_i < requests.size();) { size_t minishard_end_i = minishard_start_i + 1; auto minishard = std::get<MinishardAndChunkId>(requests[minishard_start_i]).minishard; while ( minishard_end_i < requests.size() && std::get<MinishardAndChunkId>(requests[minishard_end_i]).minishard == minishard) { ++minishard_end_i; } ProcessMinishard(batch, minishard, requests.subspan(minishard_start_i, minishard_end_i - minishard_start_i), data_fetch_batch); minishard_start_i = minishard_end_i; } } bool ShouldReadEntireShard() { const auto& get_max_chunks_per_shard = driver().write_cache_->get_max_chunks_per_shard_; if (!get_max_chunks_per_shard) return false; uint64_t max_chunks = get_max_chunks_per_shard(std::get<ShardIndex>(batch_entry_key)); if (request_batch.requests.size() < max_chunks) { return false; } const auto& first_request = request_batch.requests[0]; uint64_t num_chunks_covered = 0; std::optional<uint64_t> prev_chunk_covered; for (const auto& request : request_batch.requests) { if (std::get<kvstore::ReadGenerationConditions>(request) != std::get<kvstore::ReadGenerationConditions>(first_request)) { return false; } if (std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .byte_range.IsFull()) { uint64_t chunk_id = std::get<MinishardAndChunkId>(request).chunk_id.value; if (chunk_id != prev_chunk_covered) { prev_chunk_covered = chunk_id; ++num_chunks_covered; } } } return (num_chunks_covered == max_chunks); } std::string ShardKey() { const auto& sharding_spec = driver().sharding_spec(); return GetShardKey(sharding_spec, driver().key_prefix(), std::get<ShardIndex>(batch_entry_key)); } static void ReadEntireShard(internal::IntrusivePtr<ReadOperationState> self, Batch batch) { auto& first_request = self->request_batch.requests[0]; kvstore::ReadOptions read_options; read_options.batch = std::move(batch); read_options.generation_conditions = std::move(std::get<kvstore::ReadGenerationConditions>(first_request)); read_options.staleness_bound = self->request_batch.staleness_bound; auto& driver = self->driver(); auto read_future = driver.base_kvstore_driver()->Read( GetShardKey(driver.sharding_spec(), driver.key_prefix(), std::get<ShardIndex>(self->batch_entry_key)), std::move(read_options)); read_future.Force(); std::move(read_future) .ExecuteWhenReady([self = std::move(self)]( ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), future = std::move(future)] { OnEntireShardReady(std::move(self), std::move(future.result())); }); }); } static void OnEntireShardReady( internal::IntrusivePtr<ReadOperationState> self, Result<kvstore::ReadResult>&& result) { if (!result.ok() || !result->has_value()) { internal_kvstore_batch::SetCommonResult(self->request_batch.requests, std::move(result)); return; } auto& read_result = *result; const auto& sharding_spec = self->driver().sharding_spec(); TENSORSTORE_ASSIGN_OR_RETURN(auto encoded_chunks, SplitShard(sharding_spec, read_result.value), internal_kvstore_batch::SetCommonResult( self->request_batch.requests, _)); span<Request> requests = self->request_batch.requests; size_t request_i = 0; const auto complete_not_found = [&](Request& request) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(kvstore::ReadResult::Missing(read_result.stamp)); }; for (const auto& encoded_chunk : encoded_chunks) { auto decoded_data_result = DecodeData(encoded_chunk.encoded_data, sharding_spec.data_encoding); const auto complete_request = [&](Request& request) -> Result<kvstore::ReadResult> { TENSORSTORE_ASSIGN_OR_RETURN( const auto& decoded_data, decoded_data_result, internal::ConvertInvalidArgumentToFailedPrecondition(_)); TENSORSTORE_ASSIGN_OR_RETURN( auto validated_byte_range, std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .byte_range.Validate(decoded_data.size())); kvstore::ReadResult request_read_result; request_read_result.stamp = read_result.stamp; request_read_result.state = kvstore::ReadResult::kValue; request_read_result.value = internal::GetSubCord(decoded_data, validated_byte_range); return request_read_result; }; auto decoded_key = encoded_chunk.minishard_and_chunk_id; for (; request_i < requests.size(); ++request_i) { auto& request = requests[request_i]; auto request_key = std::get<MinishardAndChunkId>(request); if (request_key < decoded_key) { complete_not_found(request); } else if (request_key == decoded_key) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(complete_request(request)); } else { break; } } } for (; request_i < requests.size(); ++request_i) { complete_not_found(requests[request_i]); } } void ProcessMinishard(Batch::View batch, MinishardIndex minishard, span<Request> requests, Batch& data_fetch_batch) { ChunkSplitShardInfo split_shard_info; split_shard_info.shard = std::get<ShardIndex>(batch_entry_key); split_shard_info.minishard = minishard; auto shard_info = GetCombinedShardInfo(driver().sharding_spec(), split_shard_info); auto minishard_index_cache_entry = GetCacheEntry( driver().minishard_index_cache(), std::string_view(reinterpret_cast<const char*>(&shard_info), sizeof(shard_info))); auto minishard_index_read_future = minishard_index_cache_entry->Read( {request_batch.staleness_bound, batch}); Batch successor_batch{no_batch}; if (batch) { if (minishard_index_read_future.ready()) { successor_batch = batch; } else { if (!data_fetch_batch) { data_fetch_batch = Batch::New(); } successor_batch = data_fetch_batch; } } const auto& executor = driver().executor(); std::move(minishard_index_read_future) .ExecuteWhenReady(WithExecutor( executor, [self = internal::IntrusivePtr<ReadOperationState>(this), requests, minishard_index_cache_entry = std::move(minishard_index_cache_entry), successor_batch = std::move(successor_batch)]( ReadyFuture<const void> future) mutable { const auto& status = future.status(); if (!status.ok()) { internal_kvstore_batch::SetCommonResult<Request>(requests, {status}); return; } OnMinishardIndexReady(std::move(self), requests, std::move(successor_batch), std::move(minishard_index_cache_entry)); })); } static void OnMinishardIndexReady( internal::IntrusivePtr<ReadOperationState> self, span<Request> requests, Batch successor_batch, internal::PinnedCacheEntry<MinishardIndexCache> minishard_index_cache_entry) { std::shared_ptr<const std::vector<MinishardIndexEntry>> minishard_index; TimestampedStorageGeneration stamp; { auto lock = internal::AsyncCache::ReadLock<MinishardIndexCache::ReadData>( *minishard_index_cache_entry); stamp = lock.stamp(); minishard_index = lock.shared_data(); } assert(!StorageGeneration::IsUnknown(stamp.generation)); if (!minishard_index) { internal_kvstore_batch::SetCommonResult( requests, kvstore::ReadResult::Missing(std::move(stamp))); return; } const auto& sharding_spec = self->driver().sharding_spec(); const auto process_chunk = [&](ChunkId chunk_id, span<Request> chunk_requests) { auto byte_range = FindChunkInMinishard(*minishard_index, chunk_id); if (!byte_range) { internal_kvstore_batch::SetCommonResult( chunk_requests, kvstore::ReadResult::Missing(stamp)); return; } int64_t size = byte_range->size(); chunk_requests = chunk_requests.first( std::remove_if( chunk_requests.begin(), chunk_requests.end(), [&](Request& request) { return !internal_kvstore_batch::ValidateRequestGeneration( request, stamp); }) - chunk_requests.begin()); if (sharding_spec.data_encoding == ShardingSpec::DataEncoding::raw) { const auto process_request = [&](Request& request) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); TENSORSTORE_ASSIGN_OR_RETURN( auto sub_byte_range, byte_range_request.byte_range.Validate(size), static_cast<void>(byte_range_request.promise.SetResult(_))); kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions.if_equal = stamp.generation; kvstore_read_options.staleness_bound = self->request_batch.staleness_bound; kvstore_read_options.byte_range = ByteRange{ byte_range->inclusive_min + sub_byte_range.inclusive_min, byte_range->inclusive_min + sub_byte_range.exclusive_max}; kvstore_read_options.batch = successor_batch; auto value_read_future = self->driver().base_kvstore_driver()->Read( self->ShardKey(), std::move(kvstore_read_options)); value_read_future.Force(); std::move(value_read_future) .ExecuteWhenReady([self, &request](ReadyFuture<kvstore::ReadResult> future) mutable { TENSORSTORE_ASSIGN_OR_RETURN( auto&& read_result, std::move(future.result()), static_cast<void>( std::get<internal_kvstore_batch::ByteRangeReadRequest>( request) .promise.SetResult(_))); self->OnRawValueReady(request, std::move(read_result)); }); }; for (auto& request : chunk_requests) { process_request(request); } } else { kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions.if_equal = stamp.generation; kvstore_read_options.staleness_bound = self->request_batch.staleness_bound; kvstore_read_options.byte_range = *byte_range; kvstore_read_options.batch = successor_batch; auto value_read_future = self->driver().base_kvstore_driver()->Read( self->ShardKey(), std::move(kvstore_read_options)); value_read_future.Force(); std::move(value_read_future) .ExecuteWhenReady( [self, chunk_requests]( ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), chunk_requests, future = std::move(future)] { TENSORSTORE_ASSIGN_OR_RETURN( auto&& read_result, std::move(future.result()), internal_kvstore_batch::SetCommonResult(chunk_requests, _)); self->OnEncodedValueReady(chunk_requests, std::move(read_result)); }); }); } }; for (size_t request_i = 0; request_i < requests.size();) { ChunkId chunk_id = std::get<MinishardAndChunkId>(requests[request_i]).chunk_id; size_t end_request_i; for (end_request_i = request_i + 1; end_request_i < requests.size(); ++end_request_i) { if (std::get<MinishardAndChunkId>(requests[end_request_i]).chunk_id != chunk_id) break; } process_chunk(chunk_id, requests.subspan(request_i, end_request_i - request_i)); request_i = end_request_i; } } void OnRawValueReady(Request& request, kvstore::ReadResult&& read_result) { if (read_result.aborted()) { MakeRequest<ReadOperationState>( driver(), std::get<ShardIndex>(batch_entry_key), retry_batch_, read_result.stamp.time, std::move(request)); return; } std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(std::move(read_result)); } void OnEncodedValueReady(span<Request> chunk_requests, kvstore::ReadResult&& read_result) { if (read_result.aborted()) { for (auto& request : chunk_requests) { MakeRequest<ReadOperationState>( driver(), std::get<ShardIndex>(batch_entry_key), retry_batch_, read_result.stamp.time, std::move(request)); } return; } if (!read_result.has_value()) { internal_kvstore_batch::SetCommonResult(chunk_requests, std::move(read_result)); return; } TENSORSTORE_ASSIGN_OR_RETURN( auto decoded_value, DecodeData(read_result.value, driver().sharding_spec().data_encoding), internal_kvstore_batch::SetCommonResult( chunk_requests, internal::ConvertInvalidArgumentToFailedPrecondition(_))); const auto process_request = [&](Request& request) -> Result<kvstore::ReadResult> { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); TENSORSTORE_ASSIGN_OR_RETURN( auto byte_range, byte_range_request.byte_range.Validate(decoded_value.size())); return kvstore::ReadResult::Value( internal::GetSubCord(decoded_value, byte_range), read_result.stamp); }; for (auto& request : chunk_requests) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(process_request(request)); } } }; } Future<kvstore::ReadResult> ShardedKeyValueStore::Read(Key key, ReadOptions options) { TENSORSTORE_ASSIGN_OR_RETURN(ChunkId chunk_id, KeyToChunkIdOrError(key)); const auto& sharding_spec = this->sharding_spec(); auto shard_info = GetChunkShardInfo(sharding_spec, chunk_id); auto split_shard_info = GetSplitShardInfo(sharding_spec, shard_info); auto [promise, future] = PromiseFuturePair<kvstore::ReadResult>::Make(); ReadOperationState::MakeRequest<ReadOperationState>( *this, split_shard_info.shard, options.batch, options.staleness_bound, ReadOperationState::Request{ {std::move(promise), options.byte_range}, MinishardAndChunkId{split_shard_info.minishard, chunk_id}, std::move(options.generation_conditions)}); return std::move(future); } } namespace garbage_collection { template <> struct GarbageCollection<neuroglancer_uint64_sharded::ShardedKeyValueStore> { static void Visit( GarbageCollectionVisitor& visitor, const neuroglancer_uint64_sharded::ShardedKeyValueStore& value) { garbage_collection::GarbageCollectionVisit(visitor, *value.base_kvstore_driver()); } }; } namespace neuroglancer_uint64_sharded { absl::Status ShardedKeyValueStore::GetBoundSpecData( ShardedKeyValueStoreSpecData& spec) const { TENSORSTORE_ASSIGN_OR_RETURN(spec.base.driver, base_kvstore_driver()->GetBoundSpec()); spec.base.path = key_prefix(); if (!data_copy_concurrency_resource_.has_resource() || !cache_pool_resource_.has_resource()) { return absl::InternalError("JSON representation not supported"); } spec.data_copy_concurrency = data_copy_concurrency_resource_; spec.cache_pool = cache_pool_resource_; spec.metadata = sharding_spec(); return absl::Status(); } Future<kvstore::DriverPtr> ShardedKeyValueStoreSpec::DoOpen() const { return MapFutureValue( InlineExecutor{}, [spec = internal::IntrusivePtr<const ShardedKeyValueStoreSpec>(this)]( kvstore::KvStore& base_kvstore) -> Result<kvstore::DriverPtr> { auto driver = internal::MakeIntrusivePtr<ShardedKeyValueStore>( std::move(base_kvstore.driver), spec->data_.data_copy_concurrency->executor, std::move(base_kvstore.path), spec->data_.metadata, *spec->data_.cache_pool); driver->data_copy_concurrency_resource_ = spec->data_.data_copy_concurrency; driver->cache_pool_resource_ = spec->data_.cache_pool; return driver; }, kvstore::Open(data_.base)); } kvstore::DriverPtr GetShardedKeyValueStore( kvstore::DriverPtr base_kvstore, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec, internal::CachePool::WeakPtr cache_pool, GetMaxChunksPerShardFunction get_max_chunks_per_shard) { return kvstore::DriverPtr(new ShardedKeyValueStore( std::move(base_kvstore), std::move(executor), std::move(key_prefix), sharding_spec, std::move(cache_pool), std::move(get_max_chunks_per_shard))); } std::string ChunkIdToKey(ChunkId chunk_id) { std::string key; key.resize(sizeof(uint64_t)); absl::big_endian::Store64(key.data(), chunk_id.value); return key; } std::optional<ChunkId> KeyToChunkId(std::string_view key) { if (key.size() != 8) return std::nullopt; return ChunkId{absl::big_endian::Load64(key.data())}; } } } namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::neuroglancer_uint64_sharded::ShardedKeyValueStoreSpec> registration; }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <initializer_list> #include <map> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/kvs_backed_cache_testutil.h" #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/internal/thread/thread_pool.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/memory/memory_key_value_store.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/transaction.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace zlib = ::tensorstore::zlib; namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Batch; using ::tensorstore::Future; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::Result; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::Transaction; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::GetCache; using ::tensorstore::internal::KvsBackedTestCache; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultAborted; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::internal::MatchesTimestampedStorageGeneration; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal::UniqueNow; using ::tensorstore::kvstore::ReadResult; using ::tensorstore::neuroglancer_uint64_sharded::ChunkIdToKey; using ::tensorstore::neuroglancer_uint64_sharded::GetShardedKeyValueStore; using ::tensorstore::neuroglancer_uint64_sharded::ShardingSpec; constexpr CachePool::Limits kSmallCacheLimits{10000000}; absl::Cord Bytes(std::initializer_list<unsigned char> x) { return absl::Cord(std::string(x.begin(), x.end())); } std::string GetChunkKey(uint64_t chunk_id) { return ChunkIdToKey({chunk_id}); } class GetUint64Key { public: GetUint64Key(bool sequential) : sequential_(sequential) {} std::string operator()(std::string key) const { auto it = key_to_uint64_.find(key); if (it == key_to_uint64_.end()) { while (true) { auto x = sequential_ ? next_chunk_id_++ : absl::Uniform<uint64_t>(gen_); if (uint64_to_key_.emplace(x, key).second) { it = key_to_uint64_.emplace(key, x).first; break; } } } return GetChunkKey(it->second); } private: bool sequential_; mutable uint64_t next_chunk_id_ = 0; mutable absl::BitGen gen_; mutable absl::flat_hash_map<std::string, uint64_t> key_to_uint64_; mutable absl::flat_hash_map<uint64_t, std::string> uint64_to_key_; }; tensorstore::Executor GetExecutor(std::string_view executor_name) { if (executor_name == "inline") return tensorstore::InlineExecutor{}; return tensorstore::internal::DetachedThreadPool(2); } struct BasicFunctionalityTestOptions { std::string_view executor_name = "thread_pool"; bool sequential_ids = false; std::string_view hash = "identity"; std::string_view data_encoding = "raw"; std::string_view minishard_index_encoding = "raw"; bool all_zero_bits = false; }; void TestReadWriteOps(BasicFunctionalityTestOptions options) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", options.hash}, {"preshift_bits", options.all_zero_bits ? 0 : 1}, {"minishard_bits", options.all_zero_bits ? 0 : 2}, {"shard_bits", options.all_zero_bits ? 0 : 3}, {"data_encoding", options.data_encoding}, {"minishard_index_encoding", options.minishard_index_encoding}}; auto cache_pool = CachePool::Make(kSmallCacheLimits); auto base_kv_store = tensorstore::GetMemoryKeyValueStore(); auto sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); SCOPED_TRACE(options.executor_name); SCOPED_TRACE(sharding_spec_json.dump()); auto store = GetShardedKeyValueStore( base_kv_store, GetExecutor(options.executor_name), "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); GetUint64Key get_key_fn(options.sequential_ids); tensorstore::internal::TestKeyValueReadWriteOps(store, get_key_fn); } TEST(Uint64ShardedKeyValueStoreTest, BasicFunctionality) { { BasicFunctionalityTestOptions options; TestReadWriteOps(options); options.sequential_ids = true; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.hash = "murmurhash3_x86_128"; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.data_encoding = "gzip"; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.minishard_index_encoding = "gzip"; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.all_zero_bits = true; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.executor_name = "inline"; TestReadWriteOps(options); } } TEST(Uint64ShardedKeyValueStoreTest, DescribeKey) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr store = GetShardedKeyValueStore( base_kv_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); for (const auto& [key, description] : std::vector<std::pair<uint64_t, std::string>>{ {0, "chunk 0 in minishard 0 in \"prefix/0.shard\""}, {1, "chunk 1 in minishard 1 in \"prefix/0.shard\""}, {2, "chunk 2 in minishard 0 in \"prefix/1.shard\""}, {3, "chunk 3 in minishard 1 in \"prefix/1.shard\""}, }) { EXPECT_EQ(description, store->DescribeKey(GetChunkKey(key))); } } class RawEncodingTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 0}, {"shard_bits", 0}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr store = GetShardedKeyValueStore( base_kv_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); }; TEST_F(RawEncodingTest, MultipleUnconditionalWrites) { std::vector<absl::Cord> values{absl::Cord("abc"), absl::Cord("aaaaa"), absl::Cord("efgh")}; std::vector<Future<TimestampedStorageGeneration>> futures; auto key = GetChunkKey(10); tensorstore::Transaction txn(tensorstore::isolated); for (auto value : values) { futures.push_back(kvstore::WriteCommitted(KvStore{store, txn}, key, value)); } txn.CommitAsync().IgnoreFuture(); std::vector<Result<TimestampedStorageGeneration>> results; for (const auto& future : futures) { results.push_back(future.result()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto shard_read, base_kv_store->Read("prefix/0.shard").result()); EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); for (size_t i = 0; i < results.size(); ++i) { if (results[i] && results[i]->generation == shard_read.stamp.generation) { EXPECT_THAT(store->Read(key).result(), MatchesKvsReadResult(values[i], results[i]->generation)); } } } TEST_F(RawEncodingTest, List) { std::map<std::string, absl::Cord> values{ {GetChunkKey(1), absl::Cord("a")}, {GetChunkKey(2), absl::Cord("bc")}, {GetChunkKey(3), absl::Cord("def")}, {GetChunkKey(10), absl::Cord("xyz")}}; for (auto [key, value] : values) { TENSORSTORE_EXPECT_OK(store->Write(key, value)); } EXPECT_THAT(tensorstore::internal::GetMap(store), ::testing::Optional(::testing::ElementsAreArray(values))); } TEST_F(RawEncodingTest, WritesAndDeletes) { StorageGeneration gen1, gen2, gen3; { tensorstore::Transaction txn(tensorstore::isolated); auto init_future1 = kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(1), absl::Cord("a")); auto init_future2 = kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(2), absl::Cord("bc")); auto init_future3 = kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(3), absl::Cord("def")); txn.CommitAsync().IgnoreFuture(); gen1 = init_future1.value().generation; gen2 = init_future2.value().generation; gen3 = init_future3.value().generation; } tensorstore::Transaction txn(tensorstore::isolated); auto future1 = kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()}); auto future2 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(2), absl::Cord("ww"), {gen2}); auto future3 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(2), absl::Cord("xx"), {gen2}); auto future4 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(4), absl::Cord("zz"), {StorageGeneration::NoValue()}); auto future5 = kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(3), {gen3}); txn.CommitAsync().IgnoreFuture(); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto shard_read, base_kv_store->Read("prefix/0.shard").result()); EXPECT_THAT( std::vector({future2.result(), future3.result()}), ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Unknown()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); EXPECT_THAT(store->Read(GetChunkKey(1)).result(), MatchesKvsReadResult(absl::Cord("a"))); EXPECT_THAT(store->Read(GetChunkKey(2)).result(), MatchesKvsReadResult( !StorageGeneration::IsUnknown(future2.result()->generation) ? absl::Cord("ww") : absl::Cord("xx"))); EXPECT_THAT(store->Read(GetChunkKey(3)).result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(store->Read(GetChunkKey(4)).result(), MatchesKvsReadResult(absl::Cord("zz"))); } std::vector<std::vector<Result<TimestampedStorageGeneration>>> TestOrderDependentWrites( std::function<void()> init, std::function<Future<TimestampedStorageGeneration>()> op0, std::function<Future<TimestampedStorageGeneration>()> op1, std::function<void()> finalize) { std::vector<std::vector<Result<TimestampedStorageGeneration>>> all_results; for (int i = 0; i < 2; ++i) { std::vector<Future<TimestampedStorageGeneration>> futures(2); init(); if (i == 0) { futures[0] = op0(); futures[1] = op1(); } else { futures[1] = op1(); futures[0] = op0(); } finalize(); all_results.push_back({futures[0].result(), futures[1].result()}); } return all_results; } TEST_F(RawEncodingTest, WriteThenDelete) { TENSORSTORE_ASSERT_OK(store->Write(GetChunkKey(1), absl::Cord("a")).result()); EXPECT_THAT(store->Read(GetChunkKey(1)).result(), MatchesKvsReadResult(absl::Cord("a"))); TENSORSTORE_ASSERT_OK(store->Delete(GetChunkKey(1)).result()); EXPECT_THAT(store->Read(GetChunkKey(1)).result(), MatchesKvsReadResultNotFound()); } TEST_F(RawEncodingTest, MultipleDeleteExisting) { StorageGeneration gen; tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { gen = store->Write(GetChunkKey(1), absl::Cord("a")) .value() .generation; txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {gen}); }, [&] { return kvstore::DeleteCommitted( KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::UnorderedElementsAre( ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration( StorageGeneration::NoValue())), ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, WriteWithUnmatchedConditionAfterDelete) { tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { store->Delete(GetChunkKey(0)).value(); txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(0), absl::Cord("a")); }, [&] { return kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(0), absl::Cord("b"), {StorageGeneration::FromString("g")}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::Each(::testing::ElementsAre( MatchesTimestampedStorageGeneration( ::testing::AllOf(::testing::Not(StorageGeneration::NoValue()), ::testing::Not(StorageGeneration::Invalid()))), MatchesTimestampedStorageGeneration(StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, MultipleDeleteNonExisting) { tensorstore::Transaction txn(tensorstore::isolated); std::vector futures{ kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()}), kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()})}; txn.CommitAsync().IgnoreFuture(); std::vector results{futures[0].result(), futures[1].result()}; EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()))); } TEST_F(RawEncodingTest, ShardIndexTooShort) { base_kv_store->Write("prefix/0.shard", Bytes({1, 2, 3})).value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Requested byte range \\[0, 16\\) is not valid for value of size 3")); EXPECT_THAT( store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Existing shard has size 3, but expected at least: 16")); } TEST_F(RawEncodingTest, ShardIndexInvalidByteRange) { base_kv_store ->Write("prefix/0.shard", Bytes({10, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0})) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Shard index specified invalid byte range: \\[10, 2\\)")); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing shard index entry for minishard 0: " "Shard index specified invalid byte range: \\[10, 2\\)")); } TEST_F(RawEncodingTest, ShardIndexByteRangeOverflow) { base_kv_store ->Write("prefix/0.shard", Bytes({ 10, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, })) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Byte range .* relative to the end of " "the shard index \\(16\\) is not valid")); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing shard index entry for minishard 0: " "Byte range .* relative to the end of " "the shard index \\(16\\) is not valid")); } TEST_F(RawEncodingTest, MinishardIndexOutOfRange) { base_kv_store ->Write("prefix/0.shard", Bytes({0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0})) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Requested byte range \\[16, 64\\) is " "not valid for value of size 16")); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing shard index entry for minishard 0: " "Requested byte range .* is not valid for value of size 16")); } TEST_F(RawEncodingTest, MinishardIndexInvalidSize) { base_kv_store ->Write("prefix/0.shard", Bytes({0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0})) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Invalid minishard index length: 1")); EXPECT_THAT( store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing minishard index for minishard 0: " "Invalid minishard index length: 1")); } TEST_F(RawEncodingTest, MinishardIndexByteRangeOverflow) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, })) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error decoding minishard index entry " "for chunk 10: Byte range .* relative to the end " "of the shard index \\(16\\) is not valid")); } TEST_F(RawEncodingTest, MinishardIndexEntryByteRangeOutOfRange) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 200, 0, 0, 0, 0, 0, 0, 0, })) .value(); EXPECT_THAT(store->Write(GetChunkKey(1), absl::Cord("x")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Invalid existing byte range for chunk 10: " "Requested byte range .* is not valid for value of size .*")); } TEST_F(RawEncodingTest, MinishardIndexWithDuplicateChunkId) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, })) .value(); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Chunk 10 occurs more than once in the minishard " "index for minishard 0")); } class GzipEncodingTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 0}, {"shard_bits", 0}, {"data_encoding", "gzip"}, {"minishard_index_encoding", "gzip"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr store = GetShardedKeyValueStore( base_kv_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); }; TEST_F(GzipEncodingTest, CorruptMinishardGzipEncoding) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, })) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error decoding zlib-compressed data")); EXPECT_THAT( store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing minishard index for minishard 0: " "Error decoding zlib-compressed data")); } TEST_F(GzipEncodingTest, CorruptDataGzipEncoding) { absl::Cord shard_data("abc"); zlib::Options zlib_options; zlib_options.use_gzip_header = true; zlib::Encode(Bytes({ 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }), &shard_data, zlib_options); const unsigned char n = static_cast<unsigned char>(shard_data.size()); absl::Cord temp = Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, n, 0, 0, 0, 0, 0, 0, 0, }); temp.Append(shard_data); TENSORSTORE_ASSERT_OK(base_kv_store->Write("prefix/0.shard", temp)); EXPECT_THAT(store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error decoding zlib-compressed data")); } class UnderlyingKeyValueStoreTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); kvstore::DriverPtr GetStore( tensorstore::neuroglancer_uint64_sharded::GetMaxChunksPerShardFunction get_max_chunks_per_shard = {}) { return GetShardedKeyValueStore( mock_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool), std::move(get_max_chunks_per_shard)); } kvstore::DriverPtr store = GetStore(); }; TEST_F(UnderlyingKeyValueStoreTest, Read) { absl::Time init_time = UniqueNow(); absl::Time minishard_index_time; { auto future = store->Read(GetChunkKey(0x50), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(init_time)); req.promise.SetResult(ReadResult::Value( Bytes({ 5, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(37, 63), req.options.byte_range); minishard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Value( Bytes({ 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), minishard_index_time})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 37), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult::Value(Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x60), options); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(minishard_index_time)); } { auto req_time = UniqueNow(); auto future = store->Read(GetChunkKey(0x60), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); minishard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), minishard_index_time})); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(minishard_index_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x50), options); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 37), req.options.byte_range); EXPECT_EQ(init_time, req.options.staleness_bound); read_time = absl::Now(); req.promise.SetResult( ReadResult::Value(Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x50), options); absl::Time abort_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(init_time, req.options.staleness_bound); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 37), req.options.byte_range); abort_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), abort_time})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Ge(abort_time)); req.promise.SetResult(ReadResult::Value( Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g1"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g1"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); minishard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Value( Bytes({ 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g1"), minishard_index_time})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g1"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 38), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult::Value(Bytes({4, 5, 6, 7, 8, 9}), {StorageGeneration::FromString("g1"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({4, 5, 6, 7, 8, 9}), StorageGeneration::FromString("g1"), read_time)); } } TEST_F(UnderlyingKeyValueStoreTest, TransactionReadThenCommit) { tensorstore::Transaction txn(tensorstore::isolated); auto memory_store = tensorstore::GetMemoryKeyValueStore(); { auto future = kvstore::Read(KvStore{store, txn}, GetChunkKey(0x50), {}); { auto req = mock_store->read_requests.pop(); req(memory_store); ASSERT_EQ(0, mock_store->read_requests.size()); } EXPECT_THAT(future.result(), ::testing::Optional(MatchesKvsReadResultNotFound())); } auto commit_future = txn.CommitAsync(); TENSORSTORE_ASSERT_OK(commit_future.result()); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentModificationAfterReadingShardIndex) { absl::Time init_time = absl::Now(); kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x1), options); absl::Time abort_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(init_time, req.options.staleness_bound); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g2"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g2"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); abort_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g2"), abort_time})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Ge(abort_time)); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 7, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g3"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g3"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(39, 65), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g3"), absl::Now()})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g3"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 36), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult::Value( Bytes({4, 5, 6, 7}), {StorageGeneration::FromString("g3"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({4, 5, 6, 7}), StorageGeneration::FromString("g3"), read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentDeleteAfterReadingShardIndex) { auto req_time = UniqueNow(); auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g4"), absl::Now()})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g4"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult::Missing(read_time)); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentDeleteAfterReadingMinishardIndex) { auto req_time = UniqueNow(); auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 36), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult::Missing(read_time)); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingShardIndex) { auto future = store->Read(GetChunkKey(0x50), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingMinishardShardIndex) { auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading minishard 1 in \"prefix/0\\.shard\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingData) { auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(32, 36), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadInvalidKey) { auto future = store->Read("abc", {}); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteInvalidKey) { auto future = store->Write("abc", absl::Cord("x")); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, DeleteInvalidKey) { auto future = store->Delete("abc"); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShard) { for (const bool with_max_chunks : {false, true}) { SCOPED_TRACE(tensorstore::StrCat("with_max_chunks=", with_max_chunks)); if (with_max_chunks) { store = GetStore( [](uint64_t shard) -> uint64_t { return 2; }); } else { store = GetStore(); } auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } } TEST_F(UnderlyingKeyValueStoreTest, UnconditionalWrite) { store = GetStore( [](uint64_t shard) -> uint64_t { return 2; }); auto txn = Transaction(tensorstore::isolated); auto future1 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(0x50), Bytes({1, 2, 3})); auto future2 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(0x54), Bytes({4, 5, 6})); ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_EQ(0, mock_store->write_requests.size()); txn.CommitAsync().IgnoreFuture(); ASSERT_EQ(0, mock_store->read_requests.size()); absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0x50, 0, 0, 0, 0, 0, 0, 0, 0x04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future1.ready()); ASSERT_TRUE(future2.ready()); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); EXPECT_THAT(future2.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, ConditionalWriteDespiteMaxChunks) { store = GetStore( [](uint64_t shard) -> uint64_t { return 1; }); auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3}), {StorageGeneration::NoValue()}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); } } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShardError) { auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } { auto req = mock_store->write_requests.pop_nonblock().value(); req.promise.SetResult(absl::UnknownError("Write error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error writing \"prefix/0\\.shard\": " "Write error")); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShard) { auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); req.promise.SetResult( ReadResult::Value(Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 6, 0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0x50, 0, 0, 0, 0, 0, 0, 0, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g1"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g1"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, WriteMaxChunksWithExistingShard) { for (const bool specify_max_chunks : {false, true}) { if (specify_max_chunks) { store = GetStore( [](uint64_t shard) -> uint64_t { return 1; }); } auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); if (!specify_max_chunks) { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ((specify_max_chunks ? StorageGeneration::Unknown() : StorageGeneration::NoValue()), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShardReadError) { auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading \"prefix/0\\.shard\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, DeleteRangeUnimplemented) { EXPECT_THAT(store->DeleteRange(tensorstore::KeyRange::Prefix("abc")).result(), MatchesStatus(absl::StatusCode::kUnimplemented)); } TEST_F(UnderlyingKeyValueStoreTest, TransactionalDeleteRangeUnimplemented) { EXPECT_THAT( store->TransactionalDeleteRange({}, tensorstore::KeyRange::Prefix("abc")), MatchesStatus(absl::StatusCode::kUnimplemented)); } TEST_F(UnderlyingKeyValueStoreTest, BatchRead) { cache_pool = CachePool::Make({}); auto memory_store = tensorstore::GetMemoryKeyValueStore(); mock_store->forward_to = memory_store; mock_store->log_requests = true; mock_store->handle_batch_requests = true; auto store = GetStore( [](uint64_t shard) -> uint64_t { return 6; }); auto key0 = GetChunkKey(0x50); auto key1 = GetChunkKey(0x54); auto key2 = GetChunkKey(0x58); auto key3 = GetChunkKey(0x51); auto key4 = GetChunkKey(0x55); auto key5 = GetChunkKey(0x59); auto key6 = GetChunkKey(0x52); auto key7 = GetChunkKey(0x56); auto key8 = GetChunkKey(0x5a); TENSORSTORE_ASSERT_OK(store->Write(key0, absl::Cord("abc")).result()); TENSORSTORE_ASSERT_OK(store->Write(key1, absl::Cord("def")).result()); TENSORSTORE_ASSERT_OK(store->Write(key3, absl::Cord("key3-")).result()); TENSORSTORE_ASSERT_OK(store->Write(key4, absl::Cord("key4--")).result()); TENSORSTORE_ASSERT_OK(store->Write(key5, absl::Cord("key5---")).result()); TENSORSTORE_ASSERT_OK(store->Write(key6, absl::Cord("key6----")).result()); TENSORSTORE_ASSERT_OK(store->Write(key7, absl::Cord("key6-----")).result()); TENSORSTORE_ASSERT_OK(store->Write(key8, absl::Cord("key6------")).result()); mock_store->request_log.pop_all(); { SCOPED_TRACE( "Read 2/6 chunks from the same shard (same minibatch) in a single " "batch"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(key0, options), store->Read(key1, options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(3)); } { SCOPED_TRACE("Read 6/6 entries from the same shard in a single batch"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(key0, options), store->Read(key1, options), store->Read(key2, options), store->Read(key3, options), store->Read(key4, options), store->Read(key5, options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(futures[3].result(), MatchesKvsReadResult(absl::Cord("key3-"))); EXPECT_THAT(futures[4].result(), MatchesKvsReadResult(absl::Cord("key4--"))); EXPECT_THAT(futures[5].result(), MatchesKvsReadResult(absl::Cord("key5---"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(1)); } { SCOPED_TRACE( "Read 6/6 entries from the same shard with inconsistent generation " "constraints"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options1; options1.batch = Batch::New(); kvstore::ReadOptions options2; options2.batch = options1.batch; options2.generation_conditions.if_not_equal = StorageGeneration::Invalid(); kvstore::ReadOptions options3; options3.batch = options1.batch; options3.generation_conditions.if_equal = StorageGeneration::Invalid(); futures = { store->Read(key0, options1), store->Read(key1, options1), store->Read(key2, options2), store->Read(key3, options1), store->Read(key4, options3), store->Read(key5, options1), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(futures[3].result(), MatchesKvsReadResult(absl::Cord("key3-"))); EXPECT_THAT(futures[4].result(), MatchesKvsReadResultAborted()); EXPECT_THAT(futures[5].result(), MatchesKvsReadResult(absl::Cord("key5---"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(3)); } { SCOPED_TRACE("Read 1 entry from each of two shards in a single batch"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(key0, options), store->Read(key6, options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("key6----"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(6)); } } class ReadModifyWriteTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); tensorstore::kvstore::DriverPtr memory_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr GetStore( tensorstore::neuroglancer_uint64_sharded::GetMaxChunksPerShardFunction get_max_chunks_per_shard = {}) { return GetShardedKeyValueStore( mock_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(CachePool::Make(CachePool::Limits{})), std::move(get_max_chunks_per_shard)); } auto GetKvsBackedCache(kvstore::DriverPtr store = {}) { if (!store) store = GetStore(); return GetCache<KvsBackedTestCache>( CachePool::Make(CachePool::Limits{}).get(), "", [&] { return std::make_unique<KvsBackedTestCache>(store); }); } }; TEST_F(ReadModifyWriteTest, MultipleCaches) { auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, GetChunkKey(0x0)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, GetChunkKey(0x0)) ->Modify(open_transaction, false, "def")); auto read_future = GetCacheEntry(cache1, GetChunkKey(0x0))->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdef"))); } transaction.CommitAsync().IgnoreFuture(); auto write_req = mock_store->write_requests.pop(); write_req(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TEST_F(ReadModifyWriteTest, MultiplePhasesMultipleCaches) { auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, GetChunkKey(0x0)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, GetChunkKey(0x0)) ->Modify(open_transaction, false, "def")); open_transaction->Barrier(); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, GetChunkKey(0x0)) ->Modify(open_transaction, false, "ghi")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, GetChunkKey(0x0)) ->Modify(open_transaction, false, "jkl")); auto read_future = GetCacheEntry(cache1, GetChunkKey(0x0))->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdefghijkl"))); } transaction.CommitAsync().IgnoreFuture(); mock_store->write_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->write_requests.pop()(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TENSORSTORE_GLOBAL_INITIALIZER { using ::tensorstore::internal::KvsBackedCacheBasicTransactionalTestOptions; using ::tensorstore::internal::RegisterKvsBackedCacheBasicTransactionalTest; ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); for (bool underlying_atomic : {false, true}) { KvsBackedCacheBasicTransactionalTestOptions options; options.test_name = tensorstore::StrCat("Uint64Sharded/underlying_atomic=", underlying_atomic); options.get_store = [=] { return GetShardedKeyValueStore( tensorstore::GetMemoryKeyValueStore(underlying_atomic), tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(CachePool::Make(CachePool::Limits{})), {}); }; options.delete_range_supported = false; options.multi_key_atomic_supported = true; options.get_key_getter = [] { return [getter = std::make_shared<GetUint64Key>(true)]( auto key) { return (*getter)(key); }; }; RegisterKvsBackedCacheBasicTransactionalTest(options); } } TEST(ShardedKeyValueStoreTest, SpecRoundtrip) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "memory"}, {"path", "abc/"}}; options.full_spec = {{"driver", "neuroglancer_uint64_sharded"}, {"base", options.full_base_spec}, {"metadata", sharding_spec_json}}; options.check_data_after_serialization = false; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, SpecRoundtripFile) { tensorstore::internal_testing::ScopedTemporaryDirectory tempdir; ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "file"}, {"path", tempdir.path() + "/"}}; options.full_spec = {{"driver", "neuroglancer_uint64_sharded"}, {"base", options.full_base_spec}, {"metadata", sharding_spec_json}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, Base) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, kvstore::Spec::FromJson({{"driver", "neuroglancer_uint64_sharded"}, {"base", "memory: {"metadata", sharding_spec_json}, {"path", "1"}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_spec, kvstore::Spec::FromJson("memory: EXPECT_THAT(spec.base(), ::testing::Optional(base_spec)); auto context = tensorstore::Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open(spec, context).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open(base_spec, context).result()); EXPECT_THAT(store.base(), ::testing::Optional(base_store)); auto transaction = tensorstore::Transaction(tensorstore::atomic_isolated); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store_with_txn, store | transaction); EXPECT_THAT(store_with_txn.base(), base_store | transaction); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded_test.cc
4f887a6430414cd6088e1743555015b10f116d50
daaeac09-e0ed-4298-b4dd-3f9607b3f0d2
cpp
abseil/abseil-cpp
btree
absl/container/internal/btree.h
absl/container/btree_test.cc
#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ #define ABSL_CONTAINER_INTERNAL_BTREE_H_ #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <cstring> #include <functional> #include <iterator> #include <limits> #include <string> #include <type_traits> #include <utility> #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/container/internal/common.h" #include "absl/container/internal/common_policy_traits.h" #include "absl/container/internal/compressed_tuple.h" #include "absl/container/internal/container_memory.h" #include "absl/container/internal/layout.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/compare.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { #ifdef ABSL_BTREE_ENABLE_GENERATIONS #error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set #elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \ defined(ABSL_HAVE_MEMORY_SANITIZER)) && \ !defined(NDEBUG_SANITIZER) #define ABSL_BTREE_ENABLE_GENERATIONS #endif #ifdef ABSL_BTREE_ENABLE_GENERATIONS constexpr bool BtreeGenerationsEnabled() { return true; } #else constexpr bool BtreeGenerationsEnabled() { return false; } #endif template <typename Compare, typename T, typename U> using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>; template <typename Compare, typename T> using btree_is_key_compare_to = std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>; struct StringBtreeDefaultLess { using is_transparent = void; StringBtreeDefaultLess() = default; StringBtreeDefaultLess(std::less<std::string>) {} StringBtreeDefaultLess(std::less<absl::string_view>) {} explicit operator std::less<std::string>() const { return {}; } explicit operator std::less<absl::string_view>() const { return {}; } explicit operator std::less<absl::Cord>() const { return {}; } absl::weak_ordering operator()(absl::string_view lhs, absl::string_view rhs) const { return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); } StringBtreeDefaultLess(std::less<absl::Cord>) {} absl::weak_ordering operator()(const absl::Cord &lhs, const absl::Cord &rhs) const { return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); } absl::weak_ordering operator()(const absl::Cord &lhs, absl::string_view rhs) const { return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); } absl::weak_ordering operator()(absl::string_view lhs, const absl::Cord &rhs) const { return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); } }; struct StringBtreeDefaultGreater { using is_transparent = void; StringBtreeDefaultGreater() = default; StringBtreeDefaultGreater(std::greater<std::string>) {} StringBtreeDefaultGreater(std::greater<absl::string_view>) {} explicit operator std::greater<std::string>() const { return {}; } explicit operator std::greater<absl::string_view>() const { return {}; } explicit operator std::greater<absl::Cord>() const { return {}; } absl::weak_ordering operator()(absl::string_view lhs, absl::string_view rhs) const { return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); } StringBtreeDefaultGreater(std::greater<absl::Cord>) {} absl::weak_ordering operator()(const absl::Cord &lhs, const absl::Cord &rhs) const { return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); } absl::weak_ordering operator()(const absl::Cord &lhs, absl::string_view rhs) const { return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); } absl::weak_ordering operator()(absl::string_view lhs, const absl::Cord &rhs) const { return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); } }; template <typename Compare, bool is_class = std::is_class<Compare>::value> struct checked_compare_base : Compare { using Compare::Compare; explicit checked_compare_base(Compare c) : Compare(std::move(c)) {} const Compare &comp() const { return *this; } }; template <typename Compare> struct checked_compare_base<Compare, false> { explicit checked_compare_base(Compare c) : compare(std::move(c)) {} const Compare &comp() const { return compare; } Compare compare; }; struct BtreeTestOnlyCheckedCompareOptOutBase {}; template <typename Compare, typename Key> struct key_compare_adapter { struct checked_compare : checked_compare_base<Compare> { private: using Base = typename checked_compare::checked_compare_base; using Base::comp; bool is_self_equivalent(const Key &k) const { return comp()(k, k) == 0; } template <typename T> bool is_self_equivalent(const T &) const { return true; } public: using Base::Base; checked_compare(Compare comp) : Base(std::move(comp)) {} explicit operator Compare() const { return comp(); } template <typename T, typename U, absl::enable_if_t< std::is_same<bool, compare_result_t<Compare, T, U>>::value, int> = 0> bool operator()(const T &lhs, const U &rhs) const { assert(is_self_equivalent(lhs)); assert(is_self_equivalent(rhs)); const bool lhs_comp_rhs = comp()(lhs, rhs); assert(!lhs_comp_rhs || !comp()(rhs, lhs)); return lhs_comp_rhs; } template < typename T, typename U, absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>, absl::weak_ordering>::value, int> = 0> absl::weak_ordering operator()(const T &lhs, const U &rhs) const { assert(is_self_equivalent(lhs)); assert(is_self_equivalent(rhs)); const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs); #ifndef NDEBUG const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs); if (lhs_comp_rhs > 0) { assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0"); } else if (lhs_comp_rhs == 0) { assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0"); } else { assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0"); } #endif return lhs_comp_rhs; } }; using type = absl::conditional_t< std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value, Compare, checked_compare>; }; template <> struct key_compare_adapter<std::less<std::string>, std::string> { using type = StringBtreeDefaultLess; }; template <> struct key_compare_adapter<std::greater<std::string>, std::string> { using type = StringBtreeDefaultGreater; }; template <> struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> { using type = StringBtreeDefaultLess; }; template <> struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> { using type = StringBtreeDefaultGreater; }; template <> struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> { using type = StringBtreeDefaultLess; }; template <> struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> { using type = StringBtreeDefaultGreater; }; template <typename T, typename = void> struct has_linear_node_search_preference : std::false_type {}; template <typename T, typename = void> struct prefers_linear_node_search : std::false_type {}; template <typename T> struct has_linear_node_search_preference< T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> : std::true_type {}; template <typename T> struct prefers_linear_node_search< T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> : T::absl_btree_prefer_linear_node_search {}; template <typename Compare, typename Key> constexpr bool compare_has_valid_result_type() { using compare_result_type = compare_result_t<Compare, Key, Key>; return std::is_same<compare_result_type, bool>::value || std::is_convertible<compare_result_type, absl::weak_ordering>::value; } template <typename original_key_compare, typename value_type> class map_value_compare { template <typename Params> friend class btree; protected: explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {} original_key_compare comp; public: auto operator()(const value_type &lhs, const value_type &rhs) const -> decltype(comp(lhs.first, rhs.first)) { return comp(lhs.first, rhs.first); } }; template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, bool IsMulti, bool IsMap, typename SlotPolicy> struct common_params : common_policy_traits<SlotPolicy> { using original_key_compare = Compare; using key_compare = absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(), Compare, typename key_compare_adapter<Compare, Key>::type>; static constexpr bool kIsKeyCompareStringAdapted = std::is_same<key_compare, StringBtreeDefaultLess>::value || std::is_same<key_compare, StringBtreeDefaultGreater>::value; static constexpr bool kIsKeyCompareTransparent = IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted; using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; using allocator_type = Alloc; using key_type = Key; using size_type = size_t; using difference_type = ptrdiff_t; using slot_policy = SlotPolicy; using slot_type = typename slot_policy::slot_type; using value_type = typename slot_policy::value_type; using init_type = typename slot_policy::mutable_value_type; using pointer = value_type *; using const_pointer = const value_type *; using reference = value_type &; using const_reference = const value_type &; using value_compare = absl::conditional_t<IsMap, map_value_compare<original_key_compare, value_type>, original_key_compare>; using is_map_container = std::integral_constant<bool, IsMap>; template <typename LookupKey> constexpr static bool can_have_multiple_equivalent_keys() { return IsMulti || (IsTransparent<key_compare>::value && !std::is_same<LookupKey, Key>::value && !kIsKeyCompareStringAdapted); } enum { kTargetNodeSize = TargetNodeSize, kNodeSlotSpace = TargetNodeSize - (sizeof(void *) + 4), }; using node_count_type = absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) > (std::numeric_limits<uint8_t>::max)()), uint16_t, uint8_t>; }; template <typename Compare> struct upper_bound_adapter { explicit upper_bound_adapter(const Compare &c) : comp(c) {} template <typename K1, typename K2> bool operator()(const K1 &a, const K2 &b) const { return !compare_internal::compare_result_as_less_than(comp(b, a)); } private: Compare comp; }; enum class MatchKind : uint8_t { kEq, kNe }; template <typename V, bool IsCompareTo> struct SearchResult { V value; MatchKind match; static constexpr bool HasMatch() { return true; } bool IsEq() const { return match == MatchKind::kEq; } }; template <typename V> struct SearchResult<V, false> { SearchResult() = default; explicit SearchResult(V v) : value(v) {} SearchResult(V v, MatchKind ) : value(v) {} V value; static constexpr bool HasMatch() { return false; } static constexpr bool IsEq() { return false; } }; template <typename Params> class btree_node { using is_key_compare_to = typename Params::is_key_compare_to; using field_type = typename Params::node_count_type; using allocator_type = typename Params::allocator_type; using slot_type = typename Params::slot_type; using original_key_compare = typename Params::original_key_compare; public: using params_type = Params; using key_type = typename Params::key_type; using value_type = typename Params::value_type; using pointer = typename Params::pointer; using const_pointer = typename Params::const_pointer; using reference = typename Params::reference; using const_reference = typename Params::const_reference; using key_compare = typename Params::key_compare; using size_type = typename Params::size_type; using difference_type = typename Params::difference_type; using use_linear_search = std::integral_constant< bool, has_linear_node_search_preference<original_key_compare>::value ? prefers_linear_node_search<original_key_compare>::value : has_linear_node_search_preference<key_type>::value ? prefers_linear_node_search<key_type>::value : std::is_arithmetic<key_type>::value && (std::is_same<std::less<key_type>, original_key_compare>::value || std::is_same<std::greater<key_type>, original_key_compare>::value)>; ~btree_node() = default; btree_node(btree_node const &) = delete; btree_node &operator=(btree_node const &) = delete; protected: btree_node() = default; private: using layout_type = absl::container_internal::Layout<btree_node *, uint32_t, field_type, slot_type, btree_node *>; using leaf_layout_type = typename layout_type::template WithStaticSizes< 1, BtreeGenerationsEnabled() ? 1 : 0, 4>; constexpr static size_type SizeWithNSlots(size_type n) { return leaf_layout_type( n, 0).AllocSize(); } constexpr static size_type MinimumOverhead() { return SizeWithNSlots(1) - sizeof(slot_type); } constexpr static size_type NodeTargetSlots(const size_type begin, const size_type end) { return begin == end ? begin : SizeWithNSlots((begin + end) / 2 + 1) > params_type::kTargetNodeSize ? NodeTargetSlots(begin, (begin + end) / 2) : NodeTargetSlots((begin + end) / 2 + 1, end); } constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize; constexpr static size_type kNodeTargetSlots = NodeTargetSlots(0, kTargetNodeSize); constexpr static size_type kMinNodeSlots = 4; constexpr static size_type kNodeSlots = kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots; using internal_layout_type = typename layout_type::template WithStaticSizes< 1, BtreeGenerationsEnabled() ? 1 : 0, 4, kNodeSlots, kNodeSlots + 1>; constexpr static field_type kInternalNodeMaxCount = 0; constexpr static leaf_layout_type LeafLayout( const size_type slot_count = kNodeSlots) { return leaf_layout_type(slot_count, 0); } constexpr static auto InternalLayout() { return internal_layout_type(); } constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) { return LeafLayout(slot_count).AllocSize(); } constexpr static size_type InternalSize() { return InternalLayout().AllocSize(); } constexpr static size_type Alignment() { static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), "Alignment of all nodes must be equal."); return InternalLayout().Alignment(); } template <size_type N> inline typename layout_type::template ElementType<N> *GetField() { assert(N < 4 || is_internal()); return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); } template <size_type N> inline const typename layout_type::template ElementType<N> *GetField() const { assert(N < 4 || is_internal()); return InternalLayout().template Pointer<N>( reinterpret_cast<const char *>(this)); } void set_parent(btree_node *p) { *GetField<0>() = p; } field_type &mutable_finish() { return GetField<2>()[2]; } slot_type *slot(size_type i) { return &GetField<3>()[i]; } slot_type *start_slot() { return slot(start()); } slot_type *finish_slot() { return slot(finish()); } const slot_type *slot(size_type i) const { return &GetField<3>()[i]; } void set_position(field_type v) { GetField<2>()[0] = v; } void set_start(field_type v) { GetField<2>()[1] = v; } void set_finish(field_type v) { GetField<2>()[2] = v; } void set_max_count(field_type v) { GetField<2>()[3] = v; } public: bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; } bool is_internal() const { return !is_leaf(); } field_type position() const { return GetField<2>()[0]; } field_type start() const { assert(GetField<2>()[1] == 0); return 0; } field_type finish() const { return GetField<2>()[2]; } field_type count() const { assert(finish() >= start()); return finish() - start(); } field_type max_count() const { const field_type max_count = GetField<2>()[3]; return max_count == field_type{kInternalNodeMaxCount} ? field_type{kNodeSlots} : max_count; } btree_node *parent() const { return *GetField<0>(); } bool is_root() const { return parent()->is_leaf(); } void make_root() { assert(parent()->is_root()); set_generation(parent()->generation()); set_parent(parent()->parent()); } uint32_t *get_root_generation() const { assert(BtreeGenerationsEnabled()); const btree_node *curr = this; for (; !curr->is_root(); curr = curr->parent()) continue; return const_cast<uint32_t *>(&curr->GetField<1>()[0]); } uint32_t generation() const { return BtreeGenerationsEnabled() ? *get_root_generation() : 0; } void set_generation(uint32_t generation) { if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation; } void next_generation() { if (BtreeGenerationsEnabled()) ++*get_root_generation(); } const key_type &key(size_type i) const { return params_type::key(slot(i)); } reference value(size_type i) { return params_type::element(slot(i)); } const_reference value(size_type i) const { return params_type::element(slot(i)); } btree_node *child(field_type i) const { return GetField<4>()[i]; } btree_node *start_child() const { return child(start()); } btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; } void clear_child(field_type i) { absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); } void set_child_noupdate_position(field_type i, btree_node *c) { absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); mutable_child(i) = c; } void set_child(field_type i, btree_node *c) { set_child_noupdate_position(i, c); c->set_position(i); } void init_child(field_type i, btree_node *c) { set_child(i, c); c->set_parent(this); } template <typename K> SearchResult<size_type, is_key_compare_to::value> lower_bound( const K &k, const key_compare &comp) const { return use_linear_search::value ? linear_search(k, comp) : binary_search(k, comp); } template <typename K> size_type upper_bound(const K &k, const key_compare &comp) const { auto upper_compare = upper_bound_adapter<key_compare>(comp); return use_linear_search::value ? linear_search(k, upper_compare).value : binary_search(k, upper_compare).value; } template <typename K, typename Compare> SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> linear_search(const K &k, const Compare &comp) const { return linear_search_impl(k, start(), finish(), comp, btree_is_key_compare_to<Compare, key_type>()); } template <typename K, typename Compare> SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> binary_search(const K &k, const Compare &comp) const { return binary_search_impl(k, start(), finish(), comp, btree_is_key_compare_to<Compare, key_type>()); } template <typename K, typename Compare> SearchResult<size_type, false> linear_search_impl( const K &k, size_type s, const size_type e, const Compare &comp, std::false_type ) const { while (s < e) { if (!comp(key(s), k)) { break; } ++s; } return SearchResult<size_type, false>{s}; } template <typename K, typename Compare> SearchResult<size_type, true> linear_search_impl( const K &k, size_type s, const size_type e, const Compare &comp, std::true_type ) const { while (s < e) { const absl::weak_ordering c = comp(key(s), k); if (c == 0) { return {s, MatchKind::kEq}; } else if (c > 0) { break; } ++s; } return {s, MatchKind::kNe}; } template <typename K, typename Compare> SearchResult<size_type, false> binary_search_impl( const K &k, size_type s, size_type e, const Compare &comp, std::false_type ) const { while (s != e) { const size_type mid = (s + e) >> 1; if (comp(key(mid), k)) { s = mid + 1; } else { e = mid; } } return SearchResult<size_type, false>{s}; } template <typename K, typename CompareTo> SearchResult<size_type, true> binary_search_impl( const K &k, size_type s, size_type e, const CompareTo &comp, std::true_type ) const { if (params_type::template can_have_multiple_equivalent_keys<K>()) { MatchKind exact_match = MatchKind::kNe; while (s != e) { const size_type mid = (s + e) >> 1; const absl::weak_ordering c = comp(key(mid), k); if (c < 0) { s = mid + 1; } else { e = mid; if (c == 0) { exact_match = MatchKind::kEq; } } } return {s, exact_match}; } else { while (s != e) { const size_type mid = (s + e) >> 1; const absl::weak_ordering c = comp(key(mid), k); if (c < 0) { s = mid + 1; } else if (c > 0) { e = mid; } else { return {mid, MatchKind::kEq}; } } return {s, MatchKind::kNe}; } } template <typename Compare> bool is_ordered_correctly(field_type i, const Compare &comp) const { if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value || params_type::kIsKeyCompareStringAdapted) { return true; } const auto compare = [&](field_type a, field_type b) { const absl::weak_ordering cmp = compare_internal::do_three_way_comparison(comp, key(a), key(b)); return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; }; int cmp = -1; constexpr bool kCanHaveEquivKeys = params_type::template can_have_multiple_equivalent_keys<key_type>(); for (field_type j = start(); j < finish(); ++j) { if (j == i) { if (cmp > 0) return false; continue; } int new_cmp = compare(j, i); if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false; cmp = new_cmp; } return true; } template <typename... Args> void emplace_value(field_type i, allocator_type *alloc, Args &&...args); void remove_values(field_type i, field_type to_erase, allocator_type *alloc); void rebalance_right_to_left(field_type to_move, btree_node *right, allocator_type *alloc); void rebalance_left_to_right(field_type to_move, btree_node *right, allocator_type *alloc); void split(int insert_position, btree_node *dest, allocator_type *alloc); void merge(btree_node *src, allocator_type *alloc); void init_leaf(field_type position, field_type max_count, btree_node *parent) { set_generation(0); set_parent(parent); set_position(position); set_start(0); set_finish(0); set_max_count(max_count); absl::container_internal::SanitizerPoisonMemoryRegion( start_slot(), max_count * sizeof(slot_type)); } void init_internal(field_type position, btree_node *parent) { init_leaf(position, kNodeSlots, parent); set_max_count(kInternalNodeMaxCount); absl::container_internal::SanitizerPoisonMemoryRegion( &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); } static void deallocate(const size_type size, btree_node *node, allocator_type *alloc) { absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size); absl::container_internal::Deallocate<Alignment()>(alloc, node, size); } static void clear_and_delete(btree_node *node, allocator_type *alloc); private: template <typename... Args> void value_init(const field_type i, allocator_type *alloc, Args &&...args) { next_generation(); absl::container_internal::SanitizerUnpoisonObject(slot(i)); params_type::construct(alloc, slot(i), std::forward<Args>(args)...); } void value_destroy(const field_type i, allocator_type *alloc) { next_generation(); params_type::destroy(alloc, slot(i)); absl::container_internal::SanitizerPoisonObject(slot(i)); } void value_destroy_n(const field_type i, const field_type n, allocator_type *alloc) { next_generation(); for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { params_type::destroy(alloc, s); absl::container_internal::SanitizerPoisonObject(s); } } static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { absl::container_internal::SanitizerUnpoisonObject(dest); params_type::transfer(alloc, dest, src); absl::container_internal::SanitizerPoisonObject(src); } void transfer(const size_type dest_i, const size_type src_i, btree_node *src_node, allocator_type *alloc) { next_generation(); transfer(slot(dest_i), src_node->slot(src_i), alloc); } void transfer_n(const size_type n, const size_type dest_i, const size_type src_i, btree_node *src_node, allocator_type *alloc) { next_generation(); for (slot_type *src = src_node->slot(src_i), *end = src + n, *dest = slot(dest_i); src != end; ++src, ++dest) { transfer(dest, src, alloc); } } void transfer_n_backward(const size_type n, const size_type dest_i, const size_type src_i, btree_node *src_node, allocator_type *alloc) { next_generation(); for (slot_type *src = src_node->slot(src_i + n), *end = src - n, *dest = slot(dest_i + n); src != end; --src, --dest) { transfer(dest - 1, src - 1, alloc); } } template <typename P> friend class btree; template <typename N, typename R, typename P> friend class btree_iterator; friend class BtreeNodePeer; friend struct btree_access; }; template <typename Node> bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) { if (node_a == nullptr || node_b == nullptr) return true; while (!node_a->is_root()) node_a = node_a->parent(); while (!node_b->is_root()) node_b = node_b->parent(); return node_a == node_b; } class btree_iterator_generation_info_enabled { public: explicit btree_iterator_generation_info_enabled(uint32_t g) : generation_(g) {} template <typename Node> void update_generation(const Node *node) { if (node != nullptr) generation_ = node->generation(); } uint32_t generation() const { return generation_; } template <typename Node> void assert_valid_generation(const Node *node) const { if (node != nullptr && node->generation() != generation_) { ABSL_INTERNAL_LOG( FATAL, "Attempting to use an invalidated iterator. The corresponding b-tree " "container has been mutated since this iterator was constructed."); } } private: uint32_t generation_; }; class btree_iterator_generation_info_disabled { public: explicit btree_iterator_generation_info_disabled(uint32_t) {} static void update_generation(const void *) {} static uint32_t generation() { return 0; } static void assert_valid_generation(const void *) {} }; #ifdef ABSL_BTREE_ENABLE_GENERATIONS using btree_iterator_generation_info = btree_iterator_generation_info_enabled; #else using btree_iterator_generation_info = btree_iterator_generation_info_disabled; #endif template <typename Node, typename Reference, typename Pointer> class btree_iterator : private btree_iterator_generation_info { using field_type = typename Node::field_type; using key_type = typename Node::key_type; using size_type = typename Node::size_type; using params_type = typename Node::params_type; using is_map_container = typename params_type::is_map_container; using node_type = Node; using normal_node = typename std::remove_const<Node>::type; using const_node = const Node; using normal_pointer = typename params_type::pointer; using normal_reference = typename params_type::reference; using const_pointer = typename params_type::const_pointer; using const_reference = typename params_type::const_reference; using slot_type = typename params_type::slot_type; using iterator = absl::conditional_t< is_map_container::value, btree_iterator<normal_node, normal_reference, normal_pointer>, btree_iterator<normal_node, const_reference, const_pointer>>; using const_iterator = btree_iterator<const_node, const_reference, const_pointer>; public: using difference_type = typename Node::difference_type; using value_type = typename params_type::value_type; using pointer = Pointer; using reference = Reference; using iterator_category = std::bidirectional_iterator_tag; btree_iterator() : btree_iterator(nullptr, -1) {} explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {} btree_iterator(Node *n, int p) : btree_iterator_generation_info(n != nullptr ? n->generation() : ~uint32_t{}), node_(n), position_(p) {} template <typename N, typename R, typename P, absl::enable_if_t< std::is_same<btree_iterator<N, R, P>, iterator>::value && std::is_same<btree_iterator, const_iterator>::value, int> = 0> btree_iterator(const btree_iterator<N, R, P> other) : btree_iterator_generation_info(other), node_(other.node_), position_(other.position_) {} bool operator==(const iterator &other) const { return Equals(other); } bool operator==(const const_iterator &other) const { return Equals(other); } bool operator!=(const iterator &other) const { return !Equals(other); } bool operator!=(const const_iterator &other) const { return !Equals(other); } difference_type operator-(const_iterator other) const { if (node_ == other.node_) { if (node_->is_leaf()) return position_ - other.position_; if (position_ == other.position_) return 0; } return distance_slow(other); } reference operator*() const { ABSL_HARDENING_ASSERT(node_ != nullptr); assert_valid_generation(node_); ABSL_HARDENING_ASSERT(position_ >= node_->start()); if (position_ >= node_->finish()) { ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator"); ABSL_HARDENING_ASSERT(position_ < node_->finish()); } return node_->value(static_cast<field_type>(position_)); } pointer operator->() const { return &operator*(); } btree_iterator &operator++() { increment(); return *this; } btree_iterator &operator--() { decrement(); return *this; } btree_iterator operator++(int) { btree_iterator tmp = *this; ++*this; return tmp; } btree_iterator operator--(int) { btree_iterator tmp = *this; --*this; return tmp; } private: friend iterator; friend const_iterator; template <typename Params> friend class btree; template <typename Tree> friend class btree_container; template <typename Tree> friend class btree_set_container; template <typename Tree> friend class btree_map_container; template <typename Tree> friend class btree_multiset_container; template <typename TreeType, typename CheckerType> friend class base_checker; friend struct btree_access; template <typename N, typename R, typename P, absl::enable_if_t< std::is_same<btree_iterator<N, R, P>, const_iterator>::value && std::is_same<btree_iterator, iterator>::value, int> = 0> explicit btree_iterator(const btree_iterator<N, R, P> other) : btree_iterator_generation_info(other.generation()), node_(const_cast<node_type *>(other.node_)), position_(other.position_) {} bool Equals(const const_iterator other) const { ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) || (node_ != nullptr && other.node_ != nullptr)) && "Comparing default-constructed iterator with " "non-default-constructed iterator."); assert(AreNodesFromSameContainer(node_, other.node_) && "Comparing iterators from different containers."); assert_valid_generation(node_); other.assert_valid_generation(other.node_); return node_ == other.node_ && position_ == other.position_; } bool IsEndIterator() const { if (position_ != node_->finish()) return false; node_type *node = node_; while (!node->is_root()) { if (node->position() != node->parent()->finish()) return false; node = node->parent(); } return true; } difference_type distance_slow(const_iterator other) const; void increment() { assert_valid_generation(node_); if (node_->is_leaf() && ++position_ < node_->finish()) { return; } increment_slow(); } void increment_slow(); void decrement() { assert_valid_generation(node_); if (node_->is_leaf() && --position_ >= node_->start()) { return; } decrement_slow(); } void decrement_slow(); const key_type &key() const { return node_->key(static_cast<size_type>(position_)); } decltype(std::declval<Node *>()->slot(0)) slot() { return node_->slot(static_cast<size_type>(position_)); } void update_generation() { btree_iterator_generation_info::update_generation(node_); } Node *node_; int position_; }; template <typename Params> class btree { using node_type = btree_node<Params>; using is_key_compare_to = typename Params::is_key_compare_to; using field_type = typename node_type::field_type; struct EmptyNodeType : node_type { using field_type = typename node_type::field_type; node_type *parent; #ifdef ABSL_BTREE_ENABLE_GENERATIONS uint32_t generation = 0; #endif field_type position = 0; field_type start = 0; field_type finish = 0; field_type max_count = node_type::kInternalNodeMaxCount + 1; constexpr EmptyNodeType() : parent(this) {} }; static node_type *EmptyNode() { alignas(node_type::Alignment()) static constexpr EmptyNodeType empty_node; return const_cast<EmptyNodeType *>(&empty_node); } enum : uint32_t { kNodeSlots = node_type::kNodeSlots, kMinNodeValues = kNodeSlots / 2, }; struct node_stats { using size_type = typename Params::size_type; node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} node_stats &operator+=(const node_stats &other) { leaf_nodes += other.leaf_nodes; internal_nodes += other.internal_nodes; return *this; } size_type leaf_nodes; size_type internal_nodes; }; public: using key_type = typename Params::key_type; using value_type = typename Params::value_type; using size_type = typename Params::size_type; using difference_type = typename Params::difference_type; using key_compare = typename Params::key_compare; using original_key_compare = typename Params::original_key_compare; using value_compare = typename Params::value_compare; using allocator_type = typename Params::allocator_type; using reference = typename Params::reference; using const_reference = typename Params::const_reference; using pointer = typename Params::pointer; using const_pointer = typename Params::const_pointer; using iterator = typename btree_iterator<node_type, reference, pointer>::iterator; using const_iterator = typename iterator::const_iterator; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; using node_handle_type = node_handle<Params, Params, allocator_type>; using params_type = Params; using slot_type = typename Params::slot_type; private: template <typename Btree> void copy_or_move_values_in_order(Btree &other); constexpr static bool static_assert_validation(); public: btree(const key_compare &comp, const allocator_type &alloc) : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {} btree(const btree &other) : btree(other, other.allocator()) {} btree(const btree &other, const allocator_type &alloc) : btree(other.key_comp(), alloc) { copy_or_move_values_in_order(other); } btree(btree &&other) noexcept : root_(std::exchange(other.root_, EmptyNode())), rightmost_(std::move(other.rightmost_)), size_(std::exchange(other.size_, 0u)) { other.mutable_rightmost() = EmptyNode(); } btree(btree &&other, const allocator_type &alloc) : btree(other.key_comp(), alloc) { if (alloc == other.allocator()) { swap(other); } else { copy_or_move_values_in_order(other); } } ~btree() { static_assert(static_assert_validation(), "This call must be elided."); clear(); } btree &operator=(const btree &other); btree &operator=(btree &&other) noexcept; iterator begin() { return iterator(leftmost()); } const_iterator begin() const { return const_iterator(leftmost()); } iterator end() { return iterator(rightmost(), rightmost()->finish()); } const_iterator end() const { return const_iterator(rightmost(), rightmost()->finish()); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } template <typename K> iterator lower_bound(const K &key) { return internal_end(internal_lower_bound(key).value); } template <typename K> const_iterator lower_bound(const K &key) const { return internal_end(internal_lower_bound(key).value); } template <typename K> std::pair<iterator, bool> lower_bound_equal(const K &key) const; template <typename K> iterator upper_bound(const K &key) { return internal_end(internal_upper_bound(key)); } template <typename K> const_iterator upper_bound(const K &key) const { return internal_end(internal_upper_bound(key)); } template <typename K> std::pair<iterator, iterator> equal_range(const K &key); template <typename K> std::pair<const_iterator, const_iterator> equal_range(const K &key) const { return const_cast<btree *>(this)->equal_range(key); } template <typename K, typename... Args> std::pair<iterator, bool> insert_unique(const K &key, Args &&...args); template <typename K, typename... Args> std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key, Args &&...args); template <typename InputIterator, typename = decltype(std::declval<const key_compare &>()( params_type::key(*std::declval<InputIterator>()), std::declval<const key_type &>()))> void insert_iterator_unique(InputIterator b, InputIterator e, int); template <typename InputIterator> void insert_iterator_unique(InputIterator b, InputIterator e, char); template <typename ValueType> iterator insert_multi(const key_type &key, ValueType &&v); template <typename ValueType> iterator insert_multi(ValueType &&v) { return insert_multi(params_type::key(v), std::forward<ValueType>(v)); } template <typename ValueType> iterator insert_hint_multi(iterator position, ValueType &&v); template <typename InputIterator> void insert_iterator_multi(InputIterator b, InputIterator e); iterator erase(iterator iter); std::pair<size_type, iterator> erase_range(iterator begin, iterator end); template <typename K> iterator find(const K &key) { return internal_end(internal_find(key)); } template <typename K> const_iterator find(const K &key) const { return internal_end(internal_find(key)); } void clear(); void swap(btree &other); const key_compare &key_comp() const noexcept { return rightmost_.template get<0>(); } template <typename K1, typename K2> bool compare_keys(const K1 &a, const K2 &b) const { return compare_internal::compare_result_as_less_than(key_comp()(a, b)); } value_compare value_comp() const { return value_compare(original_key_compare(key_comp())); } void verify() const; size_type size() const { return size_; } size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } bool empty() const { return size_ == 0; } size_type height() const { size_type h = 0; if (!empty()) { const node_type *n = root(); do { ++h; n = n->parent(); } while (n != root()); } return h; } size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } size_type internal_nodes() const { return internal_stats(root()).internal_nodes; } size_type nodes() const { node_stats stats = internal_stats(root()); return stats.leaf_nodes + stats.internal_nodes; } size_type bytes_used() const { node_stats stats = internal_stats(root()); if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { return sizeof(*this) + node_type::LeafSize(root()->max_count()); } else { return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() + stats.internal_nodes * node_type::InternalSize(); } } static double average_bytes_per_value() { const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0; return node_type::LeafSize() / expected_values_per_node; } double fullness() const { if (empty()) return 0.0; return static_cast<double>(size()) / (nodes() * kNodeSlots); } double overhead() const { if (empty()) return 0.0; return (bytes_used() - size() * sizeof(value_type)) / static_cast<double>(size()); } allocator_type get_allocator() const { return allocator(); } private: friend struct btree_access; node_type *root() { return root_; } const node_type *root() const { return root_; } node_type *&mutable_root() noexcept { return root_; } node_type *rightmost() { return rightmost_.template get<2>(); } const node_type *rightmost() const { return rightmost_.template get<2>(); } node_type *&mutable_rightmost() noexcept { return rightmost_.template get<2>(); } key_compare *mutable_key_comp() noexcept { return &rightmost_.template get<0>(); } node_type *leftmost() { return root()->parent(); } const node_type *leftmost() const { return root()->parent(); } allocator_type *mutable_allocator() noexcept { return &rightmost_.template get<1>(); } const allocator_type &allocator() const noexcept { return rightmost_.template get<1>(); } node_type *allocate(size_type size) { return reinterpret_cast<node_type *>( absl::container_internal::Allocate<node_type::Alignment()>( mutable_allocator(), size)); } node_type *new_internal_node(field_type position, node_type *parent) { node_type *n = allocate(node_type::InternalSize()); n->init_internal(position, parent); return n; } node_type *new_leaf_node(field_type position, node_type *parent) { node_type *n = allocate(node_type::LeafSize()); n->init_leaf(position, kNodeSlots, parent); return n; } node_type *new_leaf_root_node(field_type max_count) { node_type *n = allocate(node_type::LeafSize(max_count)); n->init_leaf(0, max_count, n); return n; } iterator rebalance_after_delete(iterator iter); void rebalance_or_split(iterator *iter); void merge_nodes(node_type *left, node_type *right); bool try_merge_or_rebalance(iterator *iter); void try_shrink(); iterator internal_end(iterator iter) { return iter.node_ != nullptr ? iter : end(); } const_iterator internal_end(const_iterator iter) const { return iter.node_ != nullptr ? iter : end(); } template <typename... Args> iterator internal_emplace(iterator iter, Args &&...args); template <typename IterType> static IterType internal_last(IterType iter); template <typename K> SearchResult<iterator, is_key_compare_to::value> internal_locate( const K &key) const; template <typename K> SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( const K &key) const; template <typename K> iterator internal_upper_bound(const K &key) const; template <typename K> iterator internal_find(const K &key) const; size_type internal_verify(const node_type *node, const key_type *lo, const key_type *hi) const; node_stats internal_stats(const node_type *node) const { if (node == nullptr || (node == root() && empty())) { return node_stats(0, 0); } if (node->is_leaf()) { return node_stats(1, 0); } node_stats res(0, 1); for (int i = node->start(); i <= node->finish(); ++i) { res += internal_stats(node->child(i)); } return res; } node_type *root_; absl::container_internal::CompressedTuple<key_compare, allocator_type, node_type *> rightmost_; size_type size_; }; template <typename P> template <typename... Args> inline void btree_node<P>::emplace_value(const field_type i, allocator_type *alloc, Args &&...args) { assert(i >= start()); assert(i <= finish()); if (i < finish()) { transfer_n_backward(finish() - i, i + 1, i, this, alloc); } value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...); set_finish(finish() + 1); if (is_internal() && finish() > i + 1) { for (field_type j = finish(); j > i + 1; --j) { set_child(j, child(j - 1)); } clear_child(i + 1); } } template <typename P> inline void btree_node<P>::remove_values(const field_type i, const field_type to_erase, allocator_type *alloc) { value_destroy_n(i, to_erase, alloc); const field_type orig_finish = finish(); const field_type src_i = i + to_erase; transfer_n(orig_finish - src_i, i, src_i, this, alloc); if (is_internal()) { for (field_type j = 0; j < to_erase; ++j) { clear_and_delete(child(i + j + 1), alloc); } for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) { set_child(j - to_erase, child(j)); clear_child(j); } } set_finish(orig_finish - to_erase); } template <typename P> void btree_node<P>::rebalance_right_to_left(field_type to_move, btree_node *right, allocator_type *alloc) { assert(parent() == right->parent()); assert(position() + 1 == right->position()); assert(right->count() >= count()); assert(to_move >= 1); assert(to_move <= right->count()); transfer(finish(), position(), parent(), alloc); transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); parent()->transfer(position(), right->start() + to_move - 1, right, alloc); right->transfer_n(right->count() - to_move, right->start(), right->start() + to_move, right, alloc); if (is_internal()) { for (field_type i = 0; i < to_move; ++i) { init_child(finish() + i + 1, right->child(i)); } for (field_type i = right->start(); i <= right->finish() - to_move; ++i) { assert(i + to_move <= right->max_count()); right->init_child(i, right->child(i + to_move)); right->clear_child(i + to_move); } } set_finish(finish() + to_move); right->set_finish(right->finish() - to_move); } template <typename P> void btree_node<P>::rebalance_left_to_right(field_type to_move, btree_node *right, allocator_type *alloc) { assert(parent() == right->parent()); assert(position() + 1 == right->position()); assert(count() >= right->count()); assert(to_move >= 1); assert(to_move <= count()); right->transfer_n_backward(right->count(), right->start() + to_move, right->start(), right, alloc); right->transfer(right->start() + to_move - 1, position(), parent(), alloc); right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, alloc); parent()->transfer(position(), finish() - to_move, this, alloc); if (is_internal()) { for (field_type i = right->finish() + 1; i > right->start(); --i) { right->init_child(i - 1 + to_move, right->child(i - 1)); right->clear_child(i - 1); } for (field_type i = 1; i <= to_move; ++i) { right->init_child(i - 1, child(finish() - to_move + i)); clear_child(finish() - to_move + i); } } set_finish(finish() - to_move); right->set_finish(right->finish() + to_move); } template <typename P> void btree_node<P>::split(const int insert_position, btree_node *dest, allocator_type *alloc) { assert(dest->count() == 0); assert(max_count() == kNodeSlots); assert(position() + 1 == dest->position()); assert(parent() == dest->parent()); if (insert_position == start()) { dest->set_finish(dest->start() + finish() - 1); } else if (insert_position == kNodeSlots) { dest->set_finish(dest->start()); } else { dest->set_finish(dest->start() + count() / 2); } set_finish(finish() - dest->count()); assert(count() >= 1); dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); --mutable_finish(); parent()->emplace_value(position(), alloc, finish_slot()); value_destroy(finish(), alloc); parent()->set_child_noupdate_position(position() + 1, dest); if (is_internal()) { for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish(); ++i, ++j) { assert(child(j) != nullptr); dest->init_child(i, child(j)); clear_child(j); } } } template <typename P> void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { assert(parent() == src->parent()); assert(position() + 1 == src->position()); value_init(finish(), alloc, parent()->slot(position())); transfer_n(src->count(), finish() + 1, src->start(), src, alloc); if (is_internal()) { for (field_type i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) { init_child(j, src->child(i)); src->clear_child(i); } } set_finish(start() + 1 + count() + src->count()); src->set_finish(src->start()); parent()->remove_values(position(), 1, alloc); } template <typename P> void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { if (node->is_leaf()) { node->value_destroy_n(node->start(), node->count(), alloc); deallocate(LeafSize(node->max_count()), node, alloc); return; } if (node->count() == 0) { deallocate(InternalSize(), node, alloc); return; } btree_node *delete_root_parent = node->parent(); while (node->is_internal()) node = node->start_child(); #ifdef ABSL_BTREE_ENABLE_GENERATIONS btree_node *leftmost_leaf = node; #endif size_type pos = node->position(); btree_node *parent = node->parent(); for (;;) { assert(pos <= parent->finish()); do { node = parent->child(static_cast<field_type>(pos)); if (node->is_internal()) { while (node->is_internal()) node = node->start_child(); pos = node->position(); parent = node->parent(); } node->value_destroy_n(node->start(), node->count(), alloc); #ifdef ABSL_BTREE_ENABLE_GENERATIONS if (leftmost_leaf != node) #endif deallocate(LeafSize(node->max_count()), node, alloc); ++pos; } while (pos <= parent->finish()); assert(pos > parent->finish()); do { node = parent; pos = node->position(); parent = node->parent(); node->value_destroy_n(node->start(), node->count(), alloc); deallocate(InternalSize(), node, alloc); if (parent == delete_root_parent) { #ifdef ABSL_BTREE_ENABLE_GENERATIONS deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc); #endif return; } ++pos; } while (pos > parent->finish()); } } template <typename N, typename R, typename P> auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const -> difference_type { const_iterator begin = other; const_iterator end = *this; assert(begin.node_ != end.node_ || !begin.node_->is_leaf() || begin.position_ != end.position_); const node_type *node = begin.node_; difference_type count = node->is_leaf() ? -begin.position_ : 0; if (node->is_internal()) { ++count; node = node->child(begin.position_ + 1); } while (node->is_internal()) node = node->start_child(); size_type pos = node->position(); const node_type *parent = node->parent(); for (;;) { assert(pos <= parent->finish()); do { node = parent->child(static_cast<field_type>(pos)); if (node->is_internal()) { while (node->is_internal()) node = node->start_child(); pos = node->position(); parent = node->parent(); } if (node == end.node_) return count + end.position_; if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) return count + node->count(); count += node->count() + 1; ++pos; } while (pos <= parent->finish()); assert(pos > parent->finish()); do { node = parent; pos = node->position(); parent = node->parent(); if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) return count - 1; ++pos; } while (pos > parent->finish()); } } template <typename N, typename R, typename P> void btree_iterator<N, R, P>::increment_slow() { if (node_->is_leaf()) { assert(position_ >= node_->finish()); btree_iterator save(*this); while (position_ == node_->finish() && !node_->is_root()) { assert(node_->parent()->child(node_->position()) == node_); position_ = node_->position(); node_ = node_->parent(); } if (position_ == node_->finish()) { *this = save; } } else { assert(position_ < node_->finish()); node_ = node_->child(static_cast<field_type>(position_ + 1)); while (node_->is_internal()) { node_ = node_->start_child(); } position_ = node_->start(); } } template <typename N, typename R, typename P> void btree_iterator<N, R, P>::decrement_slow() { if (node_->is_leaf()) { assert(position_ <= -1); btree_iterator save(*this); while (position_ < node_->start() && !node_->is_root()) { assert(node_->parent()->child(node_->position()) == node_); position_ = node_->position() - 1; node_ = node_->parent(); } if (position_ < node_->start()) { *this = save; } } else { assert(position_ >= node_->start()); node_ = node_->child(static_cast<field_type>(position_)); while (node_->is_internal()) { node_ = node_->child(node_->finish()); } position_ = node_->finish() - 1; } } template <typename P> template <typename Btree> void btree<P>::copy_or_move_values_in_order(Btree &other) { static_assert(std::is_same<btree, Btree>::value || std::is_same<const btree, Btree>::value, "Btree type must be same or const."); assert(empty()); auto iter = other.begin(); if (iter == other.end()) return; insert_multi(iter.slot()); ++iter; for (; iter != other.end(); ++iter) { internal_emplace(end(), iter.slot()); } } template <typename P> constexpr bool btree<P>::static_assert_validation() { static_assert(std::is_nothrow_copy_constructible<key_compare>::value, "Key comparison must be nothrow copy constructible"); static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, "Allocator must be nothrow copy constructible"); static_assert(std::is_trivially_copyable<iterator>::value, "iterator not trivially copyable."); static_assert( kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), "target node size too large"); static_assert( compare_has_valid_result_type<key_compare, key_type>(), "key comparison function must return absl::{weak,strong}_ordering or " "bool."); static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, "node space assumption incorrect"); return true; } template <typename P> template <typename K> auto btree<P>::lower_bound_equal(const K &key) const -> std::pair<iterator, bool> { const SearchResult<iterator, is_key_compare_to::value> res = internal_lower_bound(key); const iterator lower = iterator(internal_end(res.value)); const bool equal = res.HasMatch() ? res.IsEq() : lower != end() && !compare_keys(key, lower.key()); return {lower, equal}; } template <typename P> template <typename K> auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); const iterator lower = lower_and_equal.first; if (!lower_and_equal.second) { return {lower, lower}; } const iterator next = std::next(lower); if (!params_type::template can_have_multiple_equivalent_keys<K>()) { assert(next == end() || compare_keys(key, next.key())); return {lower, next}; } if (next == end() || compare_keys(key, next.key())) return {lower, next}; return {lower, upper_bound(key)}; } template <typename P> template <typename K, typename... Args> auto btree<P>::insert_unique(const K &key, Args &&...args) -> std::pair<iterator, bool> { if (empty()) { mutable_root() = mutable_rightmost() = new_leaf_root_node(1); } SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); iterator iter = res.value; if (res.HasMatch()) { if (res.IsEq()) { return {iter, false}; } } else { iterator last = internal_last(iter); if (last.node_ && !compare_keys(key, last.key())) { return {last, false}; } } return {internal_emplace(iter, std::forward<Args>(args)...), true}; } template <typename P> template <typename K, typename... Args> inline auto btree<P>::insert_hint_unique(iterator position, const K &key, Args &&...args) -> std::pair<iterator, bool> { if (!empty()) { if (position == end() || compare_keys(key, position.key())) { if (position == begin() || compare_keys(std::prev(position).key(), key)) { return {internal_emplace(position, std::forward<Args>(args)...), true}; } } else if (compare_keys(position.key(), key)) { ++position; if (position == end() || compare_keys(key, position.key())) { return {internal_emplace(position, std::forward<Args>(args)...), true}; } } else { return {position, false}; } } return insert_unique(key, std::forward<Args>(args)...); } template <typename P> template <typename InputIterator, typename> void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { for (; b != e; ++b) { insert_hint_unique(end(), params_type::key(*b), *b); } } template <typename P> template <typename InputIterator> void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { for (; b != e; ++b) { auto node_handle = CommonAccess::Construct<node_handle_type>(get_allocator(), *b); slot_type *slot = CommonAccess::GetSlot(node_handle); insert_hint_unique(end(), params_type::key(slot), slot); } } template <typename P> template <typename ValueType> auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { if (empty()) { mutable_root() = mutable_rightmost() = new_leaf_root_node(1); } iterator iter = internal_upper_bound(key); if (iter.node_ == nullptr) { iter = end(); } return internal_emplace(iter, std::forward<ValueType>(v)); } template <typename P> template <typename ValueType> auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { if (!empty()) { const key_type &key = params_type::key(v); if (position == end() || !compare_keys(position.key(), key)) { if (position == begin() || !compare_keys(key, std::prev(position).key())) { return internal_emplace(position, std::forward<ValueType>(v)); } } else { ++position; if (position == end() || !compare_keys(position.key(), key)) { return internal_emplace(position, std::forward<ValueType>(v)); } } } return insert_multi(std::forward<ValueType>(v)); } template <typename P> template <typename InputIterator> void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { for (; b != e; ++b) { insert_hint_multi(end(), *b); } } template <typename P> auto btree<P>::operator=(const btree &other) -> btree & { if (this != &other) { clear(); *mutable_key_comp() = other.key_comp(); if (absl::allocator_traits< allocator_type>::propagate_on_container_copy_assignment::value) { *mutable_allocator() = other.allocator(); } copy_or_move_values_in_order(other); } return *this; } template <typename P> auto btree<P>::operator=(btree &&other) noexcept -> btree & { if (this != &other) { clear(); using std::swap; if (absl::allocator_traits< allocator_type>::propagate_on_container_move_assignment::value) { swap(root_, other.root_); swap(rightmost_, other.rightmost_); swap(size_, other.size_); } else { if (allocator() == other.allocator()) { swap(mutable_root(), other.mutable_root()); swap(*mutable_key_comp(), *other.mutable_key_comp()); swap(mutable_rightmost(), other.mutable_rightmost()); swap(size_, other.size_); } else { *mutable_key_comp() = other.key_comp(); copy_or_move_values_in_order(other); } } } return *this; } template <typename P> auto btree<P>::erase(iterator iter) -> iterator { iter.node_->value_destroy(static_cast<field_type>(iter.position_), mutable_allocator()); iter.update_generation(); const bool internal_delete = iter.node_->is_internal(); if (internal_delete) { iterator internal_iter(iter); --iter; assert(iter.node_->is_leaf()); internal_iter.node_->transfer( static_cast<size_type>(internal_iter.position_), static_cast<size_type>(iter.position_), iter.node_, mutable_allocator()); } else { const field_type transfer_from = static_cast<field_type>(iter.position_ + 1); const field_type num_to_transfer = iter.node_->finish() - transfer_from; iter.node_->transfer_n(num_to_transfer, static_cast<size_type>(iter.position_), transfer_from, iter.node_, mutable_allocator()); } iter.node_->set_finish(iter.node_->finish() - 1); --size_; iterator res = rebalance_after_delete(iter); if (internal_delete) { ++res; } return res; } template <typename P> auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { iterator res(iter); bool first_iteration = true; for (;;) { if (iter.node_ == root()) { try_shrink(); if (empty()) { return end(); } break; } if (iter.node_->count() >= kMinNodeValues) { break; } bool merged = try_merge_or_rebalance(&iter); if (first_iteration) { res = iter; first_iteration = false; } if (!merged) { break; } iter.position_ = iter.node_->position(); iter.node_ = iter.node_->parent(); } res.update_generation(); if (res.position_ == res.node_->finish()) { res.position_ = res.node_->finish() - 1; ++res; } return res; } template <typename P> auto btree<P>::erase_range(iterator begin, iterator end) -> std::pair<size_type, iterator> { size_type count = static_cast<size_type>(end - begin); assert(count >= 0); if (count == 0) { return {0, begin}; } if (static_cast<size_type>(count) == size_) { clear(); return {count, this->end()}; } if (begin.node_ == end.node_) { assert(end.position_ > begin.position_); begin.node_->remove_values( static_cast<field_type>(begin.position_), static_cast<field_type>(end.position_ - begin.position_), mutable_allocator()); size_ -= count; return {count, rebalance_after_delete(begin)}; } const size_type target_size = size_ - count; while (size_ > target_size) { if (begin.node_->is_leaf()) { const size_type remaining_to_erase = size_ - target_size; const size_type remaining_in_node = static_cast<size_type>(begin.node_->finish() - begin.position_); const field_type to_erase = static_cast<field_type>( (std::min)(remaining_to_erase, remaining_in_node)); begin.node_->remove_values(static_cast<field_type>(begin.position_), to_erase, mutable_allocator()); size_ -= to_erase; begin = rebalance_after_delete(begin); } else { begin = erase(begin); } } begin.update_generation(); return {count, begin}; } template <typename P> void btree<P>::clear() { if (!empty()) { node_type::clear_and_delete(root(), mutable_allocator()); } mutable_root() = mutable_rightmost() = EmptyNode(); size_ = 0; } template <typename P> void btree<P>::swap(btree &other) { using std::swap; if (absl::allocator_traits< allocator_type>::propagate_on_container_swap::value) { swap(rightmost_, other.rightmost_); } else { assert(allocator() == other.allocator()); swap(mutable_rightmost(), other.mutable_rightmost()); swap(*mutable_key_comp(), *other.mutable_key_comp()); } swap(mutable_root(), other.mutable_root()); swap(size_, other.size_); } template <typename P> void btree<P>::verify() const { assert(root() != nullptr); assert(leftmost() != nullptr); assert(rightmost() != nullptr); assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); assert(leftmost() == (++const_iterator(root(), -1)).node_); assert(rightmost() == (--const_iterator(root(), root()->finish())).node_); assert(leftmost()->is_leaf()); assert(rightmost()->is_leaf()); } template <typename P> void btree<P>::rebalance_or_split(iterator *iter) { node_type *&node = iter->node_; int &insert_position = iter->position_; assert(node->count() == node->max_count()); assert(kNodeSlots == node->max_count()); node_type *parent = node->parent(); if (node != root()) { if (node->position() > parent->start()) { node_type *left = parent->child(node->position() - 1); assert(left->max_count() == kNodeSlots); if (left->count() < kNodeSlots) { field_type to_move = (kNodeSlots - left->count()) / (1 + (static_cast<field_type>(insert_position) < kNodeSlots)); to_move = (std::max)(field_type{1}, to_move); if (static_cast<field_type>(insert_position) - to_move >= node->start() || left->count() + to_move < kNodeSlots) { left->rebalance_right_to_left(to_move, node, mutable_allocator()); assert(node->max_count() - node->count() == to_move); insert_position = static_cast<int>( static_cast<field_type>(insert_position) - to_move); if (insert_position < node->start()) { insert_position = insert_position + left->count() + 1; node = left; } assert(node->count() < node->max_count()); return; } } } if (node->position() < parent->finish()) { node_type *right = parent->child(node->position() + 1); assert(right->max_count() == kNodeSlots); if (right->count() < kNodeSlots) { field_type to_move = (kNodeSlots - right->count()) / (1 + (insert_position > node->start())); to_move = (std::max)(field_type{1}, to_move); if (static_cast<field_type>(insert_position) <= node->finish() - to_move || right->count() + to_move < kNodeSlots) { node->rebalance_left_to_right(to_move, right, mutable_allocator()); if (insert_position > node->finish()) { insert_position = insert_position - node->count() - 1; node = right; } assert(node->count() < node->max_count()); return; } } } assert(parent->max_count() == kNodeSlots); if (parent->count() == kNodeSlots) { iterator parent_iter(parent, node->position()); rebalance_or_split(&parent_iter); parent = node->parent(); } } else { parent = new_internal_node(0, parent); parent->set_generation(root()->generation()); parent->init_child(parent->start(), node); mutable_root() = parent; assert(parent->start_child()->is_internal() || parent->start_child() == rightmost()); } node_type *split_node; if (node->is_leaf()) { split_node = new_leaf_node(node->position() + 1, parent); node->split(insert_position, split_node, mutable_allocator()); if (rightmost() == node) mutable_rightmost() = split_node; } else { split_node = new_internal_node(node->position() + 1, parent); node->split(insert_position, split_node, mutable_allocator()); } if (insert_position > node->finish()) { insert_position = insert_position - node->count() - 1; node = split_node; } } template <typename P> void btree<P>::merge_nodes(node_type *left, node_type *right) { left->merge(right, mutable_allocator()); if (rightmost() == right) mutable_rightmost() = left; } template <typename P> bool btree<P>::try_merge_or_rebalance(iterator *iter) { node_type *parent = iter->node_->parent(); if (iter->node_->position() > parent->start()) { node_type *left = parent->child(iter->node_->position() - 1); assert(left->max_count() == kNodeSlots); if (1U + left->count() + iter->node_->count() <= kNodeSlots) { iter->position_ += 1 + left->count(); merge_nodes(left, iter->node_); iter->node_ = left; return true; } } if (iter->node_->position() < parent->finish()) { node_type *right = parent->child(iter->node_->position() + 1); assert(right->max_count() == kNodeSlots); if (1U + iter->node_->count() + right->count() <= kNodeSlots) { merge_nodes(iter->node_, right); return true; } if (right->count() > kMinNodeValues && (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) { field_type to_move = (right->count() - iter->node_->count()) / 2; to_move = (std::min)(to_move, static_cast<field_type>(right->count() - 1)); iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator()); return false; } } if (iter->node_->position() > parent->start()) { node_type *left = parent->child(iter->node_->position() - 1); if (left->count() > kMinNodeValues && (iter->node_->count() == 0 || iter->position_ < iter->node_->finish())) { field_type to_move = (left->count() - iter->node_->count()) / 2; to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1)); left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator()); iter->position_ += to_move; return false; } } return false; } template <typename P> void btree<P>::try_shrink() { node_type *orig_root = root(); if (orig_root->count() > 0) { return; } if (orig_root->is_leaf()) { assert(size() == 0); mutable_root() = mutable_rightmost() = EmptyNode(); } else { node_type *child = orig_root->start_child(); child->make_root(); mutable_root() = child; } node_type::clear_and_delete(orig_root, mutable_allocator()); } template <typename P> template <typename IterType> inline IterType btree<P>::internal_last(IterType iter) { assert(iter.node_ != nullptr); while (iter.position_ == iter.node_->finish()) { iter.position_ = iter.node_->position(); iter.node_ = iter.node_->parent(); if (iter.node_->is_leaf()) { iter.node_ = nullptr; break; } } iter.update_generation(); return iter; } template <typename P> template <typename... Args> inline auto btree<P>::internal_emplace(iterator iter, Args &&...args) -> iterator { if (iter.node_->is_internal()) { --iter; ++iter.position_; } const field_type max_count = iter.node_->max_count(); allocator_type *alloc = mutable_allocator(); const auto transfer_and_delete = [&](node_type *old_node, node_type *new_node) { new_node->transfer_n(old_node->count(), new_node->start(), old_node->start(), old_node, alloc); new_node->set_finish(old_node->finish()); old_node->set_finish(old_node->start()); new_node->set_generation(old_node->generation()); node_type::clear_and_delete(old_node, alloc); }; const auto replace_leaf_root_node = [&](field_type new_node_size) { assert(iter.node_ == root()); node_type *old_root = iter.node_; node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size); transfer_and_delete(old_root, new_root); mutable_root() = mutable_rightmost() = new_root; }; bool replaced_node = false; if (iter.node_->count() == max_count) { if (max_count < kNodeSlots) { replace_leaf_root_node(static_cast<field_type>( (std::min)(static_cast<int>(kNodeSlots), 2 * max_count))); replaced_node = true; } else { rebalance_or_split(&iter); } } (void)replaced_node; #if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ defined(ABSL_HAVE_HWADDRESS_SANITIZER) if (!replaced_node) { assert(iter.node_->is_leaf()); if (iter.node_->is_root()) { replace_leaf_root_node(max_count); } else { node_type *old_node = iter.node_; const bool was_rightmost = rightmost() == old_node; const bool was_leftmost = leftmost() == old_node; node_type *parent = old_node->parent(); const field_type position = old_node->position(); node_type *new_node = iter.node_ = new_leaf_node(position, parent); parent->set_child_noupdate_position(position, new_node); transfer_and_delete(old_node, new_node); if (was_rightmost) mutable_rightmost() = new_node; if (was_leftmost) root()->set_parent(new_node); } } #endif iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc, std::forward<Args>(args)...); assert( iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_), original_key_compare(key_comp())) && "If this assert fails, then either (1) the comparator may violate " "transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see " "https: "key may have been mutated after it was inserted into the tree."); ++size_; iter.update_generation(); return iter; } template <typename P> template <typename K> inline auto btree<P>::internal_locate(const K &key) const -> SearchResult<iterator, is_key_compare_to::value> { iterator iter(const_cast<node_type *>(root())); for (;;) { SearchResult<size_type, is_key_compare_to::value> res = iter.node_->lower_bound(key, key_comp()); iter.position_ = static_cast<int>(res.value); if (res.IsEq()) { return {iter, MatchKind::kEq}; } if (iter.node_->is_leaf()) { break; } iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); } return {iter, MatchKind::kNe}; } template <typename P> template <typename K> auto btree<P>::internal_lower_bound(const K &key) const -> SearchResult<iterator, is_key_compare_to::value> { if (!params_type::template can_have_multiple_equivalent_keys<K>()) { SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); ret.value = internal_last(ret.value); return ret; } iterator iter(const_cast<node_type *>(root())); SearchResult<size_type, is_key_compare_to::value> res; bool seen_eq = false; for (;;) { res = iter.node_->lower_bound(key, key_comp()); iter.position_ = static_cast<int>(res.value); if (iter.node_->is_leaf()) { break; } seen_eq = seen_eq || res.IsEq(); iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); } if (res.IsEq()) return {iter, MatchKind::kEq}; return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; } template <typename P> template <typename K> auto btree<P>::internal_upper_bound(const K &key) const -> iterator { iterator iter(const_cast<node_type *>(root())); for (;;) { iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp())); if (iter.node_->is_leaf()) { break; } iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); } return internal_last(iter); } template <typename P> template <typename K> auto btree<P>::internal_find(const K &key) const -> iterator { SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); if (res.HasMatch()) { if (res.IsEq()) { return res.value; } } else { const iterator iter = internal_last(res.value); if (iter.node_ != nullptr && !compare_keys(key, iter.key())) { return iter; } } return {nullptr, 0}; } template <typename P> typename btree<P>::size_type btree<P>::internal_verify( const node_type *node, const key_type *lo, const key_type *hi) const { assert(node->count() > 0); assert(node->count() <= node->max_count()); if (lo) { assert(!compare_keys(node->key(node->start()), *lo)); } if (hi) { assert(!compare_keys(*hi, node->key(node->finish() - 1))); } for (int i = node->start() + 1; i < node->finish(); ++i) { assert(!compare_keys(node->key(i), node->key(i - 1))); } size_type count = node->count(); if (node->is_internal()) { for (field_type i = node->start(); i <= node->finish(); ++i) { assert(node->child(i) != nullptr); assert(node->child(i)->parent() == node); assert(node->child(i)->position() == i); count += internal_verify(node->child(i), i == node->start() ? lo : &node->key(i - 1), i == node->finish() ? hi : &node->key(i)); } } return count; } struct btree_access { template <typename BtreeContainer, typename Pred> static auto erase_if(BtreeContainer &container, Pred pred) -> typename BtreeContainer::size_type { const auto initial_size = container.size(); auto &tree = container.tree_; auto *alloc = tree.mutable_allocator(); for (auto it = container.begin(); it != container.end();) { if (!pred(*it)) { ++it; continue; } auto *node = it.node_; if (node->is_internal()) { it = container.erase(it); continue; } int to_pos = it.position_; node->value_destroy(it.position_, alloc); while (++it.position_ < node->finish()) { it.update_generation(); if (pred(*it)) { node->value_destroy(it.position_, alloc); } else { node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc); } } const int num_deleted = node->finish() - to_pos; tree.size_ -= num_deleted; node->set_finish(to_pos); it.position_ = to_pos; it = tree.rebalance_after_delete(it); } return initial_size - container.size(); } }; #undef ABSL_BTREE_ENABLE_GENERATIONS } ABSL_NAMESPACE_END } #endif
#include "absl/container/btree_test.h" #include <algorithm> #include <array> #include <cstdint> #include <functional> #include <iostream> #include <iterator> #include <limits> #include <map> #include <memory> #include <numeric> #include <stdexcept> #include <string> #include <type_traits> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/algorithm/container.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/container/btree_map.h" #include "absl/container/btree_set.h" #include "absl/container/internal/test_allocator.h" #include "absl/container/internal/test_instance_tracker.h" #include "absl/flags/flag.h" #include "absl/hash/hash_testing.h" #include "absl/memory/memory.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/compare.h" #include "absl/types/optional.h" ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests"); namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { namespace { using ::absl::test_internal::CopyableMovableInstance; using ::absl::test_internal::InstanceTracker; using ::absl::test_internal::MovableOnlyInstance; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::IsEmpty; using ::testing::IsNull; using ::testing::Pair; using ::testing::SizeIs; template <typename T, typename U> void CheckPairEquals(const T &x, const U &y) { ABSL_INTERNAL_CHECK(x == y, "Values are unequal."); } template <typename T, typename U, typename V, typename W> void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) { CheckPairEquals(x.first, y.first); CheckPairEquals(x.second, y.second); } } template <typename TreeType, typename CheckerType> class base_checker { public: using key_type = typename TreeType::key_type; using value_type = typename TreeType::value_type; using key_compare = typename TreeType::key_compare; using pointer = typename TreeType::pointer; using const_pointer = typename TreeType::const_pointer; using reference = typename TreeType::reference; using const_reference = typename TreeType::const_reference; using size_type = typename TreeType::size_type; using difference_type = typename TreeType::difference_type; using iterator = typename TreeType::iterator; using const_iterator = typename TreeType::const_iterator; using reverse_iterator = typename TreeType::reverse_iterator; using const_reverse_iterator = typename TreeType::const_reverse_iterator; public: base_checker() : const_tree_(tree_) {} base_checker(const base_checker &other) : tree_(other.tree_), const_tree_(tree_), checker_(other.checker_) {} template <typename InputIterator> base_checker(InputIterator b, InputIterator e) : tree_(b, e), const_tree_(tree_), checker_(b, e) {} iterator begin() { return tree_.begin(); } const_iterator begin() const { return tree_.begin(); } iterator end() { return tree_.end(); } const_iterator end() const { return tree_.end(); } reverse_iterator rbegin() { return tree_.rbegin(); } const_reverse_iterator rbegin() const { return tree_.rbegin(); } reverse_iterator rend() { return tree_.rend(); } const_reverse_iterator rend() const { return tree_.rend(); } template <typename IterType, typename CheckerIterType> IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const { if (tree_iter == tree_.end()) { ABSL_INTERNAL_CHECK(checker_iter == checker_.end(), "Checker iterator not at end."); } else { CheckPairEquals(*tree_iter, *checker_iter); } return tree_iter; } template <typename IterType, typename CheckerIterType> IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const { if (tree_iter == tree_.rend()) { ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(), "Checker iterator not at rend."); } else { CheckPairEquals(*tree_iter, *checker_iter); } return tree_iter; } void value_check(const value_type &v) { typename KeyOfValue<typename TreeType::key_type, typename TreeType::value_type>::type key_of_value; const key_type &key = key_of_value(v); CheckPairEquals(*find(key), v); lower_bound(key); upper_bound(key); equal_range(key); contains(key); count(key); } void erase_check(const key_type &key) { EXPECT_FALSE(tree_.contains(key)); EXPECT_EQ(tree_.find(key), const_tree_.end()); EXPECT_FALSE(const_tree_.contains(key)); EXPECT_EQ(const_tree_.find(key), tree_.end()); EXPECT_EQ(tree_.equal_range(key).first, const_tree_.equal_range(key).second); } iterator lower_bound(const key_type &key) { return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); } const_iterator lower_bound(const key_type &key) const { return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); } iterator upper_bound(const key_type &key) { return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); } const_iterator upper_bound(const key_type &key) const { return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); } std::pair<iterator, iterator> equal_range(const key_type &key) { std::pair<typename CheckerType::iterator, typename CheckerType::iterator> checker_res = checker_.equal_range(key); std::pair<iterator, iterator> tree_res = tree_.equal_range(key); iter_check(tree_res.first, checker_res.first); iter_check(tree_res.second, checker_res.second); return tree_res; } std::pair<const_iterator, const_iterator> equal_range( const key_type &key) const { std::pair<typename CheckerType::const_iterator, typename CheckerType::const_iterator> checker_res = checker_.equal_range(key); std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key); iter_check(tree_res.first, checker_res.first); iter_check(tree_res.second, checker_res.second); return tree_res; } iterator find(const key_type &key) { return iter_check(tree_.find(key), checker_.find(key)); } const_iterator find(const key_type &key) const { return iter_check(tree_.find(key), checker_.find(key)); } bool contains(const key_type &key) const { return find(key) != end(); } size_type count(const key_type &key) const { size_type res = checker_.count(key); EXPECT_EQ(res, tree_.count(key)); return res; } base_checker &operator=(const base_checker &other) { tree_ = other.tree_; checker_ = other.checker_; return *this; } int erase(const key_type &key) { int size = tree_.size(); int res = checker_.erase(key); EXPECT_EQ(res, tree_.count(key)); EXPECT_EQ(res, tree_.erase(key)); EXPECT_EQ(tree_.count(key), 0); EXPECT_EQ(tree_.size(), size - res); erase_check(key); return res; } iterator erase(iterator iter) { key_type key = iter.key(); int size = tree_.size(); int count = tree_.count(key); auto checker_iter = checker_.lower_bound(key); for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) { ++checker_iter; } auto checker_next = checker_iter; ++checker_next; checker_.erase(checker_iter); iter = tree_.erase(iter); EXPECT_EQ(tree_.size(), checker_.size()); EXPECT_EQ(tree_.size(), size - 1); EXPECT_EQ(tree_.count(key), count - 1); if (count == 1) { erase_check(key); } return iter_check(iter, checker_next); } void erase(iterator begin, iterator end) { int size = tree_.size(); int count = std::distance(begin, end); auto checker_begin = checker_.lower_bound(begin.key()); for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) { ++checker_begin; } auto checker_end = end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key()); if (end != tree_.end()) { for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) { ++checker_end; } } const auto checker_ret = checker_.erase(checker_begin, checker_end); const auto tree_ret = tree_.erase(begin, end); EXPECT_EQ(std::distance(checker_.begin(), checker_ret), std::distance(tree_.begin(), tree_ret)); EXPECT_EQ(tree_.size(), checker_.size()); EXPECT_EQ(tree_.size(), size - count); } void clear() { tree_.clear(); checker_.clear(); } void swap(base_checker &other) { tree_.swap(other.tree_); checker_.swap(other.checker_); } void verify() const { tree_.verify(); EXPECT_EQ(tree_.size(), checker_.size()); auto checker_iter = checker_.begin(); const_iterator tree_iter(tree_.begin()); for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) { CheckPairEquals(*tree_iter, *checker_iter); } for (int n = tree_.size() - 1; n >= 0; --n) { iter_check(tree_iter, checker_iter); --tree_iter; --checker_iter; } EXPECT_EQ(tree_iter, tree_.begin()); EXPECT_EQ(checker_iter, checker_.begin()); auto checker_riter = checker_.rbegin(); const_reverse_iterator tree_riter(tree_.rbegin()); for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) { CheckPairEquals(*tree_riter, *checker_riter); } for (int n = tree_.size() - 1; n >= 0; --n) { riter_check(tree_riter, checker_riter); --tree_riter; --checker_riter; } EXPECT_EQ(tree_riter, tree_.rbegin()); EXPECT_EQ(checker_riter, checker_.rbegin()); } const TreeType &tree() const { return tree_; } size_type size() const { EXPECT_EQ(tree_.size(), checker_.size()); return tree_.size(); } size_type max_size() const { return tree_.max_size(); } bool empty() const { EXPECT_EQ(tree_.empty(), checker_.empty()); return tree_.empty(); } protected: TreeType tree_; const TreeType &const_tree_; CheckerType checker_; }; namespace { template <typename TreeType, typename CheckerType> class unique_checker : public base_checker<TreeType, CheckerType> { using super_type = base_checker<TreeType, CheckerType>; public: using iterator = typename super_type::iterator; using value_type = typename super_type::value_type; public: unique_checker() : super_type() {} unique_checker(const unique_checker &other) : super_type(other) {} template <class InputIterator> unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {} unique_checker &operator=(const unique_checker &) = default; std::pair<iterator, bool> insert(const value_type &v) { int size = this->tree_.size(); std::pair<typename CheckerType::iterator, bool> checker_res = this->checker_.insert(v); std::pair<iterator, bool> tree_res = this->tree_.insert(v); CheckPairEquals(*tree_res.first, *checker_res.first); EXPECT_EQ(tree_res.second, checker_res.second); EXPECT_EQ(this->tree_.size(), this->checker_.size()); EXPECT_EQ(this->tree_.size(), size + tree_res.second); return tree_res; } iterator insert(iterator position, const value_type &v) { int size = this->tree_.size(); std::pair<typename CheckerType::iterator, bool> checker_res = this->checker_.insert(v); iterator tree_res = this->tree_.insert(position, v); CheckPairEquals(*tree_res, *checker_res.first); EXPECT_EQ(this->tree_.size(), this->checker_.size()); EXPECT_EQ(this->tree_.size(), size + checker_res.second); return tree_res; } template <typename InputIterator> void insert(InputIterator b, InputIterator e) { for (; b != e; ++b) { insert(*b); } } }; template <typename TreeType, typename CheckerType> class multi_checker : public base_checker<TreeType, CheckerType> { using super_type = base_checker<TreeType, CheckerType>; public: using iterator = typename super_type::iterator; using value_type = typename super_type::value_type; public: multi_checker() : super_type() {} multi_checker(const multi_checker &other) : super_type(other) {} template <class InputIterator> multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {} multi_checker &operator=(const multi_checker &) = default; iterator insert(const value_type &v) { int size = this->tree_.size(); auto checker_res = this->checker_.insert(v); iterator tree_res = this->tree_.insert(v); CheckPairEquals(*tree_res, *checker_res); EXPECT_EQ(this->tree_.size(), this->checker_.size()); EXPECT_EQ(this->tree_.size(), size + 1); return tree_res; } iterator insert(iterator position, const value_type &v) { int size = this->tree_.size(); auto checker_res = this->checker_.insert(v); iterator tree_res = this->tree_.insert(position, v); CheckPairEquals(*tree_res, *checker_res); EXPECT_EQ(this->tree_.size(), this->checker_.size()); EXPECT_EQ(this->tree_.size(), size + 1); return tree_res; } template <typename InputIterator> void insert(InputIterator b, InputIterator e) { for (; b != e; ++b) { insert(*b); } } }; template <typename T, typename V> void DoTest(const char *name, T *b, const std::vector<V> &values) { typename KeyOfValue<typename T::key_type, V>::type key_of_value; T &mutable_b = *b; const T &const_b = *b; for (int i = 0; i < values.size(); ++i) { mutable_b.insert(values[i]); mutable_b.value_check(values[i]); } ASSERT_EQ(mutable_b.size(), values.size()); const_b.verify(); T b_copy(const_b); EXPECT_EQ(b_copy.size(), const_b.size()); for (int i = 0; i < values.size(); ++i) { CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]); } T b_range(const_b.begin(), const_b.end()); EXPECT_EQ(b_range.size(), const_b.size()); for (int i = 0; i < values.size(); ++i) { CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); } b_range.insert(b_copy.begin(), b_copy.end()); b_range.verify(); b_range.clear(); b_range.insert(b_copy.begin(), b_copy.end()); EXPECT_EQ(b_range.size(), b_copy.size()); for (int i = 0; i < values.size(); ++i) { CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); } b_range.operator=(b_range); EXPECT_EQ(b_range.size(), b_copy.size()); b_range.clear(); b_range = b_copy; EXPECT_EQ(b_range.size(), b_copy.size()); b_range.clear(); b_range.swap(b_copy); EXPECT_EQ(b_copy.size(), 0); EXPECT_EQ(b_range.size(), const_b.size()); for (int i = 0; i < values.size(); ++i) { CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); } b_range.swap(b_copy); swap(b_range, b_copy); EXPECT_EQ(b_copy.size(), 0); EXPECT_EQ(b_range.size(), const_b.size()); for (int i = 0; i < values.size(); ++i) { CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); } swap(b_range, b_copy); for (int i = 0; i < values.size(); ++i) { mutable_b.erase(key_of_value(values[i])); ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0); } const_b.verify(); EXPECT_EQ(const_b.size(), 0); mutable_b = b_copy; for (int i = 0; i < values.size(); ++i) { mutable_b.erase(mutable_b.find(key_of_value(values[i]))); } const_b.verify(); EXPECT_EQ(const_b.size(), 0); for (int i = 0; i < values.size(); i++) { mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]); } const_b.verify(); mutable_b.erase(mutable_b.begin(), mutable_b.end()); EXPECT_EQ(mutable_b.size(), 0); const_b.verify(); mutable_b = b_copy; typename T::iterator mutable_iter_end = mutable_b.begin(); for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end; mutable_b.erase(mutable_b.begin(), mutable_iter_end); EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2); const_b.verify(); mutable_b = b_copy; typename T::iterator mutable_iter_begin = mutable_b.begin(); for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin; mutable_b.erase(mutable_iter_begin, mutable_b.end()); EXPECT_EQ(mutable_b.size(), values.size() / 2); const_b.verify(); mutable_b = b_copy; mutable_iter_begin = mutable_b.begin(); for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin; mutable_iter_end = mutable_iter_begin; for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end; mutable_b.erase(mutable_iter_begin, mutable_iter_end); EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4); const_b.verify(); mutable_b.clear(); } template <typename T> void ConstTest() { using value_type = typename T::value_type; typename KeyOfValue<typename T::key_type, value_type>::type key_of_value; T mutable_b; const T &const_b = mutable_b; value_type value = Generator<value_type>(2)(2); mutable_b.insert(value); EXPECT_TRUE(mutable_b.contains(key_of_value(value))); EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end()); EXPECT_TRUE(const_b.contains(key_of_value(value))); EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end()); EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value); EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end()); EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value); typename T::iterator mutable_iter(mutable_b.begin()); EXPECT_EQ(mutable_iter, const_b.begin()); EXPECT_NE(mutable_iter, const_b.end()); EXPECT_EQ(const_b.begin(), mutable_iter); EXPECT_NE(const_b.end(), mutable_iter); typename T::reverse_iterator mutable_riter(mutable_b.rbegin()); EXPECT_EQ(mutable_riter, const_b.rbegin()); EXPECT_NE(mutable_riter, const_b.rend()); EXPECT_EQ(const_b.rbegin(), mutable_riter); EXPECT_NE(const_b.rend(), mutable_riter); typename T::const_iterator const_iter(mutable_iter); EXPECT_EQ(const_iter, mutable_b.begin()); EXPECT_NE(const_iter, mutable_b.end()); EXPECT_EQ(mutable_b.begin(), const_iter); EXPECT_NE(mutable_b.end(), const_iter); typename T::const_reverse_iterator const_riter(mutable_riter); EXPECT_EQ(const_riter, mutable_b.rbegin()); EXPECT_NE(const_riter, mutable_b.rend()); EXPECT_EQ(mutable_b.rbegin(), const_riter); EXPECT_NE(mutable_b.rend(), const_riter); const_b.verify(); ASSERT_TRUE(!const_b.empty()); EXPECT_EQ(const_b.size(), 1); EXPECT_GT(const_b.max_size(), 0); EXPECT_TRUE(const_b.contains(key_of_value(value))); EXPECT_EQ(const_b.count(key_of_value(value)), 1); } template <typename T, typename C> void BtreeTest() { ConstTest<T>(); using V = typename remove_pair_const<typename T::value_type>::type; const std::vector<V> random_values = GenerateValuesWithSeed<V>( absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), GTEST_FLAG_GET(random_seed)); unique_checker<T, C> container; std::vector<V> sorted_values(random_values); std::sort(sorted_values.begin(), sorted_values.end()); DoTest("sorted: ", &container, sorted_values); std::reverse(sorted_values.begin(), sorted_values.end()); DoTest("rsorted: ", &container, sorted_values); DoTest("random: ", &container, random_values); } template <typename T, typename C> void BtreeMultiTest() { ConstTest<T>(); using V = typename remove_pair_const<typename T::value_type>::type; const std::vector<V> random_values = GenerateValuesWithSeed<V>( absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), GTEST_FLAG_GET(random_seed)); multi_checker<T, C> container; std::vector<V> sorted_values(random_values); std::sort(sorted_values.begin(), sorted_values.end()); DoTest("sorted: ", &container, sorted_values); std::reverse(sorted_values.begin(), sorted_values.end()); DoTest("rsorted: ", &container, sorted_values); DoTest("random: ", &container, random_values); std::vector<V> duplicate_values(random_values); duplicate_values.insert(duplicate_values.end(), random_values.begin(), random_values.end()); DoTest("duplicates:", &container, duplicate_values); std::vector<V> identical_values(100); std::fill(identical_values.begin(), identical_values.end(), Generator<V>(2)(2)); DoTest("identical: ", &container, identical_values); } template <typename T> void BtreeMapTest() { using value_type = typename T::value_type; using mapped_type = typename T::mapped_type; mapped_type m = Generator<mapped_type>(0)(0); (void)m; T b; for (int i = 0; i < 1000; i++) { value_type v = Generator<value_type>(1000)(i); b[v.first] = v.second; } EXPECT_EQ(b.size(), 1000); EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first); EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second); EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first); EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second); } template <typename T> void BtreeMultiMapTest() { using mapped_type = typename T::mapped_type; mapped_type m = Generator<mapped_type>(0)(0); (void)m; } template <typename K, int N = 256> void SetTest() { EXPECT_EQ( sizeof(absl::btree_set<K>), 2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type)); using BtreeSet = absl::btree_set<K>; BtreeTest<BtreeSet, std::set<K>>(); } template <typename K, int N = 256> void MapTest() { EXPECT_EQ( sizeof(absl::btree_map<K, K>), 2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type)); using BtreeMap = absl::btree_map<K, K>; BtreeTest<BtreeMap, std::map<K, K>>(); BtreeMapTest<BtreeMap>(); } TEST(Btree, set_int32) { SetTest<int32_t>(); } TEST(Btree, set_string) { SetTest<std::string>(); } TEST(Btree, set_cord) { SetTest<absl::Cord>(); } TEST(Btree, map_int32) { MapTest<int32_t>(); } TEST(Btree, map_string) { MapTest<std::string>(); } TEST(Btree, map_cord) { MapTest<absl::Cord>(); } template <typename K, int N = 256> void MultiSetTest() { EXPECT_EQ( sizeof(absl::btree_multiset<K>), 2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type)); using BtreeMSet = absl::btree_multiset<K>; BtreeMultiTest<BtreeMSet, std::multiset<K>>(); } template <typename K, int N = 256> void MultiMapTest() { EXPECT_EQ(sizeof(absl::btree_multimap<K, K>), 2 * sizeof(void *) + sizeof(typename absl::btree_multimap<K, K>::size_type)); using BtreeMMap = absl::btree_multimap<K, K>; BtreeMultiTest<BtreeMMap, std::multimap<K, K>>(); BtreeMultiMapTest<BtreeMMap>(); } TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); } TEST(Btree, multiset_string) { MultiSetTest<std::string>(); } TEST(Btree, multiset_cord) { MultiSetTest<absl::Cord>(); } TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); } TEST(Btree, multimap_string) { MultiMapTest<std::string>(); } TEST(Btree, multimap_cord) { MultiMapTest<absl::Cord>(); } struct CompareIntToString { bool operator()(const std::string &a, const std::string &b) const { return a < b; } bool operator()(const std::string &a, int b) const { return a < absl::StrCat(b); } bool operator()(int a, const std::string &b) const { return absl::StrCat(a) < b; } using is_transparent = void; }; struct NonTransparentCompare { template <typename T, typename U> bool operator()(const T &t, const U &u) const { EXPECT_TRUE((std::is_same<T, U>())); return t < u; } }; template <typename T> bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) { return true; } template <typename T> bool CanEraseWithEmptyBrace(T, ...) { return false; } template <typename T> void TestHeterogeneous(T table) { auto lb = table.lower_bound("3"); EXPECT_EQ(lb, table.lower_bound(3)); EXPECT_NE(lb, table.lower_bound(4)); EXPECT_EQ(lb, table.lower_bound({"3"})); EXPECT_NE(lb, table.lower_bound({})); auto ub = table.upper_bound("3"); EXPECT_EQ(ub, table.upper_bound(3)); EXPECT_NE(ub, table.upper_bound(5)); EXPECT_EQ(ub, table.upper_bound({"3"})); EXPECT_NE(ub, table.upper_bound({})); auto er = table.equal_range("3"); EXPECT_EQ(er, table.equal_range(3)); EXPECT_NE(er, table.equal_range(4)); EXPECT_EQ(er, table.equal_range({"3"})); EXPECT_NE(er, table.equal_range({})); auto it = table.find("3"); EXPECT_EQ(it, table.find(3)); EXPECT_NE(it, table.find(4)); EXPECT_EQ(it, table.find({"3"})); EXPECT_NE(it, table.find({})); EXPECT_TRUE(table.contains(3)); EXPECT_FALSE(table.contains(4)); EXPECT_TRUE(table.count({"3"})); EXPECT_FALSE(table.contains({})); EXPECT_EQ(1, table.count(3)); EXPECT_EQ(0, table.count(4)); EXPECT_EQ(1, table.count({"3"})); EXPECT_EQ(0, table.count({})); auto copy = table; copy.erase(3); EXPECT_EQ(table.size() - 1, copy.size()); copy.erase(4); EXPECT_EQ(table.size() - 1, copy.size()); copy.erase({"5"}); EXPECT_EQ(table.size() - 2, copy.size()); EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr)); if (std::is_class<T>()) TestHeterogeneous<const T &>(table); } TEST(Btree, HeterogeneousLookup) { TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"}); TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{ {"1", 1}, {"3", 3}, {"5", 5}}); TestHeterogeneous( btree_multiset<std::string, CompareIntToString>{"1", "3", "5"}); TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{ {"1", 1}, {"3", 3}, {"5", 5}}); btree_map<std::string, int, CompareIntToString> map{ {"", -1}, {"1", 1}, {"3", 3}, {"5", 5}}; EXPECT_EQ(1, map.at(1)); EXPECT_EQ(3, map.at({"3"})); EXPECT_EQ(-1, map.at({})); const auto &cmap = map; EXPECT_EQ(1, cmap.at(1)); EXPECT_EQ(3, cmap.at({"3"})); EXPECT_EQ(-1, cmap.at({})); } TEST(Btree, NoHeterogeneousLookupWithoutAlias) { using StringSet = absl::btree_set<std::string, NonTransparentCompare>; StringSet s; ASSERT_TRUE(s.insert("hello").second); ASSERT_TRUE(s.insert("world").second); EXPECT_TRUE(s.end() == s.find("blah")); EXPECT_TRUE(s.begin() == s.lower_bound("hello")); EXPECT_EQ(1, s.count("world")); EXPECT_TRUE(s.contains("hello")); EXPECT_TRUE(s.contains("world")); EXPECT_FALSE(s.contains("blah")); using StringMultiSet = absl::btree_multiset<std::string, NonTransparentCompare>; StringMultiSet ms; ms.insert("hello"); ms.insert("world"); ms.insert("world"); EXPECT_TRUE(ms.end() == ms.find("blah")); EXPECT_TRUE(ms.begin() == ms.lower_bound("hello")); EXPECT_EQ(2, ms.count("world")); EXPECT_TRUE(ms.contains("hello")); EXPECT_TRUE(ms.contains("world")); EXPECT_FALSE(ms.contains("blah")); } TEST(Btree, DefaultTransparent) { { btree_set<int> s = {1}; double d = 1.1; EXPECT_EQ(s.begin(), s.find(d)); EXPECT_TRUE(s.contains(d)); } { btree_set<std::string> s = {"A"}; EXPECT_EQ(s.begin(), s.find(absl::string_view("A"))); EXPECT_TRUE(s.contains(absl::string_view("A"))); } } class StringLike { public: StringLike() = default; StringLike(const char *s) : s_(s) { ++constructor_calls_; } bool operator<(const StringLike &a) const { return s_ < a.s_; } static void clear_constructor_call_count() { constructor_calls_ = 0; } static int constructor_calls() { return constructor_calls_; } private: static int constructor_calls_; std::string s_; }; int StringLike::constructor_calls_ = 0; TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) { using StringSet = absl::btree_set<StringLike>; StringSet s; for (int i = 0; i < 100; ++i) { ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second); } StringLike::clear_constructor_call_count(); s.find("50"); ASSERT_EQ(1, StringLike::constructor_calls()); StringLike::clear_constructor_call_count(); s.contains("50"); ASSERT_EQ(1, StringLike::constructor_calls()); StringLike::clear_constructor_call_count(); s.count("50"); ASSERT_EQ(1, StringLike::constructor_calls()); StringLike::clear_constructor_call_count(); s.lower_bound("50"); ASSERT_EQ(1, StringLike::constructor_calls()); StringLike::clear_constructor_call_count(); s.upper_bound("50"); ASSERT_EQ(1, StringLike::constructor_calls()); StringLike::clear_constructor_call_count(); s.equal_range("50"); ASSERT_EQ(1, StringLike::constructor_calls()); StringLike::clear_constructor_call_count(); s.erase("50"); ASSERT_EQ(1, StringLike::constructor_calls()); } struct SubstringLess { SubstringLess() = delete; explicit SubstringLess(int length) : n(length) {} bool operator()(const std::string &a, const std::string &b) const { return absl::string_view(a).substr(0, n) < absl::string_view(b).substr(0, n); } int n; }; TEST(Btree, SwapKeyCompare) { using SubstringSet = absl::btree_set<std::string, SubstringLess>; SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type()); SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type()); ASSERT_TRUE(s1.insert("a").second); ASSERT_FALSE(s1.insert("aa").second); ASSERT_TRUE(s2.insert("a").second); ASSERT_TRUE(s2.insert("aa").second); ASSERT_FALSE(s2.insert("aaa").second); swap(s1, s2); ASSERT_TRUE(s1.insert("b").second); ASSERT_TRUE(s1.insert("bb").second); ASSERT_FALSE(s1.insert("bbb").second); ASSERT_TRUE(s2.insert("b").second); ASSERT_FALSE(s2.insert("bb").second); } TEST(Btree, UpperBoundRegression) { using SubstringSet = absl::btree_set<std::string, SubstringLess>; SubstringSet my_set(SubstringLess(3)); my_set.insert("aab"); my_set.insert("abb"); SubstringSet::iterator it = my_set.upper_bound("aaa"); ASSERT_TRUE(it != my_set.end()); EXPECT_EQ("aab", *it); } TEST(Btree, Comparison) { const int kSetSize = 1201; absl::btree_set<int64_t> my_set; for (int i = 0; i < kSetSize; ++i) { my_set.insert(i); } absl::btree_set<int64_t> my_set_copy(my_set); EXPECT_TRUE(my_set_copy == my_set); EXPECT_TRUE(my_set == my_set_copy); EXPECT_FALSE(my_set_copy != my_set); EXPECT_FALSE(my_set != my_set_copy); my_set.insert(kSetSize); EXPECT_FALSE(my_set_copy == my_set); EXPECT_FALSE(my_set == my_set_copy); EXPECT_TRUE(my_set_copy != my_set); EXPECT_TRUE(my_set != my_set_copy); my_set.erase(kSetSize - 1); EXPECT_FALSE(my_set_copy == my_set); EXPECT_FALSE(my_set == my_set_copy); EXPECT_TRUE(my_set_copy != my_set); EXPECT_TRUE(my_set != my_set_copy); absl::btree_map<std::string, int64_t> my_map; for (int i = 0; i < kSetSize; ++i) { my_map[std::string(i, 'a')] = i; } absl::btree_map<std::string, int64_t> my_map_copy(my_map); EXPECT_TRUE(my_map_copy == my_map); EXPECT_TRUE(my_map == my_map_copy); EXPECT_FALSE(my_map_copy != my_map); EXPECT_FALSE(my_map != my_map_copy); ++my_map_copy[std::string(7, 'a')]; EXPECT_FALSE(my_map_copy == my_map); EXPECT_FALSE(my_map == my_map_copy); EXPECT_TRUE(my_map_copy != my_map); EXPECT_TRUE(my_map != my_map_copy); my_map_copy = my_map; my_map["hello"] = kSetSize; EXPECT_FALSE(my_map_copy == my_map); EXPECT_FALSE(my_map == my_map_copy); EXPECT_TRUE(my_map_copy != my_map); EXPECT_TRUE(my_map != my_map_copy); my_map.erase(std::string(kSetSize - 1, 'a')); EXPECT_FALSE(my_map_copy == my_map); EXPECT_FALSE(my_map == my_map_copy); EXPECT_TRUE(my_map_copy != my_map); EXPECT_TRUE(my_map != my_map_copy); } TEST(Btree, RangeCtorSanity) { std::vector<int> ivec; ivec.push_back(1); std::map<int, int> imap; imap.insert(std::make_pair(1, 2)); absl::btree_multiset<int> tmset(ivec.begin(), ivec.end()); absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end()); absl::btree_set<int> tset(ivec.begin(), ivec.end()); absl::btree_map<int, int> tmap(imap.begin(), imap.end()); EXPECT_EQ(1, tmset.size()); EXPECT_EQ(1, tmmap.size()); EXPECT_EQ(1, tset.size()); EXPECT_EQ(1, tmap.size()); } } class BtreeNodePeer { public: template <typename ValueType> constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) { return btree_node< set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>, 256, false>>::SizeWithNSlots(target_values_per_node); } template <typename Btree> constexpr static size_t GetNumSlotsPerNode() { return btree_node<typename Btree::params_type>::kNodeSlots; } template <typename Btree> constexpr static size_t GetMaxFieldType() { return std::numeric_limits< typename btree_node<typename Btree::params_type>::field_type>::max(); } template <typename Btree> constexpr static bool UsesLinearNodeSearch() { return btree_node<typename Btree::params_type>::use_linear_search::value; } template <typename Btree> constexpr static bool FieldTypeEqualsSlotType() { return std::is_same< typename btree_node<typename Btree::params_type>::field_type, typename btree_node<typename Btree::params_type>::slot_type>::value; } }; namespace { class BtreeMapTest : public ::testing::Test { public: struct Key {}; struct Cmp { template <typename T> bool operator()(T, T) const { return false; } }; struct KeyLin { using absl_btree_prefer_linear_node_search = std::true_type; }; struct CmpLin : Cmp { using absl_btree_prefer_linear_node_search = std::true_type; }; struct KeyBin { using absl_btree_prefer_linear_node_search = std::false_type; }; struct CmpBin : Cmp { using absl_btree_prefer_linear_node_search = std::false_type; }; template <typename K, typename C> static bool IsLinear() { return BtreeNodePeer::UsesLinearNodeSearch<absl::btree_map<K, int, C>>(); } }; TEST_F(BtreeMapTest, TestLinearSearchPreferredForKeyLinearViaAlias) { EXPECT_FALSE((IsLinear<Key, Cmp>())); EXPECT_TRUE((IsLinear<KeyLin, Cmp>())); EXPECT_TRUE((IsLinear<Key, CmpLin>())); EXPECT_TRUE((IsLinear<KeyLin, CmpLin>())); } TEST_F(BtreeMapTest, LinearChoiceTree) { EXPECT_FALSE((IsLinear<Key, CmpBin>())); EXPECT_FALSE((IsLinear<KeyLin, CmpBin>())); EXPECT_FALSE((IsLinear<KeyBin, CmpBin>())); EXPECT_FALSE((IsLinear<int, CmpBin>())); EXPECT_FALSE((IsLinear<std::string, CmpBin>())); EXPECT_TRUE((IsLinear<Key, CmpLin>())); EXPECT_TRUE((IsLinear<KeyLin, CmpLin>())); EXPECT_TRUE((IsLinear<KeyBin, CmpLin>())); EXPECT_TRUE((IsLinear<int, CmpLin>())); EXPECT_TRUE((IsLinear<std::string, CmpLin>())); EXPECT_FALSE((IsLinear<Key, Cmp>())); EXPECT_TRUE((IsLinear<KeyLin, Cmp>())); EXPECT_FALSE((IsLinear<KeyBin, Cmp>())); EXPECT_TRUE((IsLinear<int, std::less<int>>())); EXPECT_TRUE((IsLinear<double, std::greater<double>>())); EXPECT_FALSE((IsLinear<int, Cmp>())); EXPECT_FALSE((IsLinear<std::string, std::less<std::string>>())); } TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) { absl::btree_map<std::string, std::unique_ptr<std::string>> m; std::unique_ptr<std::string> &v = m["A"]; EXPECT_TRUE(v == nullptr); v = absl::make_unique<std::string>("X"); auto iter = m.find("A"); EXPECT_EQ("X", *iter->second); } TEST(Btree, InitializerListConstructor) { absl::btree_set<std::string> set({"a", "b"}); EXPECT_EQ(set.count("a"), 1); EXPECT_EQ(set.count("b"), 1); absl::btree_multiset<int> mset({1, 1, 4}); EXPECT_EQ(mset.count(1), 2); EXPECT_EQ(mset.count(4), 1); absl::btree_map<int, int> map({{1, 5}, {2, 10}}); EXPECT_EQ(map[1], 5); EXPECT_EQ(map[2], 10); absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}}); auto range = mmap.equal_range(1); auto it = range.first; ASSERT_NE(it, range.second); EXPECT_EQ(it->second, 5); ASSERT_NE(++it, range.second); EXPECT_EQ(it->second, 10); EXPECT_EQ(++it, range.second); } TEST(Btree, InitializerListInsert) { absl::btree_set<std::string> set; set.insert({"a", "b"}); EXPECT_EQ(set.count("a"), 1); EXPECT_EQ(set.count("b"), 1); absl::btree_multiset<int> mset; mset.insert({1, 1, 4}); EXPECT_EQ(mset.count(1), 2); EXPECT_EQ(mset.count(4), 1); absl::btree_map<int, int> map; map.insert({{1, 5}, {2, 10}}); map.insert({3, 15}); EXPECT_EQ(map[1], 5); EXPECT_EQ(map[2], 10); EXPECT_EQ(map[3], 15); absl::btree_multimap<int, int> mmap; mmap.insert({{1, 5}, {1, 10}}); auto range = mmap.equal_range(1); auto it = range.first; ASSERT_NE(it, range.second); EXPECT_EQ(it->second, 5); ASSERT_NE(++it, range.second); EXPECT_EQ(it->second, 10); EXPECT_EQ(++it, range.second); } template <typename Compare, typename Key> void AssertKeyCompareStringAdapted() { using Adapted = typename key_compare_adapter<Compare, Key>::type; static_assert( std::is_same<Adapted, StringBtreeDefaultLess>::value || std::is_same<Adapted, StringBtreeDefaultGreater>::value, "key_compare_adapter should have string-adapted this comparator."); } template <typename Compare, typename Key> void AssertKeyCompareNotStringAdapted() { using Adapted = typename key_compare_adapter<Compare, Key>::type; static_assert( !std::is_same<Adapted, StringBtreeDefaultLess>::value && !std::is_same<Adapted, StringBtreeDefaultGreater>::value, "key_compare_adapter shouldn't have string-adapted this comparator."); } TEST(Btree, KeyCompareAdapter) { AssertKeyCompareStringAdapted<std::less<std::string>, std::string>(); AssertKeyCompareStringAdapted<std::greater<std::string>, std::string>(); AssertKeyCompareStringAdapted<std::less<absl::string_view>, absl::string_view>(); AssertKeyCompareStringAdapted<std::greater<absl::string_view>, absl::string_view>(); AssertKeyCompareStringAdapted<std::less<absl::Cord>, absl::Cord>(); AssertKeyCompareStringAdapted<std::greater<absl::Cord>, absl::Cord>(); AssertKeyCompareNotStringAdapted<std::less<int>, int>(); AssertKeyCompareNotStringAdapted<std::greater<int>, int>(); } TEST(Btree, RValueInsert) { InstanceTracker tracker; absl::btree_set<MovableOnlyInstance> set; set.insert(MovableOnlyInstance(1)); set.insert(MovableOnlyInstance(3)); MovableOnlyInstance two(2); set.insert(set.find(MovableOnlyInstance(3)), std::move(two)); auto it = set.find(MovableOnlyInstance(2)); ASSERT_NE(it, set.end()); ASSERT_NE(++it, set.end()); EXPECT_EQ(it->value(), 3); absl::btree_multiset<MovableOnlyInstance> mset; MovableOnlyInstance zero(0); MovableOnlyInstance zero2(0); mset.insert(std::move(zero)); mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2)); EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2); absl::btree_map<int, MovableOnlyInstance> map; std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)}; std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)}; std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)}; map.insert(std::move(p1)); map.insert(std::move(p3)); map.insert(map.find(3), std::move(p2)); ASSERT_NE(map.find(2), map.end()); EXPECT_EQ(map.find(2)->second.value(), 10); absl::btree_multimap<int, MovableOnlyInstance> mmap; std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)}; std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)}; mmap.insert(std::move(p4)); mmap.insert(mmap.find(1), std::move(p5)); auto range = mmap.equal_range(1); auto it1 = range.first; ASSERT_NE(it1, range.second); EXPECT_EQ(it1->second.value(), 10); ASSERT_NE(++it1, range.second); EXPECT_EQ(it1->second.value(), 5); EXPECT_EQ(++it1, range.second); EXPECT_EQ(tracker.copies(), 0); EXPECT_EQ(tracker.swaps(), 0); } template <typename Cmp> struct CheckedCompareOptedOutCmp : Cmp, BtreeTestOnlyCheckedCompareOptOutBase { using Cmp::Cmp; CheckedCompareOptedOutCmp() {} CheckedCompareOptedOutCmp(Cmp cmp) : Cmp(std::move(cmp)) {} }; template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>> class SizedBtreeSet : public btree_set_container<btree< set_params<Key, CheckedCompareOptedOutCmp<Cmp>, std::allocator<Key>, BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode), false>>> { using Base = typename SizedBtreeSet::btree_set_container; public: SizedBtreeSet() = default; using Base::Base; }; template <typename Set> void ExpectOperationCounts(const int expected_moves, const int expected_comparisons, const std::vector<int> &values, InstanceTracker *tracker, Set *set) { for (const int v : values) set->insert(MovableOnlyInstance(v)); set->clear(); EXPECT_EQ(tracker->moves(), expected_moves); EXPECT_EQ(tracker->comparisons(), expected_comparisons); EXPECT_EQ(tracker->copies(), 0); EXPECT_EQ(tracker->swaps(), 0); tracker->ResetCopiesMovesSwaps(); } #if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ defined(ABSL_HAVE_HWADDRESS_SANITIZER) constexpr bool kAsan = true; #else constexpr bool kAsan = false; #endif TEST(Btree, MovesComparisonsCopiesSwapsTracking) { if (kAsan) GTEST_SKIP() << "We do extra operations in ASan mode."; InstanceTracker tracker; SizedBtreeSet<MovableOnlyInstance, 4> set4; SizedBtreeSet<MovableOnlyInstance, 61> set61; SizedBtreeSet<MovableOnlyInstance, 100> set100; std::vector<int> values = GenerateValuesWithSeed<int>(10000, 1 << 22, 23); EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set4)>(), 4); EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set61)>(), 61); EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set100)>(), 100); if (sizeof(void *) == 8) { EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<absl::btree_set<int32_t>>(), BtreeGenerationsEnabled() ? 60 : 61); } ExpectOperationCounts(56540, 134212, values, &tracker, &set4); ExpectOperationCounts(386718, 129807, values, &tracker, &set61); ExpectOperationCounts(586761, 130310, values, &tracker, &set100); std::sort(values.begin(), values.end()); ExpectOperationCounts(24972, 85563, values, &tracker, &set4); ExpectOperationCounts(20208, 87757, values, &tracker, &set61); ExpectOperationCounts(20124, 96583, values, &tracker, &set100); std::reverse(values.begin(), values.end()); ExpectOperationCounts(54949, 127531, values, &tracker, &set4); ExpectOperationCounts(338813, 118266, values, &tracker, &set61); ExpectOperationCounts(534529, 125279, values, &tracker, &set100); } struct MovableOnlyInstanceThreeWayCompare { absl::weak_ordering operator()(const MovableOnlyInstance &a, const MovableOnlyInstance &b) const { return a.compare(b); } }; TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) { if (kAsan) GTEST_SKIP() << "We do extra operations in ASan mode."; InstanceTracker tracker; SizedBtreeSet<MovableOnlyInstance, 4, MovableOnlyInstanceThreeWayCompare> set4; SizedBtreeSet<MovableOnlyInstance, 61, MovableOnlyInstanceThreeWayCompare> set61; SizedBtreeSet<MovableOnlyInstance, 100, MovableOnlyInstanceThreeWayCompare> set100; std::vector<int> values = GenerateValuesWithSeed<int>(10000, 1 << 22, 23); EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set4)>(), 4); EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set61)>(), 61); EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set100)>(), 100); if (sizeof(void *) == 8) { EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<absl::btree_set<int32_t>>(), BtreeGenerationsEnabled() ? 60 : 61); } ExpectOperationCounts(56540, 124221, values, &tracker, &set4); ExpectOperationCounts(386718, 119816, values, &tracker, &set61); ExpectOperationCounts(586761, 120319, values, &tracker, &set100); std::sort(values.begin(), values.end()); ExpectOperationCounts(24972, 85563, values, &tracker, &set4); ExpectOperationCounts(20208, 87757, values, &tracker, &set61); ExpectOperationCounts(20124, 96583, values, &tracker, &set100); std::reverse(values.begin(), values.end()); ExpectOperationCounts(54949, 117532, values, &tracker, &set4); ExpectOperationCounts(338813, 108267, values, &tracker, &set61); ExpectOperationCounts(534529, 115280, values, &tracker, &set100); } struct NoDefaultCtor { int num; explicit NoDefaultCtor(int i) : num(i) {} friend bool operator<(const NoDefaultCtor &a, const NoDefaultCtor &b) { return a.num < b.num; } }; TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) { absl::btree_map<NoDefaultCtor, NoDefaultCtor> m; for (int i = 1; i <= 99; ++i) { SCOPED_TRACE(i); EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second); } EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second); auto iter99 = m.find(NoDefaultCtor(99)); ASSERT_NE(iter99, m.end()); EXPECT_EQ(iter99->second.num, 1); auto iter1 = m.find(NoDefaultCtor(1)); ASSERT_NE(iter1, m.end()); EXPECT_EQ(iter1->second.num, 99); auto iter50 = m.find(NoDefaultCtor(50)); ASSERT_NE(iter50, m.end()); EXPECT_EQ(iter50->second.num, 50); auto iter25 = m.find(NoDefaultCtor(25)); ASSERT_NE(iter25, m.end()); EXPECT_EQ(iter25->second.num, 75); } TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) { absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m; for (int i = 1; i <= 99; ++i) { SCOPED_TRACE(i); m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)); } auto iter99 = m.find(NoDefaultCtor(99)); ASSERT_NE(iter99, m.end()); EXPECT_EQ(iter99->second.num, 1); auto iter1 = m.find(NoDefaultCtor(1)); ASSERT_NE(iter1, m.end()); EXPECT_EQ(iter1->second.num, 99); auto iter50 = m.find(NoDefaultCtor(50)); ASSERT_NE(iter50, m.end()); EXPECT_EQ(iter50->second.num, 50); auto iter25 = m.find(NoDefaultCtor(25)); ASSERT_NE(iter25, m.end()); EXPECT_EQ(iter25->second.num, 75); } TEST(Btree, MapAt) { absl::btree_map<int, int> map = {{1, 2}, {2, 4}}; EXPECT_EQ(map.at(1), 2); EXPECT_EQ(map.at(2), 4); map.at(2) = 8; const absl::btree_map<int, int> &const_map = map; EXPECT_EQ(const_map.at(1), 2); EXPECT_EQ(const_map.at(2), 8); #ifdef ABSL_HAVE_EXCEPTIONS EXPECT_THROW(map.at(3), std::out_of_range); #else EXPECT_DEATH_IF_SUPPORTED(map.at(3), "absl::btree_map::at"); #endif } TEST(Btree, BtreeMultisetEmplace) { const int value_to_insert = 123456; absl::btree_multiset<int> s; auto iter = s.emplace(value_to_insert); ASSERT_NE(iter, s.end()); EXPECT_EQ(*iter, value_to_insert); iter = s.emplace(value_to_insert); ASSERT_NE(iter, s.end()); EXPECT_EQ(*iter, value_to_insert); auto result = s.equal_range(value_to_insert); EXPECT_EQ(std::distance(result.first, result.second), 2); } TEST(Btree, BtreeMultisetEmplaceHint) { const int value_to_insert = 123456; absl::btree_multiset<int> s; auto iter = s.emplace(value_to_insert); ASSERT_NE(iter, s.end()); EXPECT_EQ(*iter, value_to_insert); iter = s.emplace_hint(iter, value_to_insert); EXPECT_EQ(iter, s.lower_bound(value_to_insert)); ASSERT_NE(iter, s.end()); EXPECT_EQ(*iter, value_to_insert); } TEST(Btree, BtreeMultimapEmplace) { const int key_to_insert = 123456; const char value0[] = "a"; absl::btree_multimap<int, std::string> m; auto iter = m.emplace(key_to_insert, value0); ASSERT_NE(iter, m.end()); EXPECT_EQ(iter->first, key_to_insert); EXPECT_EQ(iter->second, value0); const char value1[] = "b"; iter = m.emplace(key_to_insert, value1); ASSERT_NE(iter, m.end()); EXPECT_EQ(iter->first, key_to_insert); EXPECT_EQ(iter->second, value1); auto result = m.equal_range(key_to_insert); EXPECT_EQ(std::distance(result.first, result.second), 2); } TEST(Btree, BtreeMultimapEmplaceHint) { const int key_to_insert = 123456; const char value0[] = "a"; absl::btree_multimap<int, std::string> m; auto iter = m.emplace(key_to_insert, value0); ASSERT_NE(iter, m.end()); EXPECT_EQ(iter->first, key_to_insert); EXPECT_EQ(iter->second, value0); const char value1[] = "b"; iter = m.emplace_hint(iter, key_to_insert, value1); EXPECT_EQ(iter, m.lower_bound(key_to_insert)); ASSERT_NE(iter, m.end()); EXPECT_EQ(iter->first, key_to_insert); EXPECT_EQ(iter->second, value1); } TEST(Btree, ConstIteratorAccessors) { absl::btree_set<int> set; for (int i = 0; i < 100; ++i) { set.insert(i); } auto it = set.cbegin(); auto r_it = set.crbegin(); for (int i = 0; i < 100; ++i, ++it, ++r_it) { ASSERT_EQ(*it, i); ASSERT_EQ(*r_it, 99 - i); } EXPECT_EQ(it, set.cend()); EXPECT_EQ(r_it, set.crend()); } TEST(Btree, StrSplitCompatible) { const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ','); const absl::btree_set<std::string> expected_set = {"a", "b", "c"}; EXPECT_EQ(split_set, expected_set); } TEST(Btree, KeyComp) { absl::btree_set<int> s; EXPECT_TRUE(s.key_comp()(1, 2)); EXPECT_FALSE(s.key_comp()(2, 2)); EXPECT_FALSE(s.key_comp()(2, 1)); absl::btree_map<int, int> m1; EXPECT_TRUE(m1.key_comp()(1, 2)); EXPECT_FALSE(m1.key_comp()(2, 2)); EXPECT_FALSE(m1.key_comp()(2, 1)); absl::btree_map<std::string, int> m2; EXPECT_TRUE(m2.key_comp()("a", "b")); EXPECT_FALSE(m2.key_comp()("b", "b")); EXPECT_FALSE(m2.key_comp()("b", "a")); } TEST(Btree, ValueComp) { absl::btree_set<int> s; EXPECT_TRUE(s.value_comp()(1, 2)); EXPECT_FALSE(s.value_comp()(2, 2)); EXPECT_FALSE(s.value_comp()(2, 1)); absl::btree_map<int, int> m1; EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0))); EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0))); EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0))); absl::btree_map<std::string, int> m2; EXPECT_TRUE(m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0))); EXPECT_FALSE(m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0))); EXPECT_FALSE(m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0))); } TEST(Btree, MapValueCompProtected) { struct key_compare { bool operator()(int l, int r) const { return l < r; } int id; }; using value_compare = absl::btree_map<int, int, key_compare>::value_compare; struct value_comp_child : public value_compare { explicit value_comp_child(key_compare kc) : value_compare(kc) {} int GetId() const { return comp.id; } }; value_comp_child c(key_compare{10}); EXPECT_EQ(c.GetId(), 10); } TEST(Btree, DefaultConstruction) { absl::btree_set<int> s; absl::btree_map<int, int> m; absl::btree_multiset<int> ms; absl::btree_multimap<int, int> mm; EXPECT_TRUE(s.empty()); EXPECT_TRUE(m.empty()); EXPECT_TRUE(ms.empty()); EXPECT_TRUE(mm.empty()); } TEST(Btree, SwissTableHashable) { static constexpr int kValues = 10000; std::vector<int> values(kValues); std::iota(values.begin(), values.end(), 0); std::vector<std::pair<int, int>> map_values; for (int v : values) map_values.emplace_back(v, -v); using set = absl::btree_set<int>; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ set{}, set{1}, set{2}, set{1, 2}, set{2, 1}, set(values.begin(), values.end()), set(values.rbegin(), values.rend()), })); using mset = absl::btree_multiset<int>; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ mset{}, mset{1}, mset{1, 1}, mset{2}, mset{2, 2}, mset{1, 2}, mset{1, 1, 2}, mset{1, 2, 2}, mset{1, 1, 2, 2}, mset(values.begin(), values.end()), mset(values.rbegin(), values.rend()), })); using map = absl::btree_map<int, int>; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ map{}, map{{1, 0}}, map{{1, 1}}, map{{2, 0}}, map{{2, 2}}, map{{1, 0}, {2, 1}}, map(map_values.begin(), map_values.end()), map(map_values.rbegin(), map_values.rend()), })); using mmap = absl::btree_multimap<int, int>; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ mmap{}, mmap{{1, 0}}, mmap{{1, 1}}, mmap{{1, 0}, {1, 1}}, mmap{{1, 1}, {1, 0}}, mmap{{2, 0}}, mmap{{2, 2}}, mmap{{1, 0}, {2, 1}}, mmap(map_values.begin(), map_values.end()), mmap(map_values.rbegin(), map_values.rend()), })); } TEST(Btree, ComparableSet) { absl::btree_set<int> s1 = {1, 2}; absl::btree_set<int> s2 = {2, 3}; EXPECT_LT(s1, s2); EXPECT_LE(s1, s2); EXPECT_LE(s1, s1); EXPECT_GT(s2, s1); EXPECT_GE(s2, s1); EXPECT_GE(s1, s1); } TEST(Btree, ComparableSetsDifferentLength) { absl::btree_set<int> s1 = {1, 2}; absl::btree_set<int> s2 = {1, 2, 3}; EXPECT_LT(s1, s2); EXPECT_LE(s1, s2); EXPECT_GT(s2, s1); EXPECT_GE(s2, s1); } TEST(Btree, ComparableMultiset) { absl::btree_multiset<int> s1 = {1, 2}; absl::btree_multiset<int> s2 = {2, 3}; EXPECT_LT(s1, s2); EXPECT_LE(s1, s2); EXPECT_LE(s1, s1); EXPECT_GT(s2, s1); EXPECT_GE(s2, s1); EXPECT_GE(s1, s1); } TEST(Btree, ComparableMap) { absl::btree_map<int, int> s1 = {{1, 2}}; absl::btree_map<int, int> s2 = {{2, 3}}; EXPECT_LT(s1, s2); EXPECT_LE(s1, s2); EXPECT_LE(s1, s1); EXPECT_GT(s2, s1); EXPECT_GE(s2, s1); EXPECT_GE(s1, s1); } TEST(Btree, ComparableMultimap) { absl::btree_multimap<int, int> s1 = {{1, 2}}; absl::btree_multimap<int, int> s2 = {{2, 3}}; EXPECT_LT(s1, s2); EXPECT_LE(s1, s2); EXPECT_LE(s1, s1); EXPECT_GT(s2, s1); EXPECT_GE(s2, s1); EXPECT_GE(s1, s1); } TEST(Btree, ComparableSetWithCustomComparator) { absl::btree_set<int, std::greater<int>> s1 = {1, 2}; absl::btree_set<int, std::greater<int>> s2 = {2, 3}; EXPECT_LT(s1, s2); EXPECT_LE(s1, s2); EXPECT_LE(s1, s1); EXPECT_GT(s2, s1); EXPECT_GE(s2, s1); EXPECT_GE(s1, s1); } TEST(Btree, EraseReturnsIterator) { absl::btree_set<int> set = {1, 2, 3, 4, 5}; auto result_it = set.erase(set.begin(), set.find(3)); EXPECT_EQ(result_it, set.find(3)); result_it = set.erase(set.find(5)); EXPECT_EQ(result_it, set.end()); } TEST(Btree, ExtractAndInsertNodeHandleSet) { absl::btree_set<int> src1 = {1, 2, 3, 4, 5}; auto nh = src1.extract(src1.find(3)); EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5)); absl::btree_set<int> other; absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(3)); EXPECT_EQ(res.position, other.find(3)); EXPECT_TRUE(res.inserted); EXPECT_TRUE(res.node.empty()); absl::btree_set<int> src2 = {3, 4}; nh = src2.extract(src2.find(3)); EXPECT_THAT(src2, ElementsAre(4)); res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(3)); EXPECT_EQ(res.position, other.find(3)); EXPECT_FALSE(res.inserted); ASSERT_FALSE(res.node.empty()); EXPECT_EQ(res.node.value(), 3); } template <typename Set> void TestExtractWithTrackingForSet() { InstanceTracker tracker; { Set s; const size_t kSize = 1000; while (s.size() < kSize) { s.insert(MovableOnlyInstance(s.size())); } for (int i = 0; i < kSize; ++i) { auto nh = s.extract(MovableOnlyInstance(i)); EXPECT_EQ(s.size(), kSize - 1); EXPECT_EQ(nh.value().value(), i); s.insert(std::move(nh)); EXPECT_EQ(s.size(), kSize); auto it = s.find(MovableOnlyInstance(i)); nh = s.extract(it); EXPECT_EQ(s.size(), kSize - 1); EXPECT_EQ(nh.value().value(), i); s.insert(s.begin(), std::move(nh)); EXPECT_EQ(s.size(), kSize); } } EXPECT_EQ(0, tracker.instances()); } template <typename Map> void TestExtractWithTrackingForMap() { InstanceTracker tracker; { Map m; const size_t kSize = 1000; while (m.size() < kSize) { m.insert( {CopyableMovableInstance(m.size()), MovableOnlyInstance(m.size())}); } for (int i = 0; i < kSize; ++i) { auto nh = m.extract(CopyableMovableInstance(i)); EXPECT_EQ(m.size(), kSize - 1); EXPECT_EQ(nh.key().value(), i); EXPECT_EQ(nh.mapped().value(), i); m.insert(std::move(nh)); EXPECT_EQ(m.size(), kSize); auto it = m.find(CopyableMovableInstance(i)); nh = m.extract(it); EXPECT_EQ(m.size(), kSize - 1); EXPECT_EQ(nh.key().value(), i); EXPECT_EQ(nh.mapped().value(), i); m.insert(m.begin(), std::move(nh)); EXPECT_EQ(m.size(), kSize); } } EXPECT_EQ(0, tracker.instances()); } TEST(Btree, ExtractTracking) { TestExtractWithTrackingForSet<absl::btree_set<MovableOnlyInstance>>(); TestExtractWithTrackingForSet<absl::btree_multiset<MovableOnlyInstance>>(); TestExtractWithTrackingForMap< absl::btree_map<CopyableMovableInstance, MovableOnlyInstance>>(); TestExtractWithTrackingForMap< absl::btree_multimap<CopyableMovableInstance, MovableOnlyInstance>>(); } TEST(Btree, ExtractAndInsertNodeHandleMultiSet) { absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5}; auto nh = src1.extract(src1.find(3)); EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5)); absl::btree_multiset<int> other; auto res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(3)); EXPECT_EQ(res, other.find(3)); absl::btree_multiset<int> src2 = {3, 4}; nh = src2.extract(src2.find(3)); EXPECT_THAT(src2, ElementsAre(4)); res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(3, 3)); EXPECT_EQ(res, ++other.find(3)); } TEST(Btree, ExtractAndInsertNodeHandleMap) { absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; auto nh = src1.extract(src1.find(3)); EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); absl::btree_map<int, int> other; absl::btree_map<int, int>::insert_return_type res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(Pair(3, 4))); EXPECT_EQ(res.position, other.find(3)); EXPECT_TRUE(res.inserted); EXPECT_TRUE(res.node.empty()); absl::btree_map<int, int> src2 = {{3, 6}}; nh = src2.extract(src2.find(3)); EXPECT_TRUE(src2.empty()); res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(Pair(3, 4))); EXPECT_EQ(res.position, other.find(3)); EXPECT_FALSE(res.inserted); ASSERT_FALSE(res.node.empty()); EXPECT_EQ(res.node.key(), 3); EXPECT_EQ(res.node.mapped(), 6); } TEST(Btree, ExtractAndInsertNodeHandleMultiMap) { absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; auto nh = src1.extract(src1.find(3)); EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); absl::btree_multimap<int, int> other; auto res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(Pair(3, 4))); EXPECT_EQ(res, other.find(3)); absl::btree_multimap<int, int> src2 = {{3, 6}}; nh = src2.extract(src2.find(3)); EXPECT_TRUE(src2.empty()); res = other.insert(std::move(nh)); EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6))); EXPECT_EQ(res, ++other.begin()); } TEST(Btree, ExtractMultiMapEquivalentKeys) { absl::btree_multimap<std::string, int> map; for (int i = 0; i < 100; ++i) { for (int j = 0; j < 100; ++j) { map.insert({absl::StrCat(i), j}); } } for (int i = 0; i < 100; ++i) { const std::string key = absl::StrCat(i); auto node_handle = map.extract(key); EXPECT_EQ(node_handle.key(), key); EXPECT_EQ(node_handle.mapped(), 0) << i; } for (int i = 0; i < 100; ++i) { const std::string key = absl::StrCat(i); auto node_handle = map.extract(key); EXPECT_EQ(node_handle.key(), key); EXPECT_EQ(node_handle.mapped(), 1) << i; } } TEST(Btree, ExtractAndGetNextSet) { absl::btree_set<int> src = {1, 2, 3, 4, 5}; auto it = src.find(3); auto extracted_and_next = src.extract_and_get_next(it); EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); EXPECT_EQ(extracted_and_next.node.value(), 3); EXPECT_EQ(*extracted_and_next.next, 4); } TEST(Btree, ExtractAndGetNextMultiSet) { absl::btree_multiset<int> src = {1, 2, 3, 4, 5}; auto it = src.find(3); auto extracted_and_next = src.extract_and_get_next(it); EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); EXPECT_EQ(extracted_and_next.node.value(), 3); EXPECT_EQ(*extracted_and_next.next, 4); } TEST(Btree, ExtractAndGetNextMap) { absl::btree_map<int, int> src = {{1, 2}, {3, 4}, {5, 6}}; auto it = src.find(3); auto extracted_and_next = src.extract_and_get_next(it); EXPECT_THAT(src, ElementsAre(Pair(1, 2), Pair(5, 6))); EXPECT_EQ(extracted_and_next.node.key(), 3); EXPECT_EQ(extracted_and_next.node.mapped(), 4); EXPECT_THAT(*extracted_and_next.next, Pair(5, 6)); } TEST(Btree, ExtractAndGetNextMultiMap) { absl::btree_multimap<int, int> src = {{1, 2}, {3, 4}, {5, 6}}; auto it = src.find(3); auto extracted_and_next = src.extract_and_get_next(it); EXPECT_THAT(src, ElementsAre(Pair(1, 2), Pair(5, 6))); EXPECT_EQ(extracted_and_next.node.key(), 3); EXPECT_EQ(extracted_and_next.node.mapped(), 4); EXPECT_THAT(*extracted_and_next.next, Pair(5, 6)); } TEST(Btree, ExtractAndGetNextEndIter) { absl::btree_set<int> src = {1, 2, 3, 4, 5}; auto it = src.find(5); auto extracted_and_next = src.extract_and_get_next(it); EXPECT_THAT(src, ElementsAre(1, 2, 3, 4)); EXPECT_EQ(extracted_and_next.node.value(), 5); EXPECT_EQ(extracted_and_next.next, src.end()); } TEST(Btree, ExtractDoesntCauseExtraMoves) { #ifdef _MSC_VER GTEST_SKIP() << "This test fails on MSVC."; #endif using Set = absl::btree_set<MovableOnlyInstance>; std::array<std::function<void(Set &)>, 3> extracters = { [](Set &s) { auto node = s.extract(s.begin()); }, [](Set &s) { auto ret = s.extract_and_get_next(s.begin()); }, [](Set &s) { auto node = s.extract(MovableOnlyInstance(0)); }}; InstanceTracker tracker; for (int i = 0; i < 3; ++i) { Set s; s.insert(MovableOnlyInstance(0)); tracker.ResetCopiesMovesSwaps(); extracters[i](s); EXPECT_EQ(tracker.copies(), 0) << i; EXPECT_EQ(tracker.moves(), 1) << i; EXPECT_EQ(tracker.swaps(), 0) << i; } } struct InsertMultiHintData { int key; int not_key; bool operator==(const InsertMultiHintData other) const { return key == other.key && not_key == other.not_key; } }; struct InsertMultiHintDataKeyCompare { using is_transparent = void; bool operator()(const InsertMultiHintData a, const InsertMultiHintData b) const { return a.key < b.key; } bool operator()(const int a, const InsertMultiHintData b) const { return a < b.key; } bool operator()(const InsertMultiHintData a, const int b) const { return a.key < b; } }; TEST(Btree, InsertHintNodeHandle) { { absl::btree_set<int> src = {1, 2, 3, 4, 5}; auto nh = src.extract(src.find(3)); EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); absl::btree_set<int> other = {0, 100}; auto it = other.insert(other.lower_bound(3), std::move(nh)); EXPECT_THAT(other, ElementsAre(0, 3, 100)); EXPECT_EQ(it, other.find(3)); nh = src.extract(src.find(5)); it = other.insert(other.end(), std::move(nh)); EXPECT_THAT(other, ElementsAre(0, 3, 5, 100)); EXPECT_EQ(it, other.find(5)); } absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src = {{1, 2}, {3, 4}, {3, 5}}; auto nh = src.extract(src.lower_bound(3)); EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4})); absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> other = {{3, 1}, {3, 2}, {3, 3}}; auto it = other.insert(--other.end(), std::move(nh)); EXPECT_THAT( other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3})); EXPECT_EQ(it, --(--other.end())); nh = src.extract(src.find(3)); EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5})); it = other.insert(other.begin(), std::move(nh)); EXPECT_THAT(other, ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3})); EXPECT_EQ(it, other.begin()); } struct IntCompareToCmp { absl::weak_ordering operator()(int a, int b) const { if (a < b) return absl::weak_ordering::less; if (a > b) return absl::weak_ordering::greater; return absl::weak_ordering::equivalent; } }; TEST(Btree, MergeIntoUniqueContainers) { absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; absl::btree_multiset<int> src2 = {3, 4, 4, 5}; absl::btree_set<int> dst; dst.merge(src1); EXPECT_TRUE(src1.empty()); EXPECT_THAT(dst, ElementsAre(1, 2, 3)); dst.merge(src2); EXPECT_THAT(src2, ElementsAre(3, 4)); EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); } TEST(Btree, MergeIntoUniqueContainersWithCompareTo) { absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; absl::btree_multiset<int> src2 = {3, 4, 4, 5}; absl::btree_set<int, IntCompareToCmp> dst; dst.merge(src1); EXPECT_TRUE(src1.empty()); EXPECT_THAT(dst, ElementsAre(1, 2, 3)); dst.merge(src2); EXPECT_THAT(src2, ElementsAre(3, 4)); EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); } TEST(Btree, MergeIntoMultiContainers) { absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; absl::btree_multiset<int> src2 = {3, 4, 4, 5}; absl::btree_multiset<int> dst; dst.merge(src1); EXPECT_TRUE(src1.empty()); EXPECT_THAT(dst, ElementsAre(1, 2, 3)); dst.merge(src2); EXPECT_TRUE(src2.empty()); EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); } TEST(Btree, MergeIntoMultiContainersWithCompareTo) { absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; absl::btree_multiset<int> src2 = {3, 4, 4, 5}; absl::btree_multiset<int, IntCompareToCmp> dst; dst.merge(src1); EXPECT_TRUE(src1.empty()); EXPECT_THAT(dst, ElementsAre(1, 2, 3)); dst.merge(src2); EXPECT_TRUE(src2.empty()); EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); } TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) { absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}}; absl::btree_multimap<int, int, std::greater<int>> src2 = { {5, 5}, {4, 1}, {4, 4}, {3, 2}}; absl::btree_multimap<int, int> dst; dst.merge(src1); EXPECT_TRUE(src1.empty()); EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3))); dst.merge(src2); EXPECT_TRUE(src2.empty()); EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2), Pair(4, 1), Pair(4, 4), Pair(5, 5))); } TEST(Btree, MergeIntoSetMovableOnly) { absl::btree_set<MovableOnlyInstance> src; src.insert(MovableOnlyInstance(1)); absl::btree_multiset<MovableOnlyInstance> dst1; dst1.insert(MovableOnlyInstance(2)); absl::btree_set<MovableOnlyInstance> dst2; dst1.merge(src); EXPECT_TRUE(src.empty()); ASSERT_THAT(dst1, SizeIs(2)); EXPECT_EQ(*dst1.begin(), MovableOnlyInstance(1)); EXPECT_EQ(*std::next(dst1.begin()), MovableOnlyInstance(2)); dst2.merge(dst1); EXPECT_TRUE(dst1.empty()); ASSERT_THAT(dst2, SizeIs(2)); EXPECT_EQ(*dst2.begin(), MovableOnlyInstance(1)); EXPECT_EQ(*std::next(dst2.begin()), MovableOnlyInstance(2)); } struct KeyCompareToWeakOrdering { template <typename T> absl::weak_ordering operator()(const T &a, const T &b) const { return a < b ? absl::weak_ordering::less : a == b ? absl::weak_ordering::equivalent : absl::weak_ordering::greater; } }; struct KeyCompareToStrongOrdering { template <typename T> absl::strong_ordering operator()(const T &a, const T &b) const { return a < b ? absl::strong_ordering::less : a == b ? absl::strong_ordering::equal : absl::strong_ordering::greater; } }; TEST(Btree, UserProvidedKeyCompareToComparators) { absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3}; EXPECT_TRUE(weak_set.contains(2)); EXPECT_FALSE(weak_set.contains(4)); absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3}; EXPECT_TRUE(strong_set.contains(2)); EXPECT_FALSE(strong_set.contains(4)); } TEST(Btree, TryEmplaceBasicTest) { absl::btree_map<int, std::string> m; m.try_emplace(1, "one"); EXPECT_EQ(1, m.size()); const int key(42); m.try_emplace(key, 3, 'a'); m.try_emplace(2, std::string("two")); EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{ {1, "one"}, {2, "two"}, {42, "aaa"}})); } TEST(Btree, TryEmplaceWithHintWorks) { int calls = 0; auto cmp = [&calls](int x, int y) { ++calls; return x < y; }; using Cmp = decltype(cmp); absl::btree_map<int, int, CheckedCompareOptedOutCmp<Cmp>> m(cmp); for (int i = 0; i < 128; ++i) { m.emplace(i, i); } calls = 0; m.emplace(127, 127); EXPECT_GE(calls, 4); calls = 0; auto it = m.try_emplace(m.begin(), -1, -1); EXPECT_EQ(129, m.size()); EXPECT_EQ(it, m.begin()); EXPECT_LE(calls, 2); calls = 0; std::pair<int, int> pair1024 = {1024, 1024}; it = m.try_emplace(m.end(), pair1024.first, pair1024.second); EXPECT_EQ(130, m.size()); EXPECT_EQ(it, --m.end()); EXPECT_LE(calls, 2); calls = 0; it = m.try_emplace(m.end(), 16, 17); EXPECT_EQ(130, m.size()); EXPECT_GE(calls, 4); EXPECT_EQ(it, m.find(16)); calls = 0; it = m.try_emplace(it, 16, 17); EXPECT_EQ(130, m.size()); EXPECT_LE(calls, 2); EXPECT_EQ(it, m.find(16)); m.erase(2); EXPECT_EQ(129, m.size()); auto hint = m.find(3); calls = 0; m.try_emplace(hint, 2, 2); EXPECT_EQ(130, m.size()); EXPECT_LE(calls, 2); EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); } TEST(Btree, TryEmplaceWithBadHint) { absl::btree_map<int, int> m = {{1, 1}, {9, 9}}; auto it = m.try_emplace(m.begin(), 2, 2); EXPECT_EQ(it, ++m.begin()); EXPECT_THAT(m, ElementsAreArray( std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}})); it = m.try_emplace(++(++m.begin()), 0, 0); EXPECT_EQ(it, m.begin()); EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{ {0, 0}, {1, 1}, {2, 2}, {9, 9}})); } TEST(Btree, TryEmplaceMaintainsSortedOrder) { absl::btree_map<int, std::string> m; std::pair<int, std::string> pair5 = {5, "five"}; m.try_emplace(10, "ten"); m.try_emplace(pair5.first, pair5.second); EXPECT_EQ(2, m.size()); EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); int int100{100}; m.try_emplace(int100, "hundred"); m.try_emplace(1, "one"); EXPECT_EQ(4, m.size()); EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); } TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) { absl::btree_map<int, int> m; m.try_emplace(m.end(), 1); EXPECT_EQ(0, m[1]); } TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) { absl::btree_map<int, std::string> m; m.try_emplace(m.end(), 1, 10, 'a'); EXPECT_EQ(std::string(10, 'a'), m[1]); } template <typename Alloc> using BtreeSetAlloc = absl::btree_set<int, std::less<int>, Alloc>; TEST(Btree, AllocatorPropagation) { TestAllocPropagation<BtreeSetAlloc>(); } TEST(Btree, MinimumAlignmentAllocator) { absl::btree_set<int8_t, std::less<int8_t>, MinimumAlignmentAlloc<int8_t>> set; for (int8_t i = 0; i < 100; ++i) set.insert(i); set.erase(set.find(50), set.end()); for (int8_t i = 51; i < 101; ++i) set.insert(i); EXPECT_EQ(set.size(), 100); } TEST(Btree, EmptyTree) { absl::btree_set<int> s; EXPECT_TRUE(s.empty()); EXPECT_EQ(s.size(), 0); EXPECT_GT(s.max_size(), 0); } bool IsEven(int k) { return k % 2 == 0; } TEST(Btree, EraseIf) { { absl::btree_set<int> s = {1, 3, 5, 6, 100}; EXPECT_EQ(erase_if(s, [](int k) { return k > 3; }), 3); EXPECT_THAT(s, ElementsAre(1, 3)); } { absl::btree_multiset<int> s = {1, 3, 3, 5, 6, 6, 100}; EXPECT_EQ(erase_if(s, [](int k) { return k <= 3; }), 3); EXPECT_THAT(s, ElementsAre(5, 6, 6, 100)); } { absl::btree_map<int, int> m = {{1, 1}, {3, 3}, {6, 6}, {100, 100}}; EXPECT_EQ( erase_if(m, [](std::pair<const int, int> kv) { return kv.first > 3; }), 2); EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3))); } { absl::btree_multimap<int, int> m = {{1, 1}, {3, 3}, {3, 6}, {6, 6}, {6, 7}, {100, 6}}; EXPECT_EQ( erase_if(m, [](std::pair<const int, int> kv) { return kv.second == 6; }), 3); EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3), Pair(6, 7))); } { absl::btree_set<int> s; for (int i = 0; i < 1000; ++i) s.insert(2 * i); EXPECT_EQ(erase_if(s, IsEven), 1000); EXPECT_THAT(s, IsEmpty()); } { absl::btree_set<int> s = {1, 3, 5, 6, 100}; EXPECT_EQ(erase_if(s, &IsEven), 2); EXPECT_THAT(s, ElementsAre(1, 3, 5)); } { absl::btree_set<int> s; for (int i = 0; i < 1000; ++i) s.insert(i); int pred_calls = 0; EXPECT_EQ(erase_if(s, [&pred_calls](int k) { ++pred_calls; return k % 2; }), 500); EXPECT_THAT(s, SizeIs(500)); EXPECT_EQ(pred_calls, 1000); } } TEST(Btree, InsertOrAssign) { absl::btree_map<int, int> m = {{1, 1}, {3, 3}}; using value_type = typename decltype(m)::value_type; auto ret = m.insert_or_assign(4, 4); EXPECT_EQ(*ret.first, value_type(4, 4)); EXPECT_TRUE(ret.second); ret = m.insert_or_assign(3, 100); EXPECT_EQ(*ret.first, value_type(3, 100)); EXPECT_FALSE(ret.second); auto hint_ret = m.insert_or_assign(ret.first, 3, 200); EXPECT_EQ(*hint_ret, value_type(3, 200)); hint_ret = m.insert_or_assign(m.find(1), 0, 1); EXPECT_EQ(*hint_ret, value_type(0, 1)); hint_ret = m.insert_or_assign(m.end(), -1, 1); EXPECT_EQ(*hint_ret, value_type(-1, 1)); EXPECT_THAT(m, ElementsAre(Pair(-1, 1), Pair(0, 1), Pair(1, 1), Pair(3, 200), Pair(4, 4))); } TEST(Btree, InsertOrAssignMovableOnly) { absl::btree_map<int, MovableOnlyInstance> m; using value_type = typename decltype(m)::value_type; auto ret = m.insert_or_assign(4, MovableOnlyInstance(4)); EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(4))); EXPECT_TRUE(ret.second); ret = m.insert_or_assign(4, MovableOnlyInstance(100)); EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(100))); EXPECT_FALSE(ret.second); auto hint_ret = m.insert_or_assign(ret.first, 3, MovableOnlyInstance(200)); EXPECT_EQ(*hint_ret, value_type(3, MovableOnlyInstance(200))); EXPECT_EQ(m.size(), 2); } TEST(Btree, BitfieldArgument) { union { int n : 1; }; n = 0; absl::btree_map<int, int> m; m.erase(n); m.count(n); m.find(n); m.contains(n); m.equal_range(n); m.insert_or_assign(n, n); m.insert_or_assign(m.end(), n, n); m.try_emplace(n); m.try_emplace(m.end(), n); m.at(n); m[n]; } TEST(Btree, SetRangeConstructorAndInsertSupportExplicitConversionComparable) { const absl::string_view names[] = {"n1", "n2"}; absl::btree_set<std::string> name_set1{std::begin(names), std::end(names)}; EXPECT_THAT(name_set1, ElementsAreArray(names)); absl::btree_set<std::string> name_set2; name_set2.insert(std::begin(names), std::end(names)); EXPECT_THAT(name_set2, ElementsAreArray(names)); } struct ConstructorCounted { explicit ConstructorCounted(int i) : i(i) { ++constructor_calls; } bool operator==(int other) const { return i == other; } int i; static int constructor_calls; }; int ConstructorCounted::constructor_calls = 0; struct ConstructorCountedCompare { bool operator()(int a, const ConstructorCounted &b) const { return a < b.i; } bool operator()(const ConstructorCounted &a, int b) const { return a.i < b; } bool operator()(const ConstructorCounted &a, const ConstructorCounted &b) const { return a.i < b.i; } using is_transparent = void; }; TEST(Btree, SetRangeConstructorAndInsertExplicitConvComparableLimitConstruction) { const int i[] = {0, 1, 1}; ConstructorCounted::constructor_calls = 0; absl::btree_set<ConstructorCounted, ConstructorCountedCompare> set{ std::begin(i), std::end(i)}; EXPECT_THAT(set, ElementsAre(0, 1)); EXPECT_EQ(ConstructorCounted::constructor_calls, 2); set.insert(std::begin(i), std::end(i)); EXPECT_THAT(set, ElementsAre(0, 1)); EXPECT_EQ(ConstructorCounted::constructor_calls, 2); } TEST(Btree, SetRangeConstructorAndInsertSupportExplicitConversionNonComparable) { const int i[] = {0, 1}; absl::btree_set<std::vector<void *>> s1{std::begin(i), std::end(i)}; EXPECT_THAT(s1, ElementsAre(IsEmpty(), ElementsAre(IsNull()))); absl::btree_set<std::vector<void *>> s2; s2.insert(std::begin(i), std::end(i)); EXPECT_THAT(s2, ElementsAre(IsEmpty(), ElementsAre(IsNull()))); } #if !defined(__GLIBCXX__) || \ (defined(_GLIBCXX_RELEASE) && _GLIBCXX_RELEASE >= 7) TEST(Btree, MapRangeConstructorAndInsertSupportExplicitConversionComparable) { const std::pair<absl::string_view, int> names[] = {{"n1", 1}, {"n2", 2}}; absl::btree_map<std::string, int> name_map1{std::begin(names), std::end(names)}; EXPECT_THAT(name_map1, ElementsAre(Pair("n1", 1), Pair("n2", 2))); absl::btree_map<std::string, int> name_map2; name_map2.insert(std::begin(names), std::end(names)); EXPECT_THAT(name_map2, ElementsAre(Pair("n1", 1), Pair("n2", 2))); } TEST(Btree, MapRangeConstructorAndInsertExplicitConvComparableLimitConstruction) { const std::pair<int, int> i[] = {{0, 1}, {1, 2}, {1, 3}}; ConstructorCounted::constructor_calls = 0; absl::btree_map<ConstructorCounted, int, ConstructorCountedCompare> map{ std::begin(i), std::end(i)}; EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2))); EXPECT_EQ(ConstructorCounted::constructor_calls, 2); map.insert(std::begin(i), std::end(i)); EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2))); EXPECT_EQ(ConstructorCounted::constructor_calls, 2); } TEST(Btree, MapRangeConstructorAndInsertSupportExplicitConversionNonComparable) { const std::pair<int, int> i[] = {{0, 1}, {1, 2}}; absl::btree_map<std::vector<void *>, int> m1{std::begin(i), std::end(i)}; EXPECT_THAT(m1, ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2))); absl::btree_map<std::vector<void *>, int> m2; m2.insert(std::begin(i), std::end(i)); EXPECT_THAT(m2, ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2))); } TEST(Btree, HeterogeneousTryEmplace) { absl::btree_map<std::string, int> m; std::string s = "key"; absl::string_view sv = s; m.try_emplace(sv, 1); EXPECT_EQ(m[s], 1); m.try_emplace(m.end(), sv, 2); EXPECT_EQ(m[s], 1); } TEST(Btree, HeterogeneousOperatorMapped) { absl::btree_map<std::string, int> m; std::string s = "key"; absl::string_view sv = s; m[sv] = 1; EXPECT_EQ(m[s], 1); m[sv] = 2; EXPECT_EQ(m[s], 2); } TEST(Btree, HeterogeneousInsertOrAssign) { absl::btree_map<std::string, int> m; std::string s = "key"; absl::string_view sv = s; m.insert_or_assign(sv, 1); EXPECT_EQ(m[s], 1); m.insert_or_assign(m.end(), sv, 2); EXPECT_EQ(m[s], 2); } #endif #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 TEST(Btree, NodeHandleMutableKeyAccess) { { absl::btree_map<std::string, std::string> map; map["key1"] = "mapped"; auto nh = map.extract(map.begin()); nh.key().resize(3); map.insert(std::move(nh)); EXPECT_THAT(map, ElementsAre(Pair("key", "mapped"))); } { absl::btree_multimap<std::string, std::string> map; map.emplace("key1", "mapped"); auto nh = map.extract(map.begin()); nh.key().resize(3); map.insert(std::move(nh)); EXPECT_THAT(map, ElementsAre(Pair("key", "mapped"))); } } #endif struct MultiKey { int i1; int i2; }; bool operator==(const MultiKey a, const MultiKey b) { return a.i1 == b.i1 && a.i2 == b.i2; } struct MultiKeyComp { using is_transparent = void; bool operator()(const MultiKey a, const MultiKey b) const { if (a.i1 != b.i1) return a.i1 < b.i1; return a.i2 < b.i2; } bool operator()(const int a, const MultiKey b) const { return a < b.i1; } bool operator()(const MultiKey a, const int b) const { return a.i1 < b; } }; struct MultiKeyThreeWayComp { using is_transparent = void; absl::weak_ordering operator()(const MultiKey a, const MultiKey b) const { if (a.i1 < b.i1) return absl::weak_ordering::less; if (a.i1 > b.i1) return absl::weak_ordering::greater; if (a.i2 < b.i2) return absl::weak_ordering::less; if (a.i2 > b.i2) return absl::weak_ordering::greater; return absl::weak_ordering::equivalent; } absl::weak_ordering operator()(const int a, const MultiKey b) const { if (a < b.i1) return absl::weak_ordering::less; if (a > b.i1) return absl::weak_ordering::greater; return absl::weak_ordering::equivalent; } absl::weak_ordering operator()(const MultiKey a, const int b) const { if (a.i1 < b) return absl::weak_ordering::less; if (a.i1 > b) return absl::weak_ordering::greater; return absl::weak_ordering::equivalent; } }; template <typename Compare> class BtreeMultiKeyTest : public ::testing::Test {}; using MultiKeyComps = ::testing::Types<MultiKeyComp, MultiKeyThreeWayComp>; TYPED_TEST_SUITE(BtreeMultiKeyTest, MultiKeyComps); TYPED_TEST(BtreeMultiKeyTest, EqualRange) { absl::btree_set<MultiKey, TypeParam> set; for (int i = 0; i < 100; ++i) { for (int j = 0; j < 100; ++j) { set.insert({i, j}); } } for (int i = 0; i < 100; ++i) { auto equal_range = set.equal_range(i); EXPECT_EQ(equal_range.first->i1, i); EXPECT_EQ(equal_range.first->i2, 0) << i; EXPECT_EQ(std::distance(equal_range.first, equal_range.second), 100) << i; } } TYPED_TEST(BtreeMultiKeyTest, Extract) { absl::btree_set<MultiKey, TypeParam> set; for (int i = 0; i < 100; ++i) { for (int j = 0; j < 100; ++j) { set.insert({i, j}); } } for (int i = 0; i < 100; ++i) { auto node_handle = set.extract(i); EXPECT_EQ(node_handle.value().i1, i); EXPECT_EQ(node_handle.value().i2, 0) << i; } for (int i = 0; i < 100; ++i) { auto node_handle = set.extract(i); EXPECT_EQ(node_handle.value().i1, i); EXPECT_EQ(node_handle.value().i2, 1) << i; } } TYPED_TEST(BtreeMultiKeyTest, Erase) { absl::btree_set<MultiKey, TypeParam> set = { {1, 1}, {2, 1}, {2, 2}, {3, 1}}; EXPECT_EQ(set.erase(2), 2); EXPECT_THAT(set, ElementsAre(MultiKey{1, 1}, MultiKey{3, 1})); } TYPED_TEST(BtreeMultiKeyTest, Count) { const absl::btree_set<MultiKey, TypeParam> set = { {1, 1}, {2, 1}, {2, 2}, {3, 1}}; EXPECT_EQ(set.count(2), 2); } TEST(Btree, SetIteratorsAreConst) { using Set = absl::btree_set<int>; EXPECT_TRUE( (std::is_same<typename Set::iterator::reference, const int &>::value)); EXPECT_TRUE( (std::is_same<typename Set::iterator::pointer, const int *>::value)); using MSet = absl::btree_multiset<int>; EXPECT_TRUE( (std::is_same<typename MSet::iterator::reference, const int &>::value)); EXPECT_TRUE( (std::is_same<typename MSet::iterator::pointer, const int *>::value)); } TEST(Btree, AllocConstructor) { using Alloc = CountingAllocator<int>; using Set = absl::btree_set<int, std::less<int>, Alloc>; int64_t bytes_used = 0; Alloc alloc(&bytes_used); Set set(alloc); set.insert({1, 2, 3}); EXPECT_THAT(set, ElementsAre(1, 2, 3)); EXPECT_GT(bytes_used, set.size() * sizeof(int)); } TEST(Btree, AllocInitializerListConstructor) { using Alloc = CountingAllocator<int>; using Set = absl::btree_set<int, std::less<int>, Alloc>; int64_t bytes_used = 0; Alloc alloc(&bytes_used); Set set({1, 2, 3}, alloc); EXPECT_THAT(set, ElementsAre(1, 2, 3)); EXPECT_GT(bytes_used, set.size() * sizeof(int)); } TEST(Btree, AllocRangeConstructor) { using Alloc = CountingAllocator<int>; using Set = absl::btree_set<int, std::less<int>, Alloc>; int64_t bytes_used = 0; Alloc alloc(&bytes_used); std::vector<int> v = {1, 2, 3}; Set set(v.begin(), v.end(), alloc); EXPECT_THAT(set, ElementsAre(1, 2, 3)); EXPECT_GT(bytes_used, set.size() * sizeof(int)); } TEST(Btree, AllocCopyConstructor) { using Alloc = CountingAllocator<int>; using Set = absl::btree_set<int, std::less<int>, Alloc>; int64_t bytes_used1 = 0; Alloc alloc1(&bytes_used1); Set set1(alloc1); set1.insert({1, 2, 3}); int64_t bytes_used2 = 0; Alloc alloc2(&bytes_used2); Set set2(set1, alloc2); EXPECT_THAT(set1, ElementsAre(1, 2, 3)); EXPECT_THAT(set2, ElementsAre(1, 2, 3)); EXPECT_GT(bytes_used1, set1.size() * sizeof(int)); EXPECT_EQ(bytes_used1, bytes_used2); } TEST(Btree, AllocMoveConstructor_SameAlloc) { using Alloc = CountingAllocator<int>; using Set = absl::btree_set<int, std::less<int>, Alloc>; int64_t bytes_used = 0; Alloc alloc(&bytes_used); Set set1(alloc); set1.insert({1, 2, 3}); const int64_t original_bytes_used = bytes_used; EXPECT_GT(original_bytes_used, set1.size() * sizeof(int)); Set set2(std::move(set1), alloc); EXPECT_THAT(set2, ElementsAre(1, 2, 3)); EXPECT_EQ(bytes_used, original_bytes_used); } TEST(Btree, AllocMoveConstructor_DifferentAlloc) { using Alloc = CountingAllocator<int>; using Set = absl::btree_set<int, std::less<int>, Alloc>; int64_t bytes_used1 = 0; Alloc alloc1(&bytes_used1); Set set1(alloc1); set1.insert({1, 2, 3}); const int64_t original_bytes_used = bytes_used1; EXPECT_GT(original_bytes_used, set1.size() * sizeof(int)); int64_t bytes_used2 = 0; Alloc alloc2(&bytes_used2); Set set2(std::move(set1), alloc2); EXPECT_THAT(set2, ElementsAre(1, 2, 3)); EXPECT_EQ(bytes_used1, original_bytes_used); EXPECT_EQ(bytes_used2, original_bytes_used); } bool IntCmp(const int a, const int b) { return a < b; } TEST(Btree, SupportsFunctionPtrComparator) { absl::btree_set<int, decltype(IntCmp) *> set(IntCmp); set.insert({1, 2, 3}); EXPECT_THAT(set, ElementsAre(1, 2, 3)); EXPECT_TRUE(set.key_comp()(1, 2)); EXPECT_TRUE(set.value_comp()(1, 2)); absl::btree_map<int, int, decltype(IntCmp) *> map(&IntCmp); map[1] = 1; EXPECT_THAT(map, ElementsAre(Pair(1, 1))); EXPECT_TRUE(map.key_comp()(1, 2)); EXPECT_TRUE(map.value_comp()(std::make_pair(1, 1), std::make_pair(2, 2))); } template <typename Compare> struct TransparentPassThroughComp { using is_transparent = void; template <typename T, typename U> bool operator()(const T &lhs, const U &rhs) const { return Compare()(lhs, rhs); } }; TEST(Btree, SupportsTransparentComparatorThatDoesNotImplementAllVisibleOperators) { absl::btree_set<MultiKey, TransparentPassThroughComp<MultiKeyComp>> set; set.insert(MultiKey{1, 2}); EXPECT_TRUE(set.contains(1)); } TEST(Btree, ConstructImplicitlyWithUnadaptedComparator) { absl::btree_set<MultiKey, MultiKeyComp> set = {{}, MultiKeyComp{}}; } TEST(Btree, InvalidComparatorsCaught) { if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; { struct ZeroAlwaysLessCmp { bool operator()(int lhs, int rhs) const { if (lhs == 0) return true; return lhs < rhs; } }; absl::btree_set<int, ZeroAlwaysLessCmp> set; EXPECT_DEATH(set.insert({0, 1, 2}), "is_self_equivalent"); } { struct ThreeWayAlwaysLessCmp { absl::weak_ordering operator()(int, int) const { return absl::weak_ordering::less; } }; absl::btree_set<int, ThreeWayAlwaysLessCmp> set; EXPECT_DEATH(set.insert({0, 1, 2}), "is_self_equivalent"); } { struct SumGreaterZeroCmp { bool operator()(int lhs, int rhs) const { if (lhs == rhs) return false; return lhs + rhs > 0; } }; absl::btree_set<int, SumGreaterZeroCmp> set; EXPECT_DEATH(set.insert({0, 1, 2}), R"regex(\!lhs_comp_rhs \|\| !comp\(\)\(rhs, lhs\))regex"); } { struct ThreeWaySumGreaterZeroCmp { absl::weak_ordering operator()(int lhs, int rhs) const { if (lhs == rhs) return absl::weak_ordering::equivalent; if (lhs + rhs > 0) return absl::weak_ordering::less; if (lhs + rhs == 0) return absl::weak_ordering::equivalent; return absl::weak_ordering::greater; } }; absl::btree_set<int, ThreeWaySumGreaterZeroCmp> set; EXPECT_DEATH(set.insert({0, 1, 2}), "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0"); } struct ClockTime { absl::optional<int> hour; int minute; }; ClockTime a = {absl::nullopt, 1}; ClockTime b = {2, 5}; ClockTime c = {6, 0}; { struct NonTransitiveTimeCmp { bool operator()(ClockTime lhs, ClockTime rhs) const { if (lhs.hour.has_value() && rhs.hour.has_value() && *lhs.hour != *rhs.hour) { return *lhs.hour < *rhs.hour; } return lhs.minute < rhs.minute; } }; NonTransitiveTimeCmp cmp; ASSERT_TRUE(cmp(a, b) && cmp(b, c) && !cmp(a, c)); absl::btree_set<ClockTime, NonTransitiveTimeCmp> set; EXPECT_DEATH(set.insert({a, b, c}), "is_ordered_correctly"); absl::btree_multiset<ClockTime, NonTransitiveTimeCmp> mset; EXPECT_DEATH(mset.insert({a, a, b, b, c, c}), "is_ordered_correctly"); } { struct ThreeWayNonTransitiveTimeCmp { absl::weak_ordering operator()(ClockTime lhs, ClockTime rhs) const { if (lhs.hour.has_value() && rhs.hour.has_value() && *lhs.hour != *rhs.hour) { return *lhs.hour < *rhs.hour ? absl::weak_ordering::less : absl::weak_ordering::greater; } return lhs.minute < rhs.minute ? absl::weak_ordering::less : lhs.minute == rhs.minute ? absl::weak_ordering::equivalent : absl::weak_ordering::greater; } }; ThreeWayNonTransitiveTimeCmp cmp; ASSERT_TRUE(cmp(a, b) < 0 && cmp(b, c) < 0 && cmp(a, c) > 0); absl::btree_set<ClockTime, ThreeWayNonTransitiveTimeCmp> set; EXPECT_DEATH(set.insert({a, b, c}), "is_ordered_correctly"); absl::btree_multiset<ClockTime, ThreeWayNonTransitiveTimeCmp> mset; EXPECT_DEATH(mset.insert({a, a, b, b, c, c}), "is_ordered_correctly"); } } TEST(Btree, MutatedKeysCaught) { if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; struct IntPtrCmp { bool operator()(int *lhs, int *rhs) const { return *lhs < *rhs; } }; { absl::btree_set<int *, IntPtrCmp> set; int arr[] = {0, 1, 2}; set.insert({&arr[0], &arr[1], &arr[2]}); arr[0] = 100; EXPECT_DEATH(set.insert(&arr[0]), "is_ordered_correctly"); } { absl::btree_multiset<int *, IntPtrCmp> set; int arr[] = {0, 1, 2}; set.insert({&arr[0], &arr[0], &arr[1], &arr[1], &arr[2], &arr[2]}); arr[0] = 100; EXPECT_DEATH(set.insert(&arr[0]), "is_ordered_correctly"); } } #ifndef _MSC_VER TEST(Btree, InvalidIteratorUse) { if (!BtreeGenerationsEnabled()) GTEST_SKIP() << "Generation validation for iterators is disabled."; constexpr const char *kInvalidMemoryDeathMessage = "use-after-free|invalidated iterator"; { absl::btree_set<int> set; for (int i = 0; i < 10; ++i) set.insert(i); auto it = set.begin(); set.erase(it++); EXPECT_DEATH(set.erase(it++), kInvalidMemoryDeathMessage); } { absl::btree_set<int> set; for (int i = 0; i < 10; ++i) set.insert(i); auto it = set.insert(20).first; set.insert(30); EXPECT_DEATH(*it, kInvalidMemoryDeathMessage); } { absl::btree_set<int> set; for (int i = 0; i < 10000; ++i) set.insert(i); auto it = set.find(5000); ASSERT_NE(it, set.end()); set.erase(1); EXPECT_DEATH(*it, kInvalidMemoryDeathMessage); } { absl::btree_set<int> set; for (int i = 0; i < 10; ++i) set.insert(i); auto it = set.insert(20).first; set.insert(30); EXPECT_DEATH(void(it == set.begin()), kInvalidMemoryDeathMessage); EXPECT_DEATH(void(set.begin() == it), kInvalidMemoryDeathMessage); } } #endif class OnlyConstructibleByAllocator { explicit OnlyConstructibleByAllocator(int i) : i_(i) {} public: OnlyConstructibleByAllocator(const OnlyConstructibleByAllocator &other) : i_(other.i_) {} OnlyConstructibleByAllocator &operator=( const OnlyConstructibleByAllocator &other) { i_ = other.i_; return *this; } int Get() const { return i_; } bool operator==(int i) const { return i_ == i; } private: template <typename T> friend class OnlyConstructibleAllocator; int i_; }; template <typename T = OnlyConstructibleByAllocator> class OnlyConstructibleAllocator : public std::allocator<T> { public: OnlyConstructibleAllocator() = default; template <class U> explicit OnlyConstructibleAllocator(const OnlyConstructibleAllocator<U> &) {} void construct(OnlyConstructibleByAllocator *p, int i) { new (p) OnlyConstructibleByAllocator(i); } template <typename Pair> void construct(Pair *p, const int i) { OnlyConstructibleByAllocator only(i); new (p) Pair(std::move(only), i); } template <class U> struct rebind { using other = OnlyConstructibleAllocator<U>; }; }; struct OnlyConstructibleByAllocatorComp { using is_transparent = void; bool operator()(OnlyConstructibleByAllocator a, OnlyConstructibleByAllocator b) const { return a.Get() < b.Get(); } bool operator()(int a, OnlyConstructibleByAllocator b) const { return a < b.Get(); } bool operator()(OnlyConstructibleByAllocator a, int b) const { return a.Get() < b; } }; TEST(Btree, OnlyConstructibleByAllocatorType) { const std::array<int, 2> arr = {3, 4}; { absl::btree_set<OnlyConstructibleByAllocator, OnlyConstructibleByAllocatorComp, OnlyConstructibleAllocator<>> set; set.emplace(1); set.emplace_hint(set.end(), 2); set.insert(arr.begin(), arr.end()); EXPECT_THAT(set, ElementsAre(1, 2, 3, 4)); } { absl::btree_multiset<OnlyConstructibleByAllocator, OnlyConstructibleByAllocatorComp, OnlyConstructibleAllocator<>> set; set.emplace(1); set.emplace_hint(set.end(), 2); EXPECT_THAT(set, ElementsAre(1, 2)); } { absl::btree_map<OnlyConstructibleByAllocator, int, OnlyConstructibleByAllocatorComp, OnlyConstructibleAllocator<>> map; map.emplace(1); map.emplace_hint(map.end(), 2); map.insert(arr.begin(), arr.end()); EXPECT_THAT(map, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(4, 4))); } { absl::btree_multimap<OnlyConstructibleByAllocator, int, OnlyConstructibleByAllocatorComp, OnlyConstructibleAllocator<>> map; map.emplace(1); map.emplace_hint(map.end(), 2); EXPECT_THAT(map, ElementsAre(Pair(1, 1), Pair(2, 2))); } } class NotAssignable { public: explicit NotAssignable(int i) : i_(i) {} NotAssignable(const NotAssignable &other) : i_(other.i_) {} NotAssignable &operator=(NotAssignable &&other) = delete; int Get() const { return i_; } bool operator==(int i) const { return i_ == i; } friend bool operator<(NotAssignable a, NotAssignable b) { return a.i_ < b.i_; } private: int i_; }; TEST(Btree, NotAssignableType) { { absl::btree_set<NotAssignable> set; set.emplace(1); set.emplace_hint(set.end(), 2); set.insert(NotAssignable(3)); set.insert(set.end(), NotAssignable(4)); EXPECT_THAT(set, ElementsAre(1, 2, 3, 4)); set.erase(set.begin()); EXPECT_THAT(set, ElementsAre(2, 3, 4)); } { absl::btree_multiset<NotAssignable> set; set.emplace(1); set.emplace_hint(set.end(), 2); set.insert(NotAssignable(2)); set.insert(set.end(), NotAssignable(3)); EXPECT_THAT(set, ElementsAre(1, 2, 2, 3)); set.erase(set.begin()); EXPECT_THAT(set, ElementsAre(2, 2, 3)); } { absl::btree_map<NotAssignable, int> map; map.emplace(NotAssignable(1), 1); map.emplace_hint(map.end(), NotAssignable(2), 2); map.insert({NotAssignable(3), 3}); map.insert(map.end(), {NotAssignable(4), 4}); EXPECT_THAT(map, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(4, 4))); map.erase(map.begin()); EXPECT_THAT(map, ElementsAre(Pair(2, 2), Pair(3, 3), Pair(4, 4))); } { absl::btree_multimap<NotAssignable, int> map; map.emplace(NotAssignable(1), 1); map.emplace_hint(map.end(), NotAssignable(2), 2); map.insert({NotAssignable(2), 3}); map.insert(map.end(), {NotAssignable(3), 3}); EXPECT_THAT(map, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(2, 3), Pair(3, 3))); map.erase(map.begin()); EXPECT_THAT(map, ElementsAre(Pair(2, 2), Pair(2, 3), Pair(3, 3))); } } struct ArenaLike { void* recycled = nullptr; size_t recycled_size = 0; }; template <typename T> class ArenaLikeAllocator : public std::allocator<T> { public: template <typename U> struct rebind { using other = ArenaLikeAllocator<U>; }; explicit ArenaLikeAllocator(ArenaLike* arena) noexcept : arena_(arena) {} ~ArenaLikeAllocator() { if (arena_->recycled != nullptr) { delete [] static_cast<T*>(arena_->recycled); arena_->recycled = nullptr; } } template<typename U> explicit ArenaLikeAllocator(const ArenaLikeAllocator<U>& other) noexcept : arena_(other.arena_) {} T* allocate(size_t num_objects, const void* = nullptr) { size_t size = num_objects * sizeof(T); if (arena_->recycled != nullptr && arena_->recycled_size == size) { T* result = static_cast<T*>(arena_->recycled); arena_->recycled = nullptr; return result; } return new T[num_objects]; } void deallocate(T* p, size_t num_objects) { size_t size = num_objects * sizeof(T); memset(p, 0xde, size); if (arena_->recycled == nullptr) { arena_->recycled = p; arena_->recycled_size = size; } else { delete [] p; } } ArenaLike* arena_; }; TEST(Btree, ReusePoisonMemory) { using Alloc = ArenaLikeAllocator<int64_t>; using Set = absl::btree_set<int64_t, std::less<int64_t>, Alloc>; ArenaLike arena; Alloc alloc(&arena); Set set(alloc); set.insert(0); set.erase(0); set.insert(0); } TEST(Btree, IteratorSubtraction) { absl::BitGen bitgen; std::vector<int> vec; for (int i = 0; i < 1000000; ++i) vec.push_back(i); absl::c_shuffle(vec, bitgen); absl::btree_set<int> set; for (int i : vec) set.insert(i); for (int i = 0; i < 1000; ++i) { size_t begin = absl::Uniform(bitgen, 0u, set.size()); size_t end = absl::Uniform(bitgen, begin, set.size()); ASSERT_EQ(end - begin, set.find(end) - set.find(begin)) << begin << " " << end; } } TEST(Btree, DereferencingEndIterator) { if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; absl::btree_set<int> set; for (int i = 0; i < 1000; ++i) set.insert(i); EXPECT_DEATH(*set.end(), R"regex(Dereferencing end\(\) iterator)regex"); } TEST(Btree, InvalidIteratorComparison) { if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; absl::btree_set<int> set1, set2; for (int i = 0; i < 1000; ++i) { set1.insert(i); set2.insert(i); } constexpr const char *kValueInitDeathMessage = "Comparing default-constructed iterator with .*non-default-constructed " "iterator"; typename absl::btree_set<int>::iterator iter1, iter2; EXPECT_EQ(iter1, iter2); EXPECT_DEATH(void(set1.begin() == iter1), kValueInitDeathMessage); EXPECT_DEATH(void(iter1 == set1.begin()), kValueInitDeathMessage); constexpr const char *kDifferentContainerDeathMessage = "Comparing iterators from different containers"; iter1 = set1.begin(); iter2 = set2.begin(); EXPECT_DEATH(void(iter1 == iter2), kDifferentContainerDeathMessage); EXPECT_DEATH(void(iter2 == iter1), kDifferentContainerDeathMessage); } TEST(Btree, InvalidPointerUse) { if (!kAsan) GTEST_SKIP() << "We only detect invalid pointer use in ASan mode."; absl::btree_set<int> set; set.insert(0); const int *ptr = &*set.begin(); set.insert(1); EXPECT_DEATH(std::cout << *ptr, "use-after-free"); size_t slots_per_node = BtreeNodePeer::GetNumSlotsPerNode<decltype(set)>(); for (int i = 2; i < slots_per_node - 1; ++i) set.insert(i); ptr = &*set.begin(); set.insert(static_cast<int>(slots_per_node)); EXPECT_DEATH(std::cout << *ptr, "use-after-free"); } template<typename Set> void TestBasicFunctionality(Set set) { using value_type = typename Set::value_type; for (int i = 0; i < 100; ++i) { set.insert(value_type(i)); } for (int i = 50; i < 100; ++i) { set.erase(value_type(i)); } auto it = set.begin(); for (int i = 0; i < 50; ++i, ++it) { ASSERT_EQ(set.find(value_type(i)), it) << i; } } template<size_t align> struct alignas(align) OveralignedKey { explicit OveralignedKey(int i) : key(i) {} bool operator<(const OveralignedKey &other) const { return key < other.key; } int key = 0; }; TEST(Btree, OveralignedKey) { TestBasicFunctionality( SizedBtreeSet<OveralignedKey<16>, 8>()); TestBasicFunctionality( SizedBtreeSet<OveralignedKey<16>, 9>()); } TEST(Btree, FieldTypeEqualsSlotType) { using set_type = absl::btree_set<uint8_t>; static_assert(BtreeNodePeer::FieldTypeEqualsSlotType<set_type>(), ""); TestBasicFunctionality(set_type()); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/btree.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/btree_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
f5bec509-da94-4e49-bc7e-4fa9a774cd5b
cpp
google/googletest
sample4
googletest/samples/sample4.cc
googletest/samples/sample4_unittest.cc
#include "sample4.h" #include <stdio.h> int Counter::Increment() { return counter_++; } int Counter::Decrement() { if (counter_ == 0) { return counter_; } else { return counter_--; } } void Counter::Print() const { printf("%d", counter_); }
#include "sample4.h" #include "gtest/gtest.h" namespace { TEST(Counter, Increment) { Counter c; EXPECT_EQ(0, c.Decrement()); EXPECT_EQ(0, c.Increment()); EXPECT_EQ(1, c.Increment()); EXPECT_EQ(2, c.Increment()); EXPECT_EQ(3, c.Decrement()); } }
https://github.com/google/googletest/blob/a1e255a582377e1006bb88a408ac3f933ba7c916/googletest/samples/sample4.cc
https://github.com/google/googletest/blob/a1e255a582377e1006bb88a408ac3f933ba7c916/googletest/samples/sample4_unittest.cc
a1e255a582377e1006bb88a408ac3f933ba7c916
55bf1df7-0188-4aae-92bb-2d657ff431ce
cpp
tensorflow/tensorflow
google_auth_provider
third_party/xla/third_party/tsl/tsl/platform/cloud/google_auth_provider.cc
third_party/xla/third_party/tsl/tsl/platform/cloud/google_auth_provider_test.cc
#include "tsl/platform/cloud/google_auth_provider.h" #ifndef _WIN32 #include <pwd.h> #include <unistd.h> #else #include <sys/types.h> #endif #include <fstream> #include <utility> #include "absl/strings/match.h" #include "json/json.h" #include "tsl/platform/base64.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/retrying_utils.h" namespace tsl { namespace { constexpr char kGoogleApplicationCredentials[] = "GOOGLE_APPLICATION_CREDENTIALS"; constexpr char kGoogleAuthTokenForTesting[] = "GOOGLE_AUTH_TOKEN_FOR_TESTING"; constexpr char kCloudSdkConfig[] = "CLOUDSDK_CONFIG"; constexpr char kNoGceCheck[] = "NO_GCE_CHECK"; constexpr char kGCloudConfigFolder[] = ".config/gcloud/"; constexpr char kWellKnownCredentialsFile[] = "application_default_credentials.json"; constexpr int kExpirationTimeMarginSec = 60; constexpr char kOAuthV3Url[] = "https: constexpr char kOAuthV4Url[] = "https: constexpr char kGceTokenPath[] = "instance/service-accounts/default/token"; constexpr char kOAuthScope[] = "https: bool IsFile(const string& filename) { std::ifstream fstream(filename.c_str()); return fstream.good(); } absl::Status GetEnvironmentVariableFileName(string* filename) { if (!filename) { return errors::FailedPrecondition("'filename' cannot be nullptr."); } const char* result = std::getenv(kGoogleApplicationCredentials); if (!result || !IsFile(result)) { return errors::NotFound(strings::StrCat("$", kGoogleApplicationCredentials, " is not set or corrupt.")); } *filename = result; return absl::OkStatus(); } absl::Status GetWellKnownFileName(string* filename) { if (!filename) { return errors::FailedPrecondition("'filename' cannot be nullptr."); } string config_dir; const char* config_dir_override = std::getenv(kCloudSdkConfig); if (config_dir_override) { config_dir = config_dir_override; } else { const char* home_dir = std::getenv("HOME"); if (!home_dir) { return errors::FailedPrecondition("Could not read $HOME."); } config_dir = io::JoinPath(home_dir, kGCloudConfigFolder); } auto result = io::JoinPath(config_dir, kWellKnownCredentialsFile); if (!IsFile(result)) { return errors::NotFound( "Could not find the credentials file in the standard gcloud location."); } *filename = result; return absl::OkStatus(); } } GoogleAuthProvider::GoogleAuthProvider( std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client) : GoogleAuthProvider(std::unique_ptr<OAuthClient>(new OAuthClient()), std::move(compute_engine_metadata_client), Env::Default()) {} GoogleAuthProvider::GoogleAuthProvider( std::unique_ptr<OAuthClient> oauth_client, std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client, Env* env) : oauth_client_(std::move(oauth_client)), compute_engine_metadata_client_( std::move(compute_engine_metadata_client)), env_(env) {} absl::Status GoogleAuthProvider::GetToken(string* t) { mutex_lock lock(mu_); const uint64 now_sec = env_->NowSeconds(); if (now_sec + kExpirationTimeMarginSec < expiration_timestamp_sec_) { *t = current_token_; return absl::OkStatus(); } if (GetTokenForTesting().ok()) { *t = current_token_; return absl::OkStatus(); } auto token_from_files_status = GetTokenFromFiles(); if (token_from_files_status.ok()) { *t = current_token_; return absl::OkStatus(); } char* no_gce_check_var = std::getenv(kNoGceCheck); bool skip_gce_check = no_gce_check_var != nullptr && absl::EqualsIgnoreCase(no_gce_check_var, "true"); absl::Status token_from_gce_status; if (skip_gce_check) { token_from_gce_status = absl::Status(absl::StatusCode::kCancelled, strings::StrCat("GCE check skipped due to presence of $", kNoGceCheck, " environment variable.")); } else { token_from_gce_status = GetTokenFromGce(); } if (token_from_gce_status.ok()) { *t = current_token_; return absl::OkStatus(); } if (skip_gce_check) { LOG(INFO) << "Attempting an empty bearer token since no token was retrieved " << "from files, and GCE metadata check was skipped."; } else { LOG(WARNING) << "All attempts to get a Google authentication bearer token failed, " << "returning an empty token. Retrieving token from files failed with " "\"" << token_from_files_status.ToString() << "\"." << " Retrieving token from GCE failed with \"" << token_from_gce_status.ToString() << "\"."; } *t = ""; if (skip_gce_check) { expiration_timestamp_sec_ = 0; } else { expiration_timestamp_sec_ = UINT64_MAX; } current_token_ = ""; return absl::OkStatus(); } absl::Status GoogleAuthProvider::GetTokenFromFiles() { string credentials_filename; if (!GetEnvironmentVariableFileName(&credentials_filename).ok() && !GetWellKnownFileName(&credentials_filename).ok()) { return errors::NotFound("Could not locate the credentials file."); } Json::Value json; Json::Reader reader; std::ifstream credentials_fstream(credentials_filename); if (!reader.parse(credentials_fstream, json)) { return errors::FailedPrecondition( "Couldn't parse the JSON credentials file."); } if (json.isMember("refresh_token")) { TF_RETURN_IF_ERROR(oauth_client_->GetTokenFromRefreshTokenJson( json, kOAuthV3Url, &current_token_, &expiration_timestamp_sec_)); } else if (json.isMember("private_key")) { TF_RETURN_IF_ERROR(oauth_client_->GetTokenFromServiceAccountJson( json, kOAuthV4Url, kOAuthScope, &current_token_, &expiration_timestamp_sec_)); } else { return errors::FailedPrecondition( "Unexpected content of the JSON credentials file."); } return absl::OkStatus(); } absl::Status GoogleAuthProvider::GetTokenFromGce() { std::vector<char> response_buffer; const uint64 request_timestamp_sec = env_->NowSeconds(); TF_RETURN_IF_ERROR(compute_engine_metadata_client_->GetMetadata( kGceTokenPath, &response_buffer)); absl::string_view response = absl::string_view(&response_buffer[0], response_buffer.size()); TF_RETURN_IF_ERROR(oauth_client_->ParseOAuthResponse( response, request_timestamp_sec, &current_token_, &expiration_timestamp_sec_)); return absl::OkStatus(); } absl::Status GoogleAuthProvider::GetTokenForTesting() { const char* token = std::getenv(kGoogleAuthTokenForTesting); if (!token) { return errors::NotFound("The env variable for testing was not set."); } expiration_timestamp_sec_ = UINT64_MAX; current_token_ = token; return absl::OkStatus(); } }
#include "tsl/platform/cloud/google_auth_provider.h" #include <stdlib.h> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace tsl { namespace { string TestData() { return io::JoinPath(testing::TslSrcRoot(), "platform", "cloud", "testdata"); } class FakeEnv : public EnvWrapper { public: FakeEnv() : EnvWrapper(Env::Default()) {} uint64 NowSeconds() const override { return now; } uint64 now = 10000; }; class FakeOAuthClient : public OAuthClient { public: absl::Status GetTokenFromServiceAccountJson( Json::Value json, absl::string_view oauth_server_uri, absl::string_view scope, string* token, uint64* expiration_timestamp_sec) override { provided_credentials_json = json; *token = return_token; *expiration_timestamp_sec = return_expiration_timestamp; return absl::OkStatus(); } absl::Status GetTokenFromRefreshTokenJson( Json::Value json, absl::string_view oauth_server_uri, string* token, uint64* expiration_timestamp_sec) override { provided_credentials_json = json; *token = return_token; *expiration_timestamp_sec = return_expiration_timestamp; return absl::OkStatus(); } string return_token; uint64 return_expiration_timestamp; Json::Value provided_credentials_json; }; } class GoogleAuthProviderTest : public ::testing::Test { protected: void SetUp() override { ClearEnvVars(); } void TearDown() override { ClearEnvVars(); } void ClearEnvVars() { unsetenv("CLOUDSDK_CONFIG"); unsetenv("GOOGLE_APPLICATION_CREDENTIALS"); unsetenv("GOOGLE_AUTH_TOKEN_FOR_TESTING"); unsetenv("NO_GCE_CHECK"); } }; TEST_F(GoogleAuthProviderTest, EnvironmentVariable_Caching) { setenv("GOOGLE_APPLICATION_CREDENTIALS", io::JoinPath(TestData(), "service_account_credentials.json").c_str(), 1); setenv("CLOUDSDK_CONFIG", TestData().c_str(), 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); oauth_client->return_token = "fake-token"; oauth_client->return_expiration_timestamp = env.NowSeconds() + 3600; string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); EXPECT_EQ("fake_key_id", oauth_client->provided_credentials_json.get("private_key_id", "") .asString()); oauth_client->return_token = "new-fake-token"; env.now += 3000; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); env.now += 598; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("new-fake-token", token); } TEST_F(GoogleAuthProviderTest, GCloudRefreshToken) { setenv("CLOUDSDK_CONFIG", TestData().c_str(), 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); oauth_client->return_token = "fake-token"; oauth_client->return_expiration_timestamp = env.NowSeconds() + 3600; string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); EXPECT_EQ("fake-refresh-token", oauth_client->provided_credentials_json.get("refresh_token", "") .asString()); } TEST_F(GoogleAuthProviderTest, RunningOnGCE) { auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", R"( { "access_token":"fake-gce-token", "expires_in": 3920, "token_type":"Bearer" })"), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", R"( { "access_token":"new-fake-gce-token", "expires_in": 3920, "token_type":"Bearer" })")}); FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-gce-token", token); env.now += 3700; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-gce-token", token); env.now += 598; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("new-fake-gce-token", token); } TEST_F(GoogleAuthProviderTest, OverrideForTesting) { setenv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "tokenForTesting", 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> empty_requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&empty_requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("tokenForTesting", token); } TEST_F(GoogleAuthProviderTest, NothingAvailable) { auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::NotFound("404"), 404)}); FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); } TEST_F(GoogleAuthProviderTest, NoGceCheckEnvironmentVariable) { setenv("NO_GCE_CHECK", "True", 1); auto oauth_client = new FakeOAuthClient; FakeEnv env; GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), nullptr, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); setenv("NO_GCE_CHECK", "true", 1); TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); setenv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "newToken", 1); TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("newToken", token); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/google_auth_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/google_auth_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5f713565-a2b4-48a7-aeea-db9993e84384
cpp
abseil/abseil-cpp
common_policy_traits
absl/container/internal/common_policy_traits.h
absl/container/internal/common_policy_traits_test.cc
#ifndef ABSL_CONTAINER_INTERNAL_COMMON_POLICY_TRAITS_H_ #define ABSL_CONTAINER_INTERNAL_COMMON_POLICY_TRAITS_H_ #include <cstddef> #include <cstring> #include <memory> #include <new> #include <type_traits> #include <utility> #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template <class Policy, class = void> struct common_policy_traits { using slot_type = typename Policy::slot_type; using reference = decltype(Policy::element(std::declval<slot_type*>())); using value_type = typename std::remove_reference<reference>::type; template <class Alloc, class... Args> static void construct(Alloc* alloc, slot_type* slot, Args&&... args) { Policy::construct(alloc, slot, std::forward<Args>(args)...); } template <class Alloc> static auto destroy(Alloc* alloc, slot_type* slot) { return Policy::destroy(alloc, slot); } template <class Alloc> static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) { transfer_impl(alloc, new_slot, old_slot, Rank2{}); } template <class P = Policy> static auto element(absl::remove_const_t<slot_type>* slot) -> decltype(P::element(slot)) { return P::element(slot); } template <class P = Policy> static auto element(const slot_type* slot) -> decltype(P::element(slot)) { return P::element(slot); } static constexpr bool transfer_uses_memcpy() { return std::is_same<decltype(transfer_impl<std::allocator<char>>( nullptr, nullptr, nullptr, Rank2{})), std::true_type>::value; } template <class Alloc> static constexpr bool destroy_is_trivial() { return std::is_same<decltype(destroy<Alloc>(nullptr, nullptr)), std::true_type>::value; } private: struct Rank0 {}; struct Rank1 : Rank0 {}; struct Rank2 : Rank1 {}; template <class Alloc, class P = Policy> static auto transfer_impl(Alloc* alloc, slot_type* new_slot, slot_type* old_slot, Rank2) -> decltype(P::transfer(alloc, new_slot, old_slot)) { return P::transfer(alloc, new_slot, old_slot); } #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 template <class Alloc, typename = std::enable_if_t<absl::is_trivially_relocatable< std::conditional_t<false, Alloc, value_type>>::value>> static std::true_type transfer_impl(Alloc*, slot_type* new_slot, slot_type* old_slot, Rank1) { std::memcpy( static_cast<void*>(std::launder( const_cast<std::remove_const_t<value_type>*>(&element(new_slot)))), static_cast<const void*>(&element(old_slot)), sizeof(value_type)); return {}; } #endif template <class Alloc> static void transfer_impl(Alloc* alloc, slot_type* new_slot, slot_type* old_slot, Rank0) { construct(alloc, new_slot, std::move(element(old_slot))); destroy(alloc, old_slot); } }; } ABSL_NAMESPACE_END } #endif
#include "absl/container/internal/common_policy_traits.h" #include <functional> #include <memory> #include <type_traits> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { namespace { using ::testing::MockFunction; using ::testing::AnyNumber; using ::testing::ReturnRef; using Slot = int; struct PolicyWithoutOptionalOps { using slot_type = Slot; using key_type = Slot; using init_type = Slot; struct PolicyFunctions { std::function<void(void*, Slot*, Slot)> construct; std::function<void(void*, Slot*)> destroy; std::function<Slot&(Slot*)> element; }; static PolicyFunctions* functions() { static PolicyFunctions* functions = new PolicyFunctions(); return functions; } static void construct(void* a, Slot* b, Slot c) { functions()->construct(a, b, c); } static void destroy(void* a, Slot* b) { functions()->destroy(a, b); } static Slot& element(Slot* b) { return functions()->element(b); } }; struct PolicyWithOptionalOps : PolicyWithoutOptionalOps { struct TransferFunctions { std::function<void(void*, Slot*, Slot*)> transfer; }; static TransferFunctions* transfer_fn() { static TransferFunctions* transfer_fn = new TransferFunctions(); return transfer_fn; } static void transfer(void* a, Slot* b, Slot* c) { transfer_fn()->transfer(a, b, c); } }; struct PolicyWithMemcpyTransferAndTrivialDestroy : PolicyWithoutOptionalOps { static std::true_type transfer(void*, Slot*, Slot*) { return {}; } static std::true_type destroy(void*, Slot*) { return {}; } }; struct Test : ::testing::Test { Test() { PolicyWithoutOptionalOps::functions()->construct = [&](void* a1, Slot* a2, Slot a3) { construct.Call(a1, a2, std::move(a3)); }; PolicyWithoutOptionalOps::functions()->destroy = [&](void* a1, Slot* a2) { destroy.Call(a1, a2); }; PolicyWithoutOptionalOps::functions()->element = [&](Slot* a1) -> Slot& { return element.Call(a1); }; PolicyWithOptionalOps::transfer_fn()->transfer = [&](void* a1, Slot* a2, Slot* a3) { return transfer.Call(a1, a2, a3); }; } std::allocator<Slot> alloc; int a = 53; MockFunction<void(void*, Slot*, Slot)> construct; MockFunction<void(void*, Slot*)> destroy; MockFunction<Slot&(Slot*)> element; MockFunction<void(void*, Slot*, Slot*)> transfer; }; TEST_F(Test, construct) { EXPECT_CALL(construct, Call(&alloc, &a, 53)); common_policy_traits<PolicyWithoutOptionalOps>::construct(&alloc, &a, 53); } TEST_F(Test, destroy) { EXPECT_CALL(destroy, Call(&alloc, &a)); common_policy_traits<PolicyWithoutOptionalOps>::destroy(&alloc, &a); } TEST_F(Test, element) { int b = 0; EXPECT_CALL(element, Call(&a)).WillOnce(ReturnRef(b)); EXPECT_EQ(&b, &common_policy_traits<PolicyWithoutOptionalOps>::element(&a)); } TEST_F(Test, without_transfer) { int b = 42; EXPECT_CALL(element, Call(&a)).Times(AnyNumber()).WillOnce(ReturnRef(a)); EXPECT_CALL(element, Call(&b)).WillOnce(ReturnRef(b)); EXPECT_CALL(construct, Call(&alloc, &a, b)).Times(AnyNumber()); EXPECT_CALL(destroy, Call(&alloc, &b)).Times(AnyNumber()); common_policy_traits<PolicyWithoutOptionalOps>::transfer(&alloc, &a, &b); } TEST_F(Test, with_transfer) { int b = 42; EXPECT_CALL(transfer, Call(&alloc, &a, &b)); common_policy_traits<PolicyWithOptionalOps>::transfer(&alloc, &a, &b); } TEST(TransferUsesMemcpy, Basic) { EXPECT_FALSE( common_policy_traits<PolicyWithOptionalOps>::transfer_uses_memcpy()); EXPECT_TRUE( common_policy_traits< PolicyWithMemcpyTransferAndTrivialDestroy>::transfer_uses_memcpy()); } TEST(DestroyIsTrivial, Basic) { EXPECT_FALSE(common_policy_traits<PolicyWithOptionalOps>::destroy_is_trivial< std::allocator<char>>()); EXPECT_TRUE(common_policy_traits<PolicyWithMemcpyTransferAndTrivialDestroy>:: destroy_is_trivial<std::allocator<char>>()); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/common_policy_traits.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/common_policy_traits_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
ac223d64-35cb-4f4c-b7a5-4be97a0a0e39
cpp
google/tensorstore
status_testutil
tensorstore/util/status_testutil.cc
tensorstore/util/status_testutil_test.cc
#include "tensorstore/util/status_testutil.h" #include <ostream> #include <regex> #include <string> #include <system_error> #include <gmock/gmock.h> #include "absl/status/status.h" namespace tensorstore { namespace internal_status { namespace { template <typename StringType> class RegexMatchImpl : public ::testing::MatcherInterface<StringType> { public: RegexMatchImpl(const std::string& message_pattern) : message_pattern_(message_pattern) {} void DescribeTo(std::ostream* os) const override { *os << "message matches pattern "; ::testing::internal::UniversalPrint(message_pattern_, os); } void DescribeNegationTo(std::ostream* os) const override { *os << "message doesn't match pattern "; ::testing::internal::UniversalPrint(message_pattern_, os); } bool MatchAndExplain( StringType message, ::testing::MatchResultListener* result_listener) const override { return std::regex_match(message, std::regex(message_pattern_)); } private: const std::string message_pattern_; }; } } internal_status::StatusIsMatcher MatchesStatus( absl::StatusCode status_code, const std::string& message_pattern) { return internal_status::StatusIsMatcher( status_code, ::testing::Matcher<const std::string&>( new internal_status::RegexMatchImpl<const std::string&>( message_pattern))); } }
#include "tensorstore/util/status_testutil.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::Future; using ::tensorstore::Result; template <typename MatcherType, typename Value> std::string Explain(const MatcherType& m, const Value& x) { testing::StringMatchResultListener listener; ExplainMatchResult(m, x, &listener); return listener.str(); } TEST(StatusTestutilTest, IsOk) { EXPECT_THAT([]() -> Future<void> { return absl::OkStatus(); }(), ::tensorstore::IsOk()); EXPECT_THAT([]() -> Result<void> { return absl::OkStatus(); }(), ::tensorstore::IsOk()); EXPECT_THAT(absl::OkStatus(), ::tensorstore::IsOk()); EXPECT_THAT(Result<int>{1}, ::tensorstore::IsOk()); EXPECT_THAT(Future<int>{2}, ::tensorstore::IsOk()); EXPECT_THAT(absl::InternalError(""), ::testing::Not(::tensorstore::IsOk())); EXPECT_THAT(Explain(::tensorstore::IsOk(), absl::InternalError("")), testing::IsEmpty()); EXPECT_THAT(Explain(::tensorstore::IsOk(), absl::OkStatus()), testing::IsEmpty()); TENSORSTORE_EXPECT_OK(absl::OkStatus()); TENSORSTORE_ASSERT_OK(absl::OkStatus()); TENSORSTORE_EXPECT_OK([]() -> Future<void> { return absl::OkStatus(); }()); TENSORSTORE_ASSERT_OK([]() -> Result<void> { return absl::OkStatus(); }()); } TEST(StatusTestutilTest, Optional) { EXPECT_THAT(Result<int>{1}, ::testing::Optional(1)); EXPECT_THAT(Result<int>{absl::InternalError("")}, ::testing::Not(::testing::Optional(1))); EXPECT_THAT(Result<int>{1}, ::testing::Optional(::testing::_)); EXPECT_THAT(Result<int>{2}, ::testing::Optional(::testing::Not(1))); EXPECT_THAT(Result<int>{absl::InternalError("")}, ::testing::Not(::testing::Optional(1))); EXPECT_THAT( Explain(::testing::Optional(1), Result<int>(absl::InternalError(""))), testing::HasSubstr("which is not engaged")); EXPECT_THAT(Explain(::testing::Optional(1), Result<int>(2)), testing::HasSubstr("whose value 2 doesn't match")); } TEST(StatusTestutilTest, IsOkAndHolds) { EXPECT_THAT(Result<int>{1}, ::tensorstore::IsOkAndHolds(1)); EXPECT_THAT(Future<int>{2}, ::tensorstore::IsOkAndHolds(2)); EXPECT_THAT(Result<int>{1}, ::tensorstore::IsOkAndHolds(::testing::_)); EXPECT_THAT(Result<int>{2}, ::tensorstore::IsOkAndHolds(::testing::Not(1))); EXPECT_THAT(Result<int>{absl::InternalError("")}, ::testing::Not(::tensorstore::IsOkAndHolds(1))); int result; TENSORSTORE_ASSERT_OK_AND_ASSIGN(result, []() -> Result<int> { return 2; }()); EXPECT_EQ(2, result); EXPECT_THAT(Explain(::tensorstore::IsOkAndHolds(1), Result<int>(absl::InternalError(""))), testing::HasSubstr("whose status code is INTERNAL")); EXPECT_THAT(Explain(::tensorstore::IsOkAndHolds(1), Result<int>(2)), testing::HasSubstr("whose value 2 doesn't match")); } TEST(StatusTestutilTest, StatusIs) { EXPECT_THAT(Result<void>{absl::InternalError("")}, ::tensorstore::StatusIs(absl::StatusCode::kInternal)); EXPECT_THAT(Future<void>{absl::InternalError("")}, ::tensorstore::StatusIs(absl::StatusCode::kInternal)); EXPECT_THAT(absl::InternalError(""), ::tensorstore::StatusIs(absl::StatusCode::kInternal)); EXPECT_THAT( absl::OkStatus(), ::testing::Not(::tensorstore::StatusIs(absl::StatusCode::kInternal))); EXPECT_THAT(absl::OkStatus(), ::tensorstore::StatusIs(absl::StatusCode::kOk)); EXPECT_THAT(Explain(::tensorstore::StatusIs(absl::StatusCode::kOk), absl::InternalError("")), testing::HasSubstr("whose status code INTERNAL doesn't match")); } TEST(StatusTestutilTest, StatusIs_WithMessage) { EXPECT_THAT( Result<void>{absl::InternalError("strongbad")}, ::tensorstore::StatusIs(::testing::_, ::testing::HasSubstr("bad"))); EXPECT_THAT( Future<void>{absl::InternalError("strongbad")}, ::tensorstore::StatusIs(::testing::_, ::testing::HasSubstr("bad"))); EXPECT_THAT( absl::InternalError("strongbad"), ::tensorstore::StatusIs(::testing::_, ::testing::HasSubstr("bad"))); EXPECT_THAT(absl::InternalError("strongbad"), ::tensorstore::StatusIs( ::testing::_, ::testing::Not(::testing::HasSubstr("good")))); EXPECT_THAT( absl::Status{absl::InternalError("strongbad")}, ::tensorstore::StatusIs(::testing::Not(absl::StatusCode::kAborted), ::testing::Not(::testing::HasSubstr("good")))); } TEST(StatusTestutilTest, MatchesStatus) { EXPECT_THAT(Result<void>{absl::InternalError("")}, ::tensorstore::MatchesStatus(absl::StatusCode::kInternal)); EXPECT_THAT(Future<void>{absl::InternalError("")}, ::tensorstore::MatchesStatus(absl::StatusCode::kInternal)); EXPECT_THAT(absl::InternalError(""), ::tensorstore::MatchesStatus(absl::StatusCode::kInternal)); EXPECT_THAT(absl::OkStatus(), ::tensorstore::MatchesStatus(absl::StatusCode::kOk)); } TEST(StatusTestutilTest, MatchesStatus_Pattern) { EXPECT_THAT(Result<void>{absl::InternalError("a")}, ::tensorstore::MatchesStatus(absl::StatusCode::kInternal, "a")); EXPECT_THAT(Future<void>{absl::InternalError("a")}, ::tensorstore::MatchesStatus(absl::StatusCode::kInternal, "a")); EXPECT_THAT(absl::InternalError("a"), ::tensorstore::MatchesStatus(absl::StatusCode::kInternal, "a")); EXPECT_THAT(absl::InternalError("a"), ::testing::Not(::tensorstore::MatchesStatus( absl::StatusCode::kInternal, "b"))); EXPECT_THAT(absl::InternalError("a"), ::testing::Not(::tensorstore::MatchesStatus( absl::StatusCode::kCancelled, "a"))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/status_testutil.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/status_testutil_test.cc
4f887a6430414cd6088e1743555015b10f116d50
578d4096-9bda-4a7a-be74-8cdd6b64c2cb
cpp
google/cel-cpp
mutable_list_impl
runtime/internal/mutable_list_impl.cc
runtime/internal/mutable_list_impl_test.cc
#include "runtime/internal/mutable_list_impl.h" #include <memory> #include <string> #include <utility> #include "common/native_type.h" #include "common/type.h" #include "common/value.h" namespace cel::runtime_internal { using ::cel::NativeTypeId; MutableListValue::MutableListValue( cel::Unique<cel::ListValueBuilder> list_builder) : cel::OpaqueValueInterface(), list_builder_(std::move(list_builder)) {} absl::Status MutableListValue::Append(cel::Value element) { return list_builder_->Add(std::move(element)); } absl::StatusOr<cel::ListValue> MutableListValue::Build() && { return std::move(*list_builder_).Build(); } std::string MutableListValue::DebugString() const { return kMutableListTypeName; } NativeTypeId MutableListValue::GetNativeTypeId() const { return cel::NativeTypeId::For<MutableListValue>(); } }
#include "runtime/internal/mutable_list_impl.h" #include "base/type_provider.h" #include "common/memory.h" #include "common/type.h" #include "common/type_factory.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "internal/testing.h" namespace cel::runtime_internal { namespace { using ::absl_testing::IsOkAndHolds; TEST(MutableListImplValue, Creation) { common_internal::LegacyValueManager value_factory( MemoryManagerRef::ReferenceCounting(), TypeProvider::Builtin()); ASSERT_OK_AND_ASSIGN(auto builder, value_factory.NewListValueBuilder( value_factory.GetDynListType())); auto mutable_list_value = value_factory.GetMemoryManager().MakeShared<MutableListValue>( std::move(builder)); OpaqueValue opaque_handle = mutable_list_value; EXPECT_EQ(NativeTypeId::Of(opaque_handle), NativeTypeId::For<MutableListValue>()); EXPECT_EQ(opaque_handle.operator->(), mutable_list_value.operator->()); } TEST(MutableListImplValue, ListBuilding) { common_internal::LegacyValueManager value_factory( MemoryManagerRef::ReferenceCounting(), TypeProvider::Builtin()); ASSERT_OK_AND_ASSIGN(auto builder, value_factory.NewListValueBuilder( value_factory.GetDynListType())); auto mutable_list_value = value_factory.GetMemoryManager().MakeShared<MutableListValue>( std::move(builder)); MutableListValue& mutable_ref = const_cast<MutableListValue&>(*mutable_list_value); ASSERT_OK(mutable_ref.Append(value_factory.CreateIntValue(1))); ASSERT_OK_AND_ASSIGN(ListValue list_value, std::move(mutable_ref).Build()); EXPECT_THAT(list_value.Size(), IsOkAndHolds(1)); ASSERT_OK_AND_ASSIGN(auto element, list_value.Get(value_factory, 0)); ASSERT_TRUE(InstanceOf<IntValue>(element)); EXPECT_EQ(Cast<IntValue>(element).NativeValue(), 1); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/internal/mutable_list_impl.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/internal/mutable_list_impl_test.cc
4552db5798fb0853b131b783d8875794334fae7f
25324229-a464-4608-8206-4630461737fa
cpp
tensorflow/tensorflow
convolution_4d_expander
third_party/xla/xla/service/convolution_4d_expander.cc
third_party/xla/xla/service/convolution_4d_expander_test.cc
#include "xla/service/convolution_4d_expander.h" #include <algorithm> #include <functional> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" namespace xla { bool Convolution4DExpander::InstructionMatchesPattern( HloInstruction* instruction) { if (instruction->opcode() != HloOpcode::kConvolution) { return false; } const ConvolutionDimensionNumbers& dim_nums = instruction->convolution_dimension_numbers(); if (dim_nums.input_spatial_dimensions().size() != 4) { return false; } Shape input = instruction->operand(0)->shape(); for (int64_t i = 0; i < dim_nums.input_spatial_dimensions().size(); ++i) { int64_t spatial_dim = dim_nums.input_spatial_dimensions(i); if (input.dimensions(spatial_dim) == 1 && instruction->window().dimensions(i).padding_low() == 0 && instruction->window().dimensions(i).padding_high() == 0) { return true; } } return false; } absl::StatusOr<HloInstruction*> Convolution4DExpander::ExpandInstruction( HloInstruction* instruction) { HloComputation* computation = instruction->parent(); ConvolutionDimensionNumbers dim_nums = instruction->convolution_dimension_numbers(); ConvolutionDimensionNumbers new_dim_nums = dim_nums; std::vector<int64_t> removed_input_dimensions; std::vector<int64_t> removed_kernel_dimensions; std::vector<int64_t> removed_output_dimensions; new_dim_nums.clear_input_spatial_dimensions(); new_dim_nums.clear_output_spatial_dimensions(); new_dim_nums.clear_kernel_spatial_dimensions(); Window new_window; HloInstruction* input = instruction->mutable_operand(0); for (int64_t i = 0; i < dim_nums.input_spatial_dimensions().size(); ++i) { int64_t input_spatial_dim = dim_nums.input_spatial_dimensions(i); int64_t output_spatial_dim = dim_nums.output_spatial_dimensions(i); int64_t kernel_spatial_dim = dim_nums.kernel_spatial_dimensions(i); if (input->shape().dimensions(input_spatial_dim) == 1 && instruction->window().dimensions(i).padding_low() == 0 && instruction->window().dimensions(i).padding_high() == 0) { removed_input_dimensions.push_back(input_spatial_dim); removed_output_dimensions.push_back(output_spatial_dim); removed_kernel_dimensions.push_back(kernel_spatial_dim); } else { *new_window.add_dimensions() = instruction->window().dimensions(i); new_dim_nums.add_input_spatial_dimensions(input_spatial_dim); new_dim_nums.add_output_spatial_dimensions(output_spatial_dim); new_dim_nums.add_kernel_spatial_dimensions(kernel_spatial_dim); } } std::sort(removed_input_dimensions.begin(), removed_input_dimensions.end(), std::greater<>()); std::sort(removed_output_dimensions.begin(), removed_output_dimensions.end(), std::greater<>()); std::sort(removed_kernel_dimensions.begin(), removed_kernel_dimensions.end(), std::greater<>()); Shape new_input_shape = input->shape(); for (int64_t dim : removed_input_dimensions) { new_input_shape.DeleteDimension(dim); } HloInstruction* kernel = instruction->mutable_operand(1); Shape new_kernel_shape = kernel->shape(); for (int64_t dim : removed_kernel_dimensions) { new_kernel_shape.DeleteDimension(dim); } Shape new_output_shape = instruction->shape(); for (int64_t dim : removed_output_dimensions) { new_output_shape.DeleteDimension(dim); } auto compute_new_dimension = [](const std::vector<int64_t>& removed_dimensions, int64_t old_dimension) { int64_t num_smaller = absl::c_count_if( removed_dimensions, [old_dimension](int64_t removed_dimension) { return removed_dimension < old_dimension; }); return old_dimension - num_smaller; }; new_dim_nums.set_input_batch_dimension(compute_new_dimension( removed_input_dimensions, new_dim_nums.input_batch_dimension())); new_dim_nums.set_input_feature_dimension(compute_new_dimension( removed_input_dimensions, new_dim_nums.input_feature_dimension())); for (int64_t i = 0; i < new_dim_nums.input_spatial_dimensions().size(); ++i) { new_dim_nums.set_input_spatial_dimensions( i, compute_new_dimension(removed_input_dimensions, new_dim_nums.input_spatial_dimensions(i))); } new_dim_nums.set_output_batch_dimension(compute_new_dimension( removed_output_dimensions, new_dim_nums.output_batch_dimension())); new_dim_nums.set_output_feature_dimension(compute_new_dimension( removed_output_dimensions, new_dim_nums.output_feature_dimension())); for (int64_t i = 0; i < new_dim_nums.output_spatial_dimensions().size(); ++i) { new_dim_nums.set_output_spatial_dimensions( i, compute_new_dimension(removed_output_dimensions, new_dim_nums.output_spatial_dimensions(i))); } new_dim_nums.set_kernel_input_feature_dimension( compute_new_dimension(removed_kernel_dimensions, new_dim_nums.kernel_input_feature_dimension())); new_dim_nums.set_kernel_output_feature_dimension( compute_new_dimension(removed_kernel_dimensions, new_dim_nums.kernel_output_feature_dimension())); for (int64_t i = 0; i < new_dim_nums.kernel_spatial_dimensions().size(); ++i) { new_dim_nums.set_kernel_spatial_dimensions( i, compute_new_dimension(removed_kernel_dimensions, new_dim_nums.kernel_spatial_dimensions(i))); } HloInstruction* reshaped_input = computation->AddInstruction( HloInstruction::CreateReshape(new_input_shape, input)); HloInstruction* reshaped_kernel = computation->AddInstruction( HloInstruction::CreateReshape(new_kernel_shape, kernel)); instruction->set_convolution_dimension_numbers(new_dim_nums); instruction->set_window(new_window); HloInstruction* new_convolution = computation->AddInstruction(instruction->CloneWithNewOperands( new_output_shape, {reshaped_input, reshaped_kernel})); return computation->AddInstruction( HloInstruction::CreateReshape(instruction->shape(), new_convolution)); } }
#include "xla/service/convolution_4d_expander.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using Convolution4DExpanderTest = HloTestBase; TEST_F(Convolution4DExpanderTest, ConvertTo2DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,10,1,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,2,1,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,1,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x2x1x4} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_TRUE(expander_pass.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); const HloInstruction* new_convolution = root->operand(0); EXPECT_EQ(new_convolution->opcode(), HloOpcode::kConvolution); EXPECT_EQ(new_convolution->window().dimensions_size(), 2); } TEST_F(Convolution4DExpanderTest, ConvertTo3DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,10,1,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,2,1,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,2,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x2x1x4 pad=0_0x0_0x1_0x0_0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_TRUE(expander_pass.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); const HloInstruction* new_convolution = root->operand(0); EXPECT_EQ(new_convolution->opcode(), HloOpcode::kConvolution); EXPECT_EQ(new_convolution->window().dimensions_size(), 3); } TEST_F(Convolution4DExpanderTest, ConvertTo0DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,1,1,1,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,1,1,1,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,1,1,1,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x1x1x1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_TRUE(expander_pass.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); const HloInstruction* new_convolution = root->operand(0); EXPECT_EQ(new_convolution->opcode(), HloOpcode::kConvolution); EXPECT_EQ(new_convolution->window().dimensions_size(), 0); } TEST_F(Convolution4DExpanderTest, DontConvert3DConvolution) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,1,1,5,20]{4,3,2,1,0} parameter(0) kernel = f32[20,1,1,1,15]{4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,1,1,5]{4,3,2,1,0} convolution(input, kernel), dim_labels=012bf_i012o->f012b, window={size=1x1x1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 3); Convolution4DExpander expander_pass; ASSERT_FALSE(expander_pass.Run(module.get()).value()); } TEST_F(Convolution4DExpanderTest, DontConvertIfNoTrivialDimensionAvailable) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[2,10,2,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,2,2,2,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,1,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=2x2x2x4} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_FALSE(expander_pass.Run(module.get()).value()); } TEST_F(Convolution4DExpanderTest, DontConvertIfPaddingIsNonzero) { std::string hlo_string = R"(HloModule convolution_4d_fp32 ENTRY convolution_computation { input = f32[1,10,1,10,5,20]{5,4,3,2,1,0} parameter(0) kernel = f32[20,1,2,1,4,15]{5,4,3,2,1,0} parameter(1) ROOT conv = f32[15,1,9,1,7,5]{5,4,3,2,1,0} convolution(input, kernel), dim_labels=0123bf_i0123o->f0123b, window={size=1x2x1x4 stride=2x1x2x1 pad=1_0x0_0x0_1x0_0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->window().dimensions_size(), 4); Convolution4DExpander expander_pass; ASSERT_FALSE(expander_pass.Run(module.get()).value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convolution_4d_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convolution_4d_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f81a9f1c-f14a-46bb-95cb-3879e36651fc
cpp
tensorflow/tensorflow
renderer
tensorflow/c/experimental/ops/gen/cpp/renderers/renderer.cc
tensorflow/c/experimental/ops/gen/cpp/renderers/renderer_test.cc
#include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer_context.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/stringpiece.h" namespace tensorflow { namespace generator { namespace cpp { Renderer::Renderer(RendererContext context) : context_(context) {} Renderer& Renderer::BlankLine() { context_.code.AddLineWithoutIndent(""); return *this; } Renderer& Renderer::CodeLine(const string& text) { context_.code.AddLineWithoutIndent(text); return *this; } Renderer& Renderer::CodeLines(const string& text) { StringPiece trimmed_text(text); str_util::RemoveWhitespaceContext(&trimmed_text); for (const string& line : str_util::Split(trimmed_text, '\n')) { context_.code.AddLineWithoutIndent(line); } return *this; } Renderer& Renderer::Statement(const string& text) { if (absl::EndsWith(text, ";")) { LOG(WARNING) << "Superfluous terminating ';' in '" << text << "'"; context_.code.AddLineWithIndent(text); } else { context_.code.AddLineWithIndent(absl::StrCat(text, ";")); } return *this; } Renderer& Renderer::TFStatement(const string& text) { return Statement(absl::Substitute("TF_RETURN_IF_ERROR($0)", text)); } Renderer& Renderer::CommentLine(const string& text) { context_.code.AddLineWithIndent(absl::StrCat(" return *this; } Renderer& Renderer::BlockOpen(const string& text) { context_.code.AddLineWithIndent(absl::StrCat(text, " {")); context_.code.IncreaseIndent(); return *this; } Renderer& Renderer::BlockClose(const string& text) { context_.code.DecreaseIndent(); context_.code.AddLineWithIndent(absl::StrCat("}", text)); return *this; } } } }
#include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer.h" #include "tensorflow/c/experimental/ops/gen/common/path_config.h" #include "tensorflow/c/experimental/ops/gen/common/source_code.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/cpp_config.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/renderer_context.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace generator { namespace cpp { namespace { TEST(Renderer, typical_usage) { class TestRenderer : Renderer { public: explicit TestRenderer(SourceCode& code) : Renderer( {RendererContext::kSource, code, CppConfig(), PathConfig()}) {} void Render() { CommentLine("File level comment."); CodeLine("#include \"header.h\""); BlankLine(); BlockOpen("void TestFunction()"); { Statement("int i = 1"); BlankLine(); BlockOpen("while (i == 1)"); { CommentLine("Do nothing, really...."); CodeLine("#if 0"); Statement("call()"); CodeLine("#endif"); BlockClose(); } BlockClose(" } } }; SourceCode code; TestRenderer(code).Render(); string expected = R"( #include "header.h" void TestFunction() { int i = 1; while (i == 1) { #if 0 call(); #endif } } )"; code.SetSpacesPerIndent(3); EXPECT_EQ(expected, code.Render()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/gen/cpp/renderers/renderer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/gen/cpp/renderers/renderer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea