from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer # Load custom dataset dataset = load_dataset('json', data_files='path_to_your/shell_commands_mock_data.json') # Load tokenizer and model for Repl.it LLM model_name = "Repl.it/llama-2-13b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Tokenization function def tokenize_function(examples): return tokenizer(examples['prompt'], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=1, per_device_eval_batch_size=1, num_train_epochs=3, weight_decay=0.01, logging_dir="./logs", logging_steps=10, save_steps=100, ) # Trainer setup trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets['train'], eval_dataset=tokenized_datasets['test'] if 'test' in tokenized_datasets else None, ) # Start training trainer.train() # Save fine-tuned model trainer.save_model("./fine_tuned_model") # Evaluate the model trainer.evaluate()