File size: 3,431 Bytes
f52b4b7
 
 
 
 
8a51d9d
f52b4b7
8a51d9d
 
 
f52b4b7
 
 
 
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
b86d76f
f52b4b7
8a51d9d
f52b4b7
fdecd49
 
 
 
 
 
 
 
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f52b4b7
8a51d9d
f52b4b7
8a51d9d
 
 
 
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
 
 
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
 
 
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
b21af2e
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
8a51d9d
f52b4b7
 
 
8a51d9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: gpl-3.0
language:
- en
tags:
- recommendation
- reviews
- ecommerce
- ratings
- user-behavior
pretty_name: Amazon Reviews 2023 All-Category k-Core
size_categories:
- 100M<n<1B
---
# Dataset Card for `Amazon Reviews 2023 All-Category k-Core`

* These datasets are subsets of [Amazon reviews dataset](https://amazon-reviews-2023.github.io/), collected in 2023 by [McAuley Lab](https://cseweb.ucsd.edu/~jmcauley/). 

* It contains **all categories** of the reviews from the original dataset that have more than $k \in [5, 20]$ interactions. 

* The original dataset contains reviews in the period of May. 1996 to Sep. 2023. 

* The reviews are grouped into [25 categories](https://amazon-reviews-2023.github.io/#grouped-by-category). 

* The dataset is in `.parquet` format.

> [!NOTE]
> 
> **k-core** means that every user and every item has at least k interactions across **ALL categories combined**. 
>
> This condition may not hold within a single category.
>


## Dataset Details

### Dataset Description

The dataset contains reviews from Amazon, and it is a subset of the original dataset. The dataset is in `.parquet` format.

Please refer to the [Dataset Creation and Processing](#dataset-creation-and-processing) section for more details about the dataset.

### Dataset Structure

The repository is structured as follows:

```
amazon-2023-all-category-k-core/
  |- 5-core/
     |- 5-core.parquet                 # 5-core ratings of all categories, 3.16GB
  |- 20-core/
     |- category/
        |- Arts_Crafts_and_Sewing/
           |- ratings.parquet          # ratings of Arts, Crafts & Sewing
           |- meta.parquet             # meta data of items in Arts, Crafts & Sewing
           |- reviews.parquet          # reviews of items in Arts, Crafts & Sewing
        |- ...                         # other categories
     |- 20-core.parquet                # 20-core ratings of all categories, 1.1GB
     |- item_map.jsonl.gz              # item map, format: [{item_index:int, parent_asin:str}], 7.97MB
     |- user_map.jsonl.gz              # user map, format: [{user_index:int, user_id:str}],     29.4MB
```

## Dataset Creation and Processing

1. Merge the `ratings` from all categories of [Amazon reviews 2023 dataset](https://amazon-reviews-2023.github.io/)
2. Filter out the `ratings` that have less than $k$ interactions, where $k \in [5, 20]$.
3. Filter out the `meta` data and `reviews` of items that are not in the filtered `ratings`.
4. Save the datasets in `.parquet` format.

## Dataset Sources

The original dataset is available at [Amazon reviews dataset](https://amazon-reviews-2023.github.io/).

<!-- - **Repository:** [More Information Needed] -->
<!-- - **Paper [optional]:** [More Information Needed] -->
<!-- - **Demo [optional]:** [More Information Needed] -->

## Uses

This dataset can be used for recommendation systems, sentiment analysis, and other NLP tasks.

<!-- ## Citation [optional] -->

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

<!-- **BibTeX:** -->

<!-- [More Information Needed] -->

<!-- **APA:** -->

<!-- [More Information Needed] -->

## Glossary

The glossary of the dataset is available at [Amazon Reviews#Data Fields](https://amazon-reviews-2023.github.io/#data-fields).

## Dataset Card Authors

Chenglong Ma

## Dataset Card Contact

https://huggingface.co/ChenglongMa