File size: 3,103 Bytes
9346a65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import datasets
import pyarrow as pa
from datasets.features import ClassLabel, Image
from datasets.tasks import ImageClassification
logger = datasets.utils.logging.get_logger(__name__)
@dataclass
class ImageFolderConfig(datasets.BuilderConfig):
"""BuilderConfig for ImageFolder."""
features: Optional[datasets.Features] = None
@property
def schema(self):
return (
pa.schema(self.features.type)
if self.features is not None
else None
)
class ImageFolder(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = ImageFolderConfig
def _info(self):
filepaths = None
if isinstance(self.config.data_files, str):
filepaths = self.config.data_files
elif isinstance(self.config.data_files, dict):
filepaths = self.config.data_files.get("train", None)
if filepaths is None:
raise RuntimeError("data_files must be specified")
classes = sorted(
[Path(file_path).parent.name.lower() for file_path in filepaths]
)
# Remove duplicates
classes = list(set(classes))
return datasets.DatasetInfo(
features=datasets.Features(
{
"image_filepath": Image(),
"labels": ClassLabel(names=classes),
}
),
task_templates=[
ImageClassification(
image_column="image_filepath",
label_column="labels",
)
],
)
def _split_generators(self, dl_manager):
if not self.config.data_files:
raise ValueError(
f"At least one data file must be specified, but got data_files={self.config.data_files}"
)
data_files = self.config.data_files
if isinstance(data_files, str):
file_paths = data_files
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"file_paths": file_paths},
)
]
splits = []
for split_name, file_paths in data_files.items():
splits.append(
datasets.SplitGenerator(
name=split_name, gen_kwargs={"file_paths": file_paths}
)
)
return splits
def _generate_examples(self, file_paths):
logger.info("generating examples from = %s", file_paths)
extensions = {
".jpg",
".jpeg",
".png",
".ppm",
".bmp",
".pgm",
".tif",
".tiff",
".webp",
}
for i, path in enumerate(file_paths):
path = Path(path)
if path.suffix in extensions:
yield i, {
"image_filepath": path.as_posix(),
"labels": path.parent.name.lower(),
}
|