File size: 8,846 Bytes
d03ae21 e1333d2 e1dec9f 6ed1c82 6c4a1ad e1dec9f e960cbd e1dec9f e960cbd 6ed1c82 d515a29 50194fe d515a29 e1dec9f d515a29 e1dec9f 6ed1c82 950d463 6ed1c82 950d463 e1dec9f d515a29 6ed1c82 d515a29 6ed1c82 d515a29 e1dec9f 6ed1c82 d515a29 e1dec9f d515a29 6ed1c82 d515a29 ed295c0 d515a29 6ed1c82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
license: apache-2.0
task_categories:
- text-generation
- summarization
language:
- en
tags:
- Pretraining
- Interleaved
- Reasoning
size_categories:
- 1M<n<10M
---
# Multimodal-Textbook-6.5M
<img src="./src/logo.png" alt="Image" style="width: 900px;">
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2501.00958) [![Project](https://img.shields.io/badge/Project-Website-blue.svg)](https://multimodal-interleaved-textbook.github.io/) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/DAMO-NLP-SG/multimodal_textbook/tree/master)
## Overview
This dataset is for ["2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining"](https://arxiv.org/abs/2501.00958), containing 6.5M images interleaving with 0.8B text from instructional videos.
- It contains **pre-training corpus using interleaved image-text format**. Specifically, our multimodal-textbook includes **6.5M keyframes** extracted from instructional videos, interleaving with 0.8B **ASR texts**.
- All the images and text are extracted from online instructional videos (22,000 class hours), covering multiple fundamental subjects, e.g., mathematics, physics, and chemistry.
- Our textbook corpus providing a more coherent context and richer knowledge for image-text aligning.
- Our code can be found in [Multimodal-Textbook](https://github.com/DAMO-NLP-SG/multimodal_textbook/tree/master).
<img src="./src/page_fig.png" alt="Image" style="width: 900px;">
## Visualize Our Textbook
Due to the large size of the dataset (our complete textbook dataset is 11GB for JSON files and 0.7TB for images), we sampled 100 samples and the corresponding images and stored them in the `example_data` folder: `./example_data/textbook_sample_100.json`.
Each sample is stored in dict format as follows:
```
[
{'images': [keyframe1, None, keyframe2, None, keyframe3, None,.....],
'texts': [None, asr1, None, asr2, None, asr3,.....],
'text_ocr_list': [None, asr1+ocr1, None, asr2+ocr2, None, asr3+ocr3,.....],
'metadata': [...],
'image_num': 15,
'text_num': 425,
'token_num': 9065},
....
]
```
Just like [OBELICS](https://github.com/huggingface/OBELICS), the "images" and "texts" are arranged interleavely:
- "Images" list contains multiple keyframes and "None", where "None" represents that the current position is text.
- "texts" list contain multiple asr text. The position of "None" in "texts" list is image.
- "text_ocr_list": In addition to asr text, "text_ocr_list" also includes OCR text.
- "image_num", "text_num", "token_num": respectively represent the number of images, the number of asr text tokens, and the estimated total number of tokens in this sample.
To view our dataset more conveniently, we have written a jupyter notebook: `./llava/dataset/show_interleaved_dataset.ipynb`
```
cd example_data
show_interleaved_dataset.ipynb
```
In the notebook, you can see keyframes interleaving with text.
## Dataset Statistics
We utilize GPT-4o to synthesize our knowledge taxonomy with 3915 knowledge points across 6 subjects, which enabled us to automatically collect 159K English instructional videos based on this taxonomy.
Following our video-totextbook pipeline, we filter 53% low-quality or repetitive videos and retain 75K videos (22,697 class hours) with an average duration of 18 minutes.
Then we extract 6.5M keyframes and 0.75B text (ASR+OCR) tokens from these videos. To enhance training efficiency, we concatenate multiple video clips into a single sample, producing a total of 610K interleaved samples. Each sample contains an average of 10.7 keyframes and 1,230 text tokens. The detailed statistics for each subject are shown as follows:
<img src="./src/table.png" alt="Image" style="width: 900px;">
## Using Our Dataset
### Dataset
We provide the json file and corresponding images folder for textbook:
- Dataset json-file: `./multimodal_textbook.json` (610k samples ~ 11GB)
- Dataset image_folder: `./dataset_images_interval_7.tar.gz` (6.5M image ~ 700GB)
- videometa_data: `video_meta_data/video_meta_data1.json` and `video_meta_data/video_meta_data2.json` represent the meta information of crawled videos, including video vid, title, description, duration, language, and searched knowledge points. `multimodal_textbook_meta_data.json.zip` records the textbook in its original format, not in the OBELICS format.
Each sample has approximately 10.7 images and 1927 text tokens. After you download and unzip the folder, you need to replace the each image path in json file (`/mnt/workspace/zwq_data/interleaved_dataset/`) with your personal image folder path.
```
"images": [
"/mnt/workspace/zwq_data/interleaved_dataset/dataset_images_interval_7/-1uixJ1V-As/-1uixJ1V-As@0.0_10.0#1.jpg",
null,
"/mnt/workspace/zwq_data/interleaved_dataset/dataset_images_interval_7/-1uixJ1V-As/-1uixJ1V-As@10.0_55.0#6.jpg",
null,
......
],
"texts": [
null,
" Hi everyone, and welcome to another lesson in our Eureka Tips for computers series.",
null,
" I'm actually trying to use the number line to find the sum for each. So to start I'm going to use the paint tool to demonstrate. Let's use the number line for four plus five. We're going to start at four then we're going to count up five. One two three four five. That equals nine. Now let's do three plus six for the next one.",
....
],
```
### Naming Format for keyframe
For each keyframe, its naming format rule is:
`video id@start-time_end-time#keyframe-number.jpg`.
For example, the path and file name of a keyframe is
`-1uixJ1V-As/-1uixJ1V-As@10.0_55.0#2.jpg`.
This means that this image is extracted from the video (`-1uixJ1V-As`), more specifically, it is the second keyframe (#2) in the video clip from 10.0 to 55.0 seconds. You can access the original video through [https://www.youtube.com/watch?v=-1uixJ1V-As](https://www.youtube.com/watch?v=-1uixJ1V-As).
### MetaData of Instructional Video
The format of the `video_meta_data/video_meta_data1.json`:
```
{
"file_path": xxx,
"file_size (MB)": 85.54160022735596,
"file_name": "-r7-s1z3lFY.mp4",
"video_duration": 0,
"unique": true,
"asr_path": xxxx,
"asr_len": 2990,
"caption_path": xxx,
"caption_len": 0,
"search_keyword": "1.3B parameter size models comparison",
"title": "DeepSeek Coder LLM | A Revolutionary Coder Model",
"desc": "In this video, we are going to test out Deepseek Coder, a coding LLM.....,
"llm_response": " The video appears to be a detailed and technical analysis of DeepSeek Coder LLM..... ###Score: 10###",
"language": "en",
"asr is repetive": false,
"deepseek_score": 10,
"llama_score": 2,
"deepseek_score long context": 10
},
```
In addition, the `multimodal_textbook_meta_data.json.zip` records the textbook in video clip-level. It is stored with "video clip" as a dict. Each sample includes multiple consecutive video clips from the same long video. Sometimes one sample may also include video clips from different long videos. When a long video ends, it will store `End of a Video`.
```
{'token_num': 1657,
'conversations': [
{
'vid': video id-1,
'clip_path': the path of video clip,
'asr': ASR transcribed from audio,
'extracted_frames': Extract keyframe sequences according to time intervals.,
'image_tokens': xxx,
'token_num': xxx,
'refined_asr': Refine the original ASR,
'ocr_internvl_8b': OCR obtained using internvl_8b,
'ocr_image': the image does OCR come from,
'ocr_internvl_8b_deduplicates': xxx,
'keyframe_ssim': Keyframe sequence extracted according to SSIM algorithm.,
'asr_token_num': xxx,
'ocr_qwen2_vl_72b': 'OCR obtained using qwen2_vl_72b'
},
{
'vid': 'End of a Video',
'clip_path': xxxx,
'image_tokens': 0,
'token_num': 0
},
{
'vid': video id-2,
'clip_path': the path of video clip,
'asr': ASR transcribed from audio,
'extracted_frames': Extract keyframe sequences according to time intervals.,
'image_tokens': xxx,
'token_num': xxx,
'refined_asr': Refine the original ASR,
'ocr_internvl_8b': OCR obtained using internvl_8b,
'ocr_image': the image does OCR come from,
'ocr_internvl_8b_deduplicates': xxx,
'keyframe_ssim': Keyframe sequence extracted according to SSIM algorithm.,
'asr_token_num': xxx,
'ocr_qwen2_vl_72b': 'OCR obtained using qwen2_vl_72b'
},
....
]
}
```
|