File size: 6,548 Bytes
bcb4da6
 
 
df79dfd
 
 
 
bcb4da6
7678e02
 
bf6fcec
3f1fa18
1442bfb
7678e02
 
c4a3ae7
 
bcb4da6
 
 
7678e02
bcb4da6
 
 
 
 
7678e02
bcb4da6
 
 
 
 
7678e02
bcb4da6
 
 
 
 
7678e02
bcb4da6
 
 
 
 
485d899
 
 
 
 
 
 
 
 
 
bcb4da6
 
 
 
 
485d899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9a80f
485d899
 
bcb4da6
 
 
 
 
485d899
 
bcb4da6
 
 
 
 
 
485d899
 
 
 
 
 
 
 
bcb4da6
 
 
485d899
 
 
 
 
 
 
 
 
 
 
 
eb9a80f
485d899
 
bcb4da6
 
 
485d899
 
bcb4da6
 
 
 
485d899
 
bcb4da6
485d899
 
bcb4da6
 
485d899
 
 
bcb4da6
 
485d899
 
bcb4da6
 
eb9a80f
485d899
 
bcb4da6
df79dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
task_categories:
- audio-classification
license: cc
tags:
- bird classification
- passive acoustic monitoring
---
## Dataset Description

- **Repository:** [https://github.com/DBD-research-group/GADME](https://github.com/DBD-research-group/GADME)
- **Paper:** [GADME](https://arxiv.org/)
- **Point of Contact:** [Lukas Rauch](mailto:lukas.rauch@uni-kassel.de) 

### Dataset Summary
We present the GADME benchmark that covers a comprehensive range of avian monitoring datasets. 
We offer a static set of evaluation datasets and a varied collection of training datasets, enabling the application of diverse methodologies

### Datasets
    
##### Train
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
- Each dataset is tailored for specific target species identified in soundscape files.
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
- We provide the full recordings from XC! These can generate multiple samples from a single instance.

##### Test
- Only soundscape data sourced from Zenodo.
- We provide the full recording with the complete label set and specified bounding boxes.
- This dataset excludes recordings that do not contain bird calls ("no_call").
- Task: Multiclass ("ebird_code")

##### Test_5s
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
- Each recording is segmented into 5-second intervals without overlaps.
- This contains the "no_call" class.
- Task: Multilabel ("ebird_code_multilabel")

#### Subsets

Numbers need to be updated

|                            | train   |    test    | test_5s |  size (GB) |   #classes   |
|----------------------------|--------:|-----------:|--------:|-----------:|-------------:|
| HSN (high_sierras)         |  5,460  |     10,296 |  12,000 |   5.92     |      21      |
| NBP (nips)                 |  24,327 |      5,493 |     563 |   29.9     |      51      |
| NES (columbia_costa_rica)  |  16,117 |      6,952 |  24,480 |   14.2     |      89      |
| PER (amazon_basin)         |  16,802 |     14,798 |  15,120 |   10.5     |     132      |
| POW (powdermill_nature)    |  14,911 |     16,052 |   4,560 |   15.7     |      48      |
| SNE (sierra_nevada)        |  19,390 |     20,147 |  23,756 |   20.8     |      56      |
| SSW (sapsucker_woods)      |  28,403 |     50,760 |  205,200|   35.2     |      81      |
| UHH (hawaiian_islands)     |  3,626  |     59,583 |  36,637 |   4.92     | 25 tr, 27 te |
| XCM (xenocanto)            |  89,798 |       x    |     x   |   89.3     |    409       |
| XCL (xenocanto)            |  528,434|       x    |     x   |   484      |   9,734      |

#### FEATURES

```python
{
    "audio": datasets.Audio(sampling_rate=32_000, mono=True, decode=True),
    "filepath": datasets.Value("string"),
    "start_time": datasets.Value("float64"),  # can be changed to timestamp later
    "end_time": datasets.Value("float64"),
    "low_freq": datasets.Value("int64"),
    "high_freq": datasets.Value("int64"),
    "ebird_code": datasets.ClassLabel(names=class_list),
    "ebird_code_multilabel": datasets.Sequence(datasets.ClassLabel(names=class_list)),
    "ebird_code_secondary": datasets.Sequence(datasets.Value("string")),
    "call_type": datasets.Value("string"),
    "sex": datasets.Value("string"),
    "lat": datasets.Value("float64"),
    "long": datasets.Value("float64"),
    "length": datasets.Value("int64"),
    "microphone": datasets.Value("string"),
    "license": datasets.Value("string"),
    "source": datasets.Value("string"),
    "local_time": datasets.Value("string"),
    "detected_events": datasets.Sequence(datasets.Sequence(datasets.Value("float64"))),
    "event_cluster": datasets.Sequence(datasets.Value("int64")),
    "peaks": datasets.Sequence(datasets.Value("float64")),
    "quality": datasets.Value("string"),
    "recordist": datasets.Value("string"),
        })
```
```python
EXAMPLE TRAIN
{'audio': {'path': '.ogg',
  'array': array([ 0.0008485 ,  0.00128899, -0.00317163, ...,  0.00228528,
          0.00270796, -0.00120562]),
  'sampling_rate': 32000},
 'filepath': '.ogg',
 'start_time': None,
 'end_time': None,
 'low_freq': None,
 'high_freq': None,
 'ebird_code': 0,
 'ebird_code_multilabel': [0],
 'ebird_code_secondary': ['plaant1', 'blfnun1', 'butwoo1', 'whtdov', 'undtin1', 'gryhaw3'],
 'call_type': 'song',
 'sex': 'uncertain',
 'lat': -16.0538,
 'long': -49.604,
 'length': 46,
 'microphone': 'focal',
 'license': '//creativecommons.org/licenses/by-nc-sa/4.0/',
 'source': 'xenocanto',
 'local_time': '18:37',
 'detected_events': [[0.736, 1.824],
  [9.936, 10.944],
  [13.872, 15.552],
  [19.552, 20.752],
  [24.816, 25.968],
  [26.528, 32.16],
  [36.112, 37.808],
  [37.792, 38.88],
  [40.048, 40.8],
  [44.432, 45.616]],
 'event_cluster': [0, 0, 0, 0, 0, -1, 0, 0, -1, 0],
 'peaks': [14.76479119037789, 41.16993396760847],
 'quality': 'A',
 'recordist': '...'}

EXAMPLE TEST_5S
{'audio': {'path': '.ogg',
  'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935,
         -0.01533066, -0.0141047 ]),
  'sampling_rate': 32000},
 'filepath': '.ogg',
 'start_time': 0.0,
 'end_time': 5.0,
 'low_freq': 0,
 'high_freq': 3098,
 'ebird_code': None,
 'ebird_code_multilabel': [],
 'ebird_code_secondary': None,
 'call_type': None,
 'sex': None,
 'lat': 5.59,
 'long': -75.85,
 'length': None,
 'microphone': 'Soundscape',
 'license': 'Creative Commons Attribution 4.0 International Public License',
 'source': 'https://zenodo.org/record/7525349',
 'local_time': '4:30:29',
 'detected_events': None,
 'event_cluster': None,
 'peaks': None,
 'quality': None,
 'recordist': None}

### Citation Information

```
@article{gadme,
  author    = {Rauch, Lukas and
               Schwinger, Raphael and
               Wirth, Moritz and
               Heinrich, René and
               Lange, Jonas and
               Kahl, Stefan and
               Sick, Bernhard and
               Tomforde, Sven and
               Scholz, Christoph},
  title     = {GADME: A Benchmark Towards General Avian Diversity Monitoring Evaluation in Deep Bioacoustics,
  journal   = {CoRR},
  volume    = {X},
  year      = {2024},
  url       = {X},
  archivePrefix = {arXiv},
}

Note that each test in GADME dataset has its own citation. Please see the source to see
the correct citation for each contained dataset. Each file in the training dataset also has its own recordist. The licenses can be found in the metadata. 
```