File size: 20,065 Bytes
0525b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09e5f0d
0525b47
10b5b90
0525b47
09e5f0d
0525b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
 
 
 
0047e52
0525b47
 
a4c25dd
0525b47
 
 
 
 
 
0d75437
0525b47
 
 
 
 
 
 
 
 
 
 
 
59c8817
0525b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
e1b1981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
e1b1981
0525b47
 
 
 
 
 
ffe090a
0525b47
 
ffe090a
0525b47
 
 
ffe090a
0525b47
 
ffe090a
0525b47
 
 
ffe090a
0525b47
 
ffe090a
0525b47
 
 
ffe090a
0525b47
 
ffe090a
10b5b90
ffe090a
 
 
 
 
 
0525b47
 
 
 
 
 
 
 
 
 
 
 
 
0348e45
 
 
 
2a0e675
0348e45
 
 
 
 
0525b47
 
 
 
 
ffe090a
0525b47
 
 
 
53f5cf5
 
 
 
 
 
 
 
 
0525b47
 
 
 
 
 
 
 
 
 
 
53f5cf5
0525b47
 
 
 
ffe090a
0525b47
 
ffe090a
0525b47
 
 
 
 
 
53f5cf5
0525b47
 
 
 
 
 
 
8b262c0
0525b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4f142
0525b47
 
 
 
 
 
 
a5ed11f
 
0525b47
ffe090a
0525b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ed11f
53f5cf5
0525b47
ffe090a
0525b47
 
 
98f0cb6
0525b47
 
 
 
 
 
ecd1566
0525b47
 
 
 
 
 
 
 
 
 
 
 
ffe090a
5837fb3
 
 
0525b47
 
 
 
 
 
 
 
 
 
 
59c8817
0525b47
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""BirdSet: The General Avian Monitoring Evaluation Benchmark"""

import os
import datasets
import pandas as pd

from .classes import BIRD_NAMES_NIPS4BPLUS, BIRD_NAMES_AMAZON_BASIN, BIRD_NAMES_HAWAII, \
    BIRD_NAMES_HIGH_SIERRAS, BIRD_NAMES_SIERRA_NEVADA, BIRD_NAMES_POWDERMILL_NATURE, BIRD_NAMES_SAPSUCKER, \
    BIRD_NAMES_COLUMBIA_COSTA_RICA, BIRD_NAMES_XENOCANTO, BIRD_NAMES_XENOCANTO_M

from .descriptions import _BIRD_DB_CITATION, _NIPS4BPLUS_CITATION, _NIPS4BPLUS_DESCRIPTION, \
    _HIGH_SIERRAS_DESCRIPTION, _HIGH_SIERRAS_CITATION, _SIERRA_NEVADA_DESCRIPTION, _SIERRA_NEVADA_CITATION, \
    _POWDERMILL_NATURE_DESCRIPTION, _POWDERMILL_NATURE_CITATION, _AMAZON_BASIN_DESCRIPTION, _AMAZON_BASIN_CITATION, \
    _SAPSUCKER_WOODS_DESCRIPTION, _SAPSUCKER_WOODS_CITATION, _COLUMBIA_COSTA_RICA_CITATION, \
    _COLUMBIA_COSTA_RICA_DESCRIPTION, _HAWAIIAN_ISLANDS_CITATION, _HAWAIIAN_ISLANDS_DESCRIPTION

#############################################
_BIRDSET_CITATION = """\
    @article{rauch2024,
        title = {BirdSet: A Multi-Task Benchmark For Avian Diversity Monitoring},
        author={Rauch, Lukas and Schwinger, Raphael and Wirth, Moritz and Lange, Jonas and Heinrich, René},
        year={2024}
    }
"""
_BIRDSET_DESCRIPTION = """\
    This dataset offers a unified, well-structured platform for avian bioacoustics and consists of various tasks. \
    By creating a set of tasks, BirdSet enables an overall performance score for models and uncovers their limitations \
    in certain areas.
    Note that each BirdSet dataset has its own citation. Please see the source to get the correct citation for each 
    contained dataset. 
"""

base_url = "https://huggingface.co/datasets/DBD-research-group/gadme/resolve/data"


class BirdSetConfig(datasets.BuilderConfig):
    def __init__(
            self,
            name,
            citation,
            class_list,
            **kwargs):
        super().__init__(version=datasets.Version("0.0.2"), name=name, **kwargs)

        features = datasets.Features({
            "audio": datasets.Audio(sampling_rate=32_000, mono=True, decode=False),
            "filepath": datasets.Value("string"),
            "start_time": datasets.Value("float64"),  # can be changed to timestamp later
            "end_time": datasets.Value("float64"),
            "low_freq": datasets.Value("int64"),
            "high_freq": datasets.Value("int64"),
            "ebird_code": datasets.ClassLabel(names=class_list),
            "ebird_code_multilabel": datasets.Sequence(datasets.ClassLabel(names=class_list)),
            "ebird_code_secondary": datasets.Sequence(datasets.Value("string")),
            "call_type": datasets.Value("string"),
            "sex": datasets.Value("string"),
            "lat": datasets.Value("float64"),
            "long": datasets.Value("float64"),
            "length": datasets.Value("int64"),
            "microphone": datasets.Value("string"),
            "license": datasets.Value("string"),
            "source": datasets.Value("string"),
            "local_time": datasets.Value("string"),
            "detected_events": datasets.Sequence(datasets.Sequence(datasets.Value("float64"))),
            "event_cluster": datasets.Sequence(datasets.Value("int64")),
            "peaks": datasets.Sequence(datasets.Value("float64")),
            "quality": datasets.Value("string"),
            "recordist": datasets.Value("string"),
        })

        self.features = features
        self.citation = citation


class BirdSet(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""
    # ram problems?
    DEFAULT_WRITER_BATCH_SIZE = 500

    BUILDER_CONFIGS = [
        BirdSetConfig(
            name="SSW",
            description=_SAPSUCKER_WOODS_DESCRIPTION,
            citation=_SAPSUCKER_WOODS_CITATION,
            data_dir=f"{base_url}/SSW",
            class_list=BIRD_NAMES_SAPSUCKER,
        ),
        BirdSetConfig(
            name="SSW_xc",
            description=_SAPSUCKER_WOODS_DESCRIPTION,
            citation=_SAPSUCKER_WOODS_CITATION,
            data_dir=f"{base_url}/SSW",
            class_list=BIRD_NAMES_SAPSUCKER,
        ),
        BirdSetConfig(
            name="SSW_scape",
            description=_SAPSUCKER_WOODS_DESCRIPTION,
            citation=_SAPSUCKER_WOODS_CITATION,
            data_dir=f"{base_url}/SSW",
            class_list=BIRD_NAMES_SAPSUCKER,
        ),
        BirdSetConfig(
            name="PER",
            description=_AMAZON_BASIN_DESCRIPTION,
            citation=_AMAZON_BASIN_CITATION,
            data_dir=f"{base_url}/PER",
            class_list=BIRD_NAMES_AMAZON_BASIN,
        ),
        BirdSetConfig(
            name="PER_xc",
            description=_AMAZON_BASIN_DESCRIPTION,
            citation=_AMAZON_BASIN_CITATION,
            data_dir=f"{base_url}/PER",
            class_list=BIRD_NAMES_AMAZON_BASIN,
        ),
        BirdSetConfig(
            name="PER_scape",
            description=_AMAZON_BASIN_DESCRIPTION,
            citation=_AMAZON_BASIN_CITATION,
            data_dir=f"{base_url}/PER",
            class_list=BIRD_NAMES_AMAZON_BASIN,
        ),
        BirdSetConfig(
            name="UHH",
            description=_HAWAIIAN_ISLANDS_DESCRIPTION,
            citation=_HAWAIIAN_ISLANDS_CITATION,
            data_dir=f"{base_url}/UHH",
            class_list=BIRD_NAMES_HAWAII,
        ),
        BirdSetConfig(
            name="UHH_xc",
            description=_HAWAIIAN_ISLANDS_DESCRIPTION,
            citation=_HAWAIIAN_ISLANDS_CITATION,
            data_dir=f"{base_url}/UHH",
            class_list=BIRD_NAMES_HAWAII,
        ),
        BirdSetConfig(
            name="UHH_scape",
            description=_HAWAIIAN_ISLANDS_DESCRIPTION,
            citation=_HAWAIIAN_ISLANDS_CITATION,
            data_dir=f"{base_url}/UHH",
            class_list=BIRD_NAMES_HAWAII,
        ),
        BirdSetConfig(
            name="SNE",
            description=_SIERRA_NEVADA_DESCRIPTION,
            citation=_SIERRA_NEVADA_CITATION,
            data_dir=f"{base_url}/SNE",
            class_list=BIRD_NAMES_SIERRA_NEVADA,
        ),
        BirdSetConfig(
            name="SNE_xc",
            description=_SIERRA_NEVADA_DESCRIPTION,
            citation=_SIERRA_NEVADA_CITATION,
            data_dir=f"{base_url}/SNE",
            class_list=BIRD_NAMES_SIERRA_NEVADA,
        ),
        BirdSetConfig(
            name="SNE_scape",
            description=_SIERRA_NEVADA_DESCRIPTION,
            citation=_SIERRA_NEVADA_CITATION,
            data_dir=f"{base_url}/SNE",
            class_list=BIRD_NAMES_SIERRA_NEVADA,
        ),
        BirdSetConfig(
            name="POW",
            description=_POWDERMILL_NATURE_DESCRIPTION,
            citation=_POWDERMILL_NATURE_CITATION,
            data_dir=f"{base_url}/POW",
            class_list=BIRD_NAMES_POWDERMILL_NATURE,
        ),
        BirdSetConfig(
            name="POW_xc",
            description=_POWDERMILL_NATURE_DESCRIPTION,
            citation=_POWDERMILL_NATURE_CITATION,
            data_dir=f"{base_url}/POW",
            class_list=BIRD_NAMES_POWDERMILL_NATURE,
        ),
        BirdSetConfig(
            name="POW_scape",
            description=_POWDERMILL_NATURE_DESCRIPTION,
            citation=_POWDERMILL_NATURE_CITATION,
            data_dir=f"{base_url}/POW",
            class_list=BIRD_NAMES_POWDERMILL_NATURE,
        ),
        BirdSetConfig(
            name="HSN",
            description=_HIGH_SIERRAS_DESCRIPTION,
            citation=_HIGH_SIERRAS_CITATION,
            data_dir=f"{base_url}/HSN",
            class_list=BIRD_NAMES_HIGH_SIERRAS,
        ),
        BirdSetConfig(
            name="HSN_xc",
            description=_HIGH_SIERRAS_DESCRIPTION,
            citation=_HIGH_SIERRAS_CITATION,
            data_dir=f"{base_url}/HSN",
            class_list=BIRD_NAMES_HIGH_SIERRAS,
        ),
        BirdSetConfig(
            name="HSN_scape",
            description=_HIGH_SIERRAS_DESCRIPTION,
            citation=_HIGH_SIERRAS_CITATION,
            data_dir=f"{base_url}/HSN",
            class_list=BIRD_NAMES_HIGH_SIERRAS,
        ),
        BirdSetConfig(
            name="NES",
            description=_COLUMBIA_COSTA_RICA_DESCRIPTION,
            citation=_COLUMBIA_COSTA_RICA_CITATION,
            data_dir=f"{base_url}/NES",
            class_list=BIRD_NAMES_COLUMBIA_COSTA_RICA,
        ),
        BirdSetConfig(
            name="NES_xc",
            description=_COLUMBIA_COSTA_RICA_DESCRIPTION,
            citation=_COLUMBIA_COSTA_RICA_CITATION,
            data_dir=f"{base_url}/NES",
            class_list=BIRD_NAMES_COLUMBIA_COSTA_RICA,
        ),
        BirdSetConfig(
            name="NES_scape",
            description=_COLUMBIA_COSTA_RICA_DESCRIPTION,
            citation=_COLUMBIA_COSTA_RICA_CITATION,
            data_dir=f"{base_url}/NES",
            class_list=BIRD_NAMES_COLUMBIA_COSTA_RICA,
        ),
        BirdSetConfig(
            name="NBP",
            description=_NIPS4BPLUS_DESCRIPTION,
            citation=_NIPS4BPLUS_CITATION,
            data_dir=f"{base_url}/NBP",
            class_list=BIRD_NAMES_NIPS4BPLUS,
        ),
        BirdSetConfig(
            name="NBP_xc",
            description=_NIPS4BPLUS_DESCRIPTION,
            citation=_NIPS4BPLUS_CITATION,
            data_dir=f"{base_url}/NBP",
            class_list=BIRD_NAMES_NIPS4BPLUS,
        ),
        BirdSetConfig(
            name="NBP_scape",
            description=_NIPS4BPLUS_DESCRIPTION,
            citation=_NIPS4BPLUS_CITATION,
            data_dir=f"{base_url}/NBP",
            class_list=BIRD_NAMES_NIPS4BPLUS,
        ),
        BirdSetConfig(
            name="XCM",
            description="TODO",
            citation="TODO",
            data_dir=f"{base_url}/XCM",
            class_list=BIRD_NAMES_XENOCANTO_M,
        ),
        BirdSetConfig(
            name="XCL",
            description="TODO",
            citation="TODO",
            data_dir=f"{base_url}/XCL",
            class_list=BIRD_NAMES_XENOCANTO,
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_BIRDSET_DESCRIPTION + self.config.description,
            features=self.config.features,
            citation=self.config.citation + "\n" + _BIRDSET_CITATION,
        )

    def _split_generators(self, dl_manager):
        ds_name = self.config.name
        train_files = {"PER": 11,
                       "NES": 13,
                       "UHH": 5,
                       "HSN": 7,
                       "NBP": 32,
                       "POW": 9,
                       "SSW": 29,
                       "SNE": 21,
                       "XCM": 182,
                       "XCL": 98}

        test_files = {"PER": 3,
                      "NES": 8,
                      "UHH": 7,
                      "HSN": 3,
                      "NBP": 1,
                      "POW": 3,
                      "SSW": 36,
                      "SNE": 5}

        test5s_files = {"PER": 1,
                      "NES": 1,
                      "UHH": 1,
                      "HSN": 1,
                      "NBP": 1,
                      "POW": 1,
                      "SSW": 4,
                      "SNE": 1}

        if self.config.name.endswith("_xc"):
            ds_name = ds_name[:-3]
            dl_dir = dl_manager.download({
                "train": [os.path.join(self.config.data_dir, f"{ds_name}_train_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
                "metadata": os.path.join(self.config.data_dir, f"{ds_name}_metadata_train.parquet"),
            })

        elif self.config.name.endswith("_scape"):
            ds_name = ds_name[:-6]
            dl_dir = dl_manager.download({
                "test": [os.path.join(self.config.data_dir, f"{ds_name}_test_shard_{n:04d}.tar.gz") for n in range(1, test_files[ds_name] + 1)],
                "test_5s": [os.path.join(self.config.data_dir, f"{ds_name}_test5s_shard_{n:04d}.tar.gz") for n in range(1, test5s_files[ds_name] + 1)],
                "metadata": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test.parquet"),
                "metadata_5s": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test_5s.parquet"),
            })

        elif self.config.name.startswith("XC"):
            dl_dir = dl_manager.download({
                "train": [os.path.join(self.config.data_dir, f"{ds_name}_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
                "metadata": os.path.join(self.config.data_dir, f"{ds_name}_metadata.parquet"),
            })

        elif self.config.name in train_files.keys():
            dl_dir = dl_manager.download({
                "train": [os.path.join(self.config.data_dir, f"{ds_name}_train_shard_{n:04d}.tar.gz") for n in range(1, train_files[ds_name] + 1)],
                "test": [os.path.join(self.config.data_dir, f"{ds_name}_test_shard_{n:04d}.tar.gz") for n in range(1, test_files[ds_name] + 1)],
                "test_5s": [os.path.join(self.config.data_dir, f"{ds_name}_test5s_shard_{n:04d}.tar.gz") for n in range(1, test5s_files[ds_name] + 1)],
                "meta_train": os.path.join(self.config.data_dir, f"{ds_name}_metadata_train.parquet"),
                "meta_test": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test.parquet"),
                "meta_test_5s": os.path.join(self.config.data_dir, f"{ds_name}_metadata_test_5s.parquet"),
            })

        local_audio_archives_paths = dl_manager.extract(dl_dir) if not dl_manager.is_streaming else None

        if self.config.name.startswith("XC") or self.config.name.endswith("_xc"):
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["train"]],
                        "local_audio_archives_paths": local_audio_archives_paths["train"] if local_audio_archives_paths else None,
                        "metapath": dl_dir["metadata"],
                        "split": datasets.Split.TRAIN,
                    },
                ),
            ]

        elif self.config.name.endswith("_scape"):
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test"]],
                        "local_audio_archives_paths": local_audio_archives_paths["test"] if local_audio_archives_paths else None,
                        "metapath": dl_dir["metadata"],
                        "split": datasets.Split.TEST,
                    },
                ),
                datasets.SplitGenerator(
                    name="test_5s",
                    gen_kwargs={
                        "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test_5s"]],
                        "local_audio_archives_paths": local_audio_archives_paths["test_5s"] if local_audio_archives_paths else None,
                        "metapath": dl_dir["metadata_5s"],
                        "split": "test_multilabel"
                    },
                ),
            ]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["train"]],
                    "local_audio_archives_paths": local_audio_archives_paths["train"] if local_audio_archives_paths else None,
                    "metapath": dl_dir["meta_train"],
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test"]],
                    "local_audio_archives_paths": local_audio_archives_paths["test"] if local_audio_archives_paths else None,
                    "metapath": dl_dir["meta_test"],
                    "split": datasets.Split.TEST,
                },
            ),
            datasets.SplitGenerator(
                name="test_5s",
                gen_kwargs={
                    "audio_archive_iterators": [dl_manager.iter_archive(archive_path) for archive_path in dl_dir["test_5s"]],
                    "local_audio_archives_paths": local_audio_archives_paths["test_5s"] if local_audio_archives_paths else None,
                    "metapath": dl_dir["meta_test_5s"],
                    "split": "test_multilabel"
                },
            ),
        ]
        
    def _generate_examples(self, audio_archive_iterators, local_audio_archives_paths, metapath, split):
        metadata = pd.read_parquet(metapath)
        idx = 0
        for i, audio_archive_iterator in enumerate(audio_archive_iterators):
            for audio_path_in_archive, audio_file in audio_archive_iterator:
                id = os.path.split(audio_path_in_archive)[-1]
                rows = metadata[metadata.index == (int(id[2:].split(".")[0]) if split == "train" else id)]
                audio_path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths else audio_path_in_archive

                audio = audio_path if local_audio_archives_paths else audio_file.read()
                for _, row in rows.iterrows():
                    idx += 1
                    yield id if split == "train" else idx, {
                        "audio": audio,
                        "filepath": audio_path,
                        "start_time": row["start_time"],
                        "end_time": row["end_time"],
                        "low_freq": row["low_freq"],
                        "high_freq": row["high_freq"],
                        "ebird_code": row["ebird_code"] if split != "test_multilabel" else None,
                        #"ebird_code_multilabel": row.get("ebird_code_multilabel", None),
                        "ebird_code_multilabel": row.get("ebird_code_multilabel", None) if "no_call" not in row.get("ebird_code_multilabel", []) else [],
                        "ebird_code_secondary": row.get("ebird_code_secondary", None),
                        "call_type": row["call_type"],
                        "sex": row["sex"],
                        "lat": row["lat"],
                        "long": row["long"],
                        "length": row.get("length", None),
                        "microphone": row["microphone"],
                        "license": row.get("license", None),
                        "source": row["source"],
                        "local_time": row["local_time"],
                        "detected_events": row.get("detected_events", None),
                        "event_cluster": row.get("event_cluster", None),
                        "peaks": row.get("peaks", None),
                        "quality": row.get("quality", None),
                        "recordist": row.get("recordist", None)
                    }