Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K - 10K
ArXiv:
Upload dataloading script and README.md
Browse files- README.md +618 -0
- cross_re.py +184 -0
README.md
ADDED
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license: []
|
9 |
+
multilinguality:
|
10 |
+
- monolingual
|
11 |
+
pretty_name: CrossRE is a cross-domain dataset for relation extraction
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- extended|cross_ner
|
16 |
+
tags:
|
17 |
+
- cross domain
|
18 |
+
- ai
|
19 |
+
- news
|
20 |
+
- music
|
21 |
+
- literature
|
22 |
+
- politics
|
23 |
+
- science
|
24 |
+
task_categories:
|
25 |
+
- text-classification
|
26 |
+
task_ids:
|
27 |
+
- multi-class-classification
|
28 |
+
dataset_info:
|
29 |
+
- config_name: ai
|
30 |
+
features:
|
31 |
+
- name: doc_key
|
32 |
+
dtype: string
|
33 |
+
- name: sentence
|
34 |
+
sequence: string
|
35 |
+
- name: ner
|
36 |
+
sequence:
|
37 |
+
- name: id-start
|
38 |
+
dtype: int32
|
39 |
+
- name: id-end
|
40 |
+
dtype: int32
|
41 |
+
- name: entity-type
|
42 |
+
dtype: string
|
43 |
+
- name: relations
|
44 |
+
sequence:
|
45 |
+
- name: id_1-start
|
46 |
+
dtype: int32
|
47 |
+
- name: id_1-end
|
48 |
+
dtype: int32
|
49 |
+
- name: id_2-start
|
50 |
+
dtype: int32
|
51 |
+
- name: id_2-end
|
52 |
+
dtype: int32
|
53 |
+
- name: relation-type
|
54 |
+
dtype: string
|
55 |
+
- name: Exp
|
56 |
+
dtype: string
|
57 |
+
- name: Un
|
58 |
+
dtype: bool
|
59 |
+
- name: SA
|
60 |
+
dtype: bool
|
61 |
+
splits:
|
62 |
+
- name: train
|
63 |
+
num_bytes: 62411
|
64 |
+
num_examples: 100
|
65 |
+
- name: validation
|
66 |
+
num_bytes: 183717
|
67 |
+
num_examples: 350
|
68 |
+
- name: test
|
69 |
+
num_bytes: 217353
|
70 |
+
num_examples: 431
|
71 |
+
download_size: 508107
|
72 |
+
dataset_size: 463481
|
73 |
+
- config_name: literature
|
74 |
+
features:
|
75 |
+
- name: doc_key
|
76 |
+
dtype: string
|
77 |
+
- name: sentence
|
78 |
+
sequence: string
|
79 |
+
- name: ner
|
80 |
+
sequence:
|
81 |
+
- name: id-start
|
82 |
+
dtype: int32
|
83 |
+
- name: id-end
|
84 |
+
dtype: int32
|
85 |
+
- name: entity-type
|
86 |
+
dtype: string
|
87 |
+
- name: relations
|
88 |
+
sequence:
|
89 |
+
- name: id_1-start
|
90 |
+
dtype: int32
|
91 |
+
- name: id_1-end
|
92 |
+
dtype: int32
|
93 |
+
- name: id_2-start
|
94 |
+
dtype: int32
|
95 |
+
- name: id_2-end
|
96 |
+
dtype: int32
|
97 |
+
- name: relation-type
|
98 |
+
dtype: string
|
99 |
+
- name: Exp
|
100 |
+
dtype: string
|
101 |
+
- name: Un
|
102 |
+
dtype: bool
|
103 |
+
- name: SA
|
104 |
+
dtype: bool
|
105 |
+
splits:
|
106 |
+
- name: train
|
107 |
+
num_bytes: 62699
|
108 |
+
num_examples: 100
|
109 |
+
- name: validation
|
110 |
+
num_bytes: 246214
|
111 |
+
num_examples: 400
|
112 |
+
- name: test
|
113 |
+
num_bytes: 264450
|
114 |
+
num_examples: 416
|
115 |
+
download_size: 635130
|
116 |
+
dataset_size: 573363
|
117 |
+
- config_name: music
|
118 |
+
features:
|
119 |
+
- name: doc_key
|
120 |
+
dtype: string
|
121 |
+
- name: sentence
|
122 |
+
sequence: string
|
123 |
+
- name: ner
|
124 |
+
sequence:
|
125 |
+
- name: id-start
|
126 |
+
dtype: int32
|
127 |
+
- name: id-end
|
128 |
+
dtype: int32
|
129 |
+
- name: entity-type
|
130 |
+
dtype: string
|
131 |
+
- name: relations
|
132 |
+
sequence:
|
133 |
+
- name: id_1-start
|
134 |
+
dtype: int32
|
135 |
+
- name: id_1-end
|
136 |
+
dtype: int32
|
137 |
+
- name: id_2-start
|
138 |
+
dtype: int32
|
139 |
+
- name: id_2-end
|
140 |
+
dtype: int32
|
141 |
+
- name: relation-type
|
142 |
+
dtype: string
|
143 |
+
- name: Exp
|
144 |
+
dtype: string
|
145 |
+
- name: Un
|
146 |
+
dtype: bool
|
147 |
+
- name: SA
|
148 |
+
dtype: bool
|
149 |
+
splits:
|
150 |
+
- name: train
|
151 |
+
num_bytes: 69846
|
152 |
+
num_examples: 100
|
153 |
+
- name: validation
|
154 |
+
num_bytes: 261497
|
155 |
+
num_examples: 350
|
156 |
+
- name: test
|
157 |
+
num_bytes: 312165
|
158 |
+
num_examples: 399
|
159 |
+
download_size: 726956
|
160 |
+
dataset_size: 643508
|
161 |
+
- config_name: news
|
162 |
+
features:
|
163 |
+
- name: doc_key
|
164 |
+
dtype: string
|
165 |
+
- name: sentence
|
166 |
+
sequence: string
|
167 |
+
- name: ner
|
168 |
+
sequence:
|
169 |
+
- name: id-start
|
170 |
+
dtype: int32
|
171 |
+
- name: id-end
|
172 |
+
dtype: int32
|
173 |
+
- name: entity-type
|
174 |
+
dtype: string
|
175 |
+
- name: relations
|
176 |
+
sequence:
|
177 |
+
- name: id_1-start
|
178 |
+
dtype: int32
|
179 |
+
- name: id_1-end
|
180 |
+
dtype: int32
|
181 |
+
- name: id_2-start
|
182 |
+
dtype: int32
|
183 |
+
- name: id_2-end
|
184 |
+
dtype: int32
|
185 |
+
- name: relation-type
|
186 |
+
dtype: string
|
187 |
+
- name: Exp
|
188 |
+
dtype: string
|
189 |
+
- name: Un
|
190 |
+
dtype: bool
|
191 |
+
- name: SA
|
192 |
+
dtype: bool
|
193 |
+
splits:
|
194 |
+
- name: train
|
195 |
+
num_bytes: 49102
|
196 |
+
num_examples: 164
|
197 |
+
- name: validation
|
198 |
+
num_bytes: 77952
|
199 |
+
num_examples: 350
|
200 |
+
- name: test
|
201 |
+
num_bytes: 96301
|
202 |
+
num_examples: 400
|
203 |
+
download_size: 239763
|
204 |
+
dataset_size: 223355
|
205 |
+
- config_name: politics
|
206 |
+
features:
|
207 |
+
- name: doc_key
|
208 |
+
dtype: string
|
209 |
+
- name: sentence
|
210 |
+
sequence: string
|
211 |
+
- name: ner
|
212 |
+
sequence:
|
213 |
+
- name: id-start
|
214 |
+
dtype: int32
|
215 |
+
- name: id-end
|
216 |
+
dtype: int32
|
217 |
+
- name: entity-type
|
218 |
+
dtype: string
|
219 |
+
- name: relations
|
220 |
+
sequence:
|
221 |
+
- name: id_1-start
|
222 |
+
dtype: int32
|
223 |
+
- name: id_1-end
|
224 |
+
dtype: int32
|
225 |
+
- name: id_2-start
|
226 |
+
dtype: int32
|
227 |
+
- name: id_2-end
|
228 |
+
dtype: int32
|
229 |
+
- name: relation-type
|
230 |
+
dtype: string
|
231 |
+
- name: Exp
|
232 |
+
dtype: string
|
233 |
+
- name: Un
|
234 |
+
dtype: bool
|
235 |
+
- name: SA
|
236 |
+
dtype: bool
|
237 |
+
splits:
|
238 |
+
- name: train
|
239 |
+
num_bytes: 76004
|
240 |
+
num_examples: 101
|
241 |
+
- name: validation
|
242 |
+
num_bytes: 277633
|
243 |
+
num_examples: 350
|
244 |
+
- name: test
|
245 |
+
num_bytes: 295294
|
246 |
+
num_examples: 400
|
247 |
+
download_size: 726427
|
248 |
+
dataset_size: 648931
|
249 |
+
- config_name: science
|
250 |
+
features:
|
251 |
+
- name: doc_key
|
252 |
+
dtype: string
|
253 |
+
- name: sentence
|
254 |
+
sequence: string
|
255 |
+
- name: ner
|
256 |
+
sequence:
|
257 |
+
- name: id-start
|
258 |
+
dtype: int32
|
259 |
+
- name: id-end
|
260 |
+
dtype: int32
|
261 |
+
- name: entity-type
|
262 |
+
dtype: string
|
263 |
+
- name: relations
|
264 |
+
sequence:
|
265 |
+
- name: id_1-start
|
266 |
+
dtype: int32
|
267 |
+
- name: id_1-end
|
268 |
+
dtype: int32
|
269 |
+
- name: id_2-start
|
270 |
+
dtype: int32
|
271 |
+
- name: id_2-end
|
272 |
+
dtype: int32
|
273 |
+
- name: relation-type
|
274 |
+
dtype: string
|
275 |
+
- name: Exp
|
276 |
+
dtype: string
|
277 |
+
- name: Un
|
278 |
+
dtype: bool
|
279 |
+
- name: SA
|
280 |
+
dtype: bool
|
281 |
+
splits:
|
282 |
+
- name: train
|
283 |
+
num_bytes: 63876
|
284 |
+
num_examples: 103
|
285 |
+
- name: validation
|
286 |
+
num_bytes: 224402
|
287 |
+
num_examples: 351
|
288 |
+
- name: test
|
289 |
+
num_bytes: 249075
|
290 |
+
num_examples: 400
|
291 |
+
download_size: 594058
|
292 |
+
dataset_size: 537353
|
293 |
+
---
|
294 |
+
# Dataset Card for CrossRE
|
295 |
+
## Table of Contents
|
296 |
+
- [Table of Contents](#table-of-contents)
|
297 |
+
- [Dataset Description](#dataset-description)
|
298 |
+
- [Dataset Summary](#dataset-summary)
|
299 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
300 |
+
- [Languages](#languages)
|
301 |
+
- [Dataset Structure](#dataset-structure)
|
302 |
+
- [Data Instances](#data-instances)
|
303 |
+
- [Data Fields](#data-fields)
|
304 |
+
- [Data Splits](#data-splits)
|
305 |
+
- [Dataset Creation](#dataset-creation)
|
306 |
+
- [Curation Rationale](#curation-rationale)
|
307 |
+
- [Source Data](#source-data)
|
308 |
+
- [Annotations](#annotations)
|
309 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
310 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
311 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
312 |
+
- [Discussion of Biases](#discussion-of-biases)
|
313 |
+
- [Other Known Limitations](#other-known-limitations)
|
314 |
+
- [Additional Information](#additional-information)
|
315 |
+
- [Dataset Curators](#dataset-curators)
|
316 |
+
- [Licensing Information](#licensing-information)
|
317 |
+
- [Citation Information](#citation-information)
|
318 |
+
- [Contributions](#contributions)
|
319 |
+
|
320 |
+
## Dataset Description
|
321 |
+
- **Repository:** [CrossRE](https://github.com/mainlp/CrossRE)
|
322 |
+
- **Paper:** [CrossRE: A Cross-Domain Dataset for Relation Extraction](https://arxiv.org/abs/2210.09345)
|
323 |
+
|
324 |
+
### Dataset Summary
|
325 |
+
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes
|
326 |
+
multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and
|
327 |
+
artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain
|
328 |
+
dataset for NER which contains domain-specific entity types.
|
329 |
+
The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL,
|
330 |
+
GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and
|
331 |
+
RELATED-TO.
|
332 |
+
|
333 |
+
For details, see the paper: https://arxiv.org/abs/2210.09345
|
334 |
+
|
335 |
+
### Supported Tasks and Leaderboards
|
336 |
+
|
337 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
338 |
+
|
339 |
+
### Languages
|
340 |
+
|
341 |
+
The language data in CrossRE is in English (BCP-47 en)
|
342 |
+
|
343 |
+
## Dataset Structure
|
344 |
+
|
345 |
+
### Data Instances
|
346 |
+
|
347 |
+
#### news
|
348 |
+
- **Size of downloaded dataset files:** 0.24 MB
|
349 |
+
- **Size of the generated dataset:** 0.22 MB
|
350 |
+
|
351 |
+
An example of 'train' looks as follows:
|
352 |
+
```python
|
353 |
+
{
|
354 |
+
"doc_key": "news-train-1",
|
355 |
+
"sentence": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."],
|
356 |
+
"ner": [
|
357 |
+
{"id-start": 0, "id-end": 0, "entity-type": "organisation"},
|
358 |
+
{"id-start": 2, "id-end": 3, "entity-type": "misc"},
|
359 |
+
{"id-start": 6, "id-end": 7, "entity-type": "misc"}
|
360 |
+
],
|
361 |
+
"relations": [
|
362 |
+
{"id_1-start": 0, "id_1-end": 0, "id_2-start": 2, "id_2-end": 3, "relation-type": "opposite", "Exp": "rejects", "Un": False, "SA": False},
|
363 |
+
{"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "opposite", "Exp": "calls_for_boycot_of", "Un": False, "SA": False},
|
364 |
+
{"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "topic", "Exp": "", "Un": False, "SA": False}
|
365 |
+
]
|
366 |
+
}
|
367 |
+
```
|
368 |
+
|
369 |
+
#### politics
|
370 |
+
- **Size of downloaded dataset files:** 0.73 MB
|
371 |
+
- **Size of the generated dataset:** 0.65 MB
|
372 |
+
|
373 |
+
An example of 'train' looks as follows:
|
374 |
+
```python
|
375 |
+
{
|
376 |
+
"doc_key": "politics-train-1",
|
377 |
+
"sentence": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."],
|
378 |
+
"ner": [
|
379 |
+
{"id-start": 8, "id-end": 9, "entity-type": "politicalparty"},
|
380 |
+
{"id-start": 15, "id-end": 20, "entity-type": "politicalparty"},
|
381 |
+
{"id-start": 22, "id-end": 26, "entity-type": "politicalparty"}
|
382 |
+
],
|
383 |
+
"relations": [
|
384 |
+
{"id_1-start": 8, "id_1-end": 9, "id_2-start": 15, "id_2-end": 20, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False},
|
385 |
+
{"id_1-start": 8, "id_1-end": 9, "id_2-start": 22, "id_2-end": 26, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False}
|
386 |
+
]
|
387 |
+
}
|
388 |
+
```
|
389 |
+
|
390 |
+
#### science
|
391 |
+
- **Size of downloaded dataset files:** 0.59 MB
|
392 |
+
- **Size of the generated dataset:** 0.54 MB
|
393 |
+
|
394 |
+
An example of 'train' looks as follows:
|
395 |
+
```python
|
396 |
+
{
|
397 |
+
"doc_key": "science-train-1",
|
398 |
+
"sentence": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."],
|
399 |
+
"ner": [
|
400 |
+
{"id-start": 4, "id-end": 5, "entity-type": "chemicalcompound"},
|
401 |
+
{"id-start": 7, "id-end": 8, "entity-type": "chemicalcompound"},
|
402 |
+
{"id-start": 11, "id-end": 11, "entity-type": "chemicalcompound"}
|
403 |
+
],
|
404 |
+
"relations": []
|
405 |
+
}
|
406 |
+
```
|
407 |
+
|
408 |
+
#### music
|
409 |
+
- **Size of downloaded dataset files:** 0.73 MB
|
410 |
+
- **Size of the generated dataset:** 0.64 MB
|
411 |
+
|
412 |
+
An example of 'train' looks as follows:
|
413 |
+
```python
|
414 |
+
{
|
415 |
+
"doc_key": "music-train-1",
|
416 |
+
"sentence": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."],
|
417 |
+
"ner": [
|
418 |
+
{"id-start": 4, "id-end": 6, "entity-type": "location"},
|
419 |
+
{"id-start": 13, "id-end": 17, "entity-type": "event"}
|
420 |
+
],
|
421 |
+
"relations": [
|
422 |
+
{"id_1-start": 13, "id_1-end": 17, "id_2-start": 4, "id_2-end": 6, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}
|
423 |
+
]
|
424 |
+
}
|
425 |
+
```
|
426 |
+
|
427 |
+
#### literature
|
428 |
+
- **Size of downloaded dataset files:** 0.64 MB
|
429 |
+
- **Size of the generated dataset:** 0.57 MB
|
430 |
+
|
431 |
+
An example of 'train' looks as follows:
|
432 |
+
```python
|
433 |
+
{
|
434 |
+
"doc_key": "literature-train-1",
|
435 |
+
"sentence": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."],
|
436 |
+
"ner": [
|
437 |
+
{"id-start": 7, "id-end": 9, "entity-type": "person"},
|
438 |
+
{"id-start": 12, "id-end": 13, "entity-type": "country"},
|
439 |
+
{"id-start": 17, "id-end": 18, "entity-type": "writer"},
|
440 |
+
{"id-start": 20, "id-end": 20, "entity-type": "writer"},
|
441 |
+
{"id-start": 26, "id-end": 27, "entity-type": "writer"},
|
442 |
+
{"id-start": 29, "id-end": 29, "entity-type": "writer"},
|
443 |
+
{"id-start": 33, "id-end": 33, "entity-type": "country"},
|
444 |
+
{"id-start": 35, "id-end": 35, "entity-type": "country"},
|
445 |
+
{"id-start": 38, "id-end": 38, "entity-type": "misc"},
|
446 |
+
{"id-start": 45, "id-end": 46, "entity-type": "person"},
|
447 |
+
{"id-start": 49, "id-end": 50, "entity-type": "misc"},
|
448 |
+
{"id-start": 55, "id-end": 55, "entity-type": "person"}
|
449 |
+
],
|
450 |
+
"relations": [
|
451 |
+
{"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "role", "Exp": "", "Un": False, "SA": False},
|
452 |
+
{"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False},
|
453 |
+
{"id_1-start": 17, "id_1-end": 18, "id_2-start": 26, "id_2-end": 27, "relation-type": "social", "Exp": "family", "Un": False, "SA": False},
|
454 |
+
{"id_1-start": 20, "id_1-end": 20, "id_2-start": 17, "id_2-end": 18, "relation-type": "named", "Exp": "", "Un": False, "SA": False},
|
455 |
+
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 33, "id_2-end": 33, "relation-type": "physical", "Exp": "", "Un": False, "SA": False},
|
456 |
+
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 35, "id_2-end": 35, "relation-type": "physical", "Exp": "", "Un": False, "SA": False},
|
457 |
+
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 38, "id_2-end": 38, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False},
|
458 |
+
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 45, "id_2-end": 46, "relation-type": "social", "Exp": "greeted_by", "Un": False, "SA": False},
|
459 |
+
{"id_1-start": 29, "id_1-end": 29, "id_2-start": 26, "id_2-end": 27, "relation-type": "named", "Exp": "", "Un": False, "SA": False},
|
460 |
+
{"id_1-start": 45, "id_1-end": 46, "id_2-start": 55, "id_2-end": 55, "relation-type": "social", "Exp": "marriage", "Un": False, "SA": False},
|
461 |
+
{"id_1-start": 49, "id_1-end": 50, "id_2-start": 45, "id_2-end": 46, "relation-type": "named", "Exp": "", "Un": False, "SA": False}
|
462 |
+
]
|
463 |
+
}
|
464 |
+
```
|
465 |
+
|
466 |
+
#### ai
|
467 |
+
- **Size of downloaded dataset files:** 0.51 MB
|
468 |
+
- **Size of the generated dataset:** 0.46 MB
|
469 |
+
|
470 |
+
An example of 'train' looks as follows:
|
471 |
+
```python
|
472 |
+
{
|
473 |
+
"doc_key": "ai-train-1",
|
474 |
+
"sentence": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."],
|
475 |
+
"ner": [
|
476 |
+
{"id-start": 3, "id-end": 5, "entity-type": "product"},
|
477 |
+
{"id-start": 10, "id-end": 11, "entity-type": "field"},
|
478 |
+
{"id-start": 13, "id-end": 14, "entity-type": "task"},
|
479 |
+
{"id-start": 16, "id-end": 17, "entity-type": "task"},
|
480 |
+
{"id-start": 21, "id-end": 23, "entity-type": "task"},
|
481 |
+
{"id-start": 26, "id-end": 27, "entity-type": "field"},
|
482 |
+
{"id-start": 28, "id-end": 29, "entity-type": "researcher"},
|
483 |
+
{"id-start": 31, "id-end": 32, "entity-type": "researcher"},
|
484 |
+
{"id-start": 34, "id-end": 35, "entity-type": "researcher"},
|
485 |
+
{"id-start": 37, "id-end": 38, "entity-type": "researcher"},
|
486 |
+
{"id-start": 40, "id-end": 41, "entity-type": "researcher"},
|
487 |
+
{"id-start": 43, "id-end": 44, "entity-type": "researcher"},
|
488 |
+
{"id-start": 46, "id-end": 47, "entity-type": "researcher"},
|
489 |
+
{"id-start": 49, "id-end": 50, "entity-type": "researcher"}
|
490 |
+
],
|
491 |
+
"relations": [
|
492 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
|
493 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
|
494 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
|
495 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
|
496 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
|
497 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
|
498 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
|
499 |
+
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
|
500 |
+
{"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
|
501 |
+
{"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "type-of", "Exp": "", "Un": False, "SA": False}
|
502 |
+
]
|
503 |
+
}
|
504 |
+
```
|
505 |
+
|
506 |
+
### Data Fields
|
507 |
+
|
508 |
+
The data fields are the same among all splits.
|
509 |
+
- `doc_key`: the instance id of this sentence, a `string` feature.
|
510 |
+
- `sentence`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
511 |
+
- `ner`: the list of named entities in this sentence, a `list` of `dict` features.
|
512 |
+
- `id-start`: the start index of the entity, a `int` feature.
|
513 |
+
- `id-end`: the end index of the entity, a `int` feature.
|
514 |
+
- `entity-type`: the type of the entity, a `string` feature.
|
515 |
+
- `relations`: the list of relations in this sentence, a `list` of `dict` features.
|
516 |
+
- `id_1-start`: the start index of the first entity, a `int` feature.
|
517 |
+
- `id_1-end`: the end index of the first entity, a `int` feature.
|
518 |
+
- `id_2-start`: the start index of the second entity, a `int` feature.
|
519 |
+
- `id_2-end`: the end index of the second entity, a `int` feature.
|
520 |
+
- `relation-type`: the type of the relation, a `string` feature.
|
521 |
+
- `Exp`: the explanation of the relation type assigned, a `string` feature.
|
522 |
+
- `Un`: uncertainty of the annotator, a `bool` feature.
|
523 |
+
- `SA`: existence of syntax ambiguity which poses a challenge for the annotator, a `bool` feature.
|
524 |
+
|
525 |
+
### Data Splits
|
526 |
+
#### Sentences
|
527 |
+
| | Train | Dev | Test | Total |
|
528 |
+
|--------------|---------|---------|---------|---------|
|
529 |
+
| news | 164 | 350 | 400 | 914 |
|
530 |
+
| politics | 101 | 350 | 400 | 851 |
|
531 |
+
| science | 103 | 351 | 400 | 854 |
|
532 |
+
| music | 100 | 350 | 399 | 849 |
|
533 |
+
| literature | 100 | 400 | 416 | 916 |
|
534 |
+
| ai | 100 | 350 | 431 | 881 |
|
535 |
+
| ------------ | ------- | ------- | ------- | ------- |
|
536 |
+
| total | 668 | 2,151 | 2,46 | 5,265 |
|
537 |
+
|
538 |
+
#### Relations
|
539 |
+
| | Train | Dev | Test | Total |
|
540 |
+
|--------------|---------|---------|---------|---------|
|
541 |
+
| news | 175 | 300 | 396 | 871 |
|
542 |
+
| politics | 502 | 1,616 | 1,831 | 3,949 |
|
543 |
+
| science | 355 | 1,340 | 1,393 | 3,088 |
|
544 |
+
| music | 496 | 1,861 | 2,333 | 4,690 |
|
545 |
+
| literature | 397 | 1,539 | 1,591 | 3,527 |
|
546 |
+
| ai | 350 | 1,006 | 1,127 | 2,483 |
|
547 |
+
| ------------ | ------- | ------- | ------- | ------- |
|
548 |
+
| total | 2,275 | 7,662 | 8,671 | 18,608 |
|
549 |
+
|
550 |
+
## Dataset Creation
|
551 |
+
|
552 |
+
### Curation Rationale
|
553 |
+
|
554 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
555 |
+
|
556 |
+
### Source Data
|
557 |
+
|
558 |
+
#### Initial Data Collection and Normalization
|
559 |
+
|
560 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
561 |
+
|
562 |
+
#### Who are the source language producers?
|
563 |
+
|
564 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
565 |
+
|
566 |
+
### Annotations
|
567 |
+
|
568 |
+
#### Annotation process
|
569 |
+
|
570 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
571 |
+
|
572 |
+
#### Who are the annotators?
|
573 |
+
|
574 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
575 |
+
|
576 |
+
### Personal and Sensitive Information
|
577 |
+
|
578 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
579 |
+
|
580 |
+
## Considerations for Using the Data
|
581 |
+
|
582 |
+
### Social Impact of Dataset
|
583 |
+
|
584 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
585 |
+
|
586 |
+
### Discussion of Biases
|
587 |
+
|
588 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
589 |
+
|
590 |
+
### Other Known Limitations
|
591 |
+
|
592 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
593 |
+
|
594 |
+
## Additional Information
|
595 |
+
|
596 |
+
### Dataset Curators
|
597 |
+
|
598 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
599 |
+
|
600 |
+
### Licensing Information
|
601 |
+
|
602 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
603 |
+
|
604 |
+
### Citation Information
|
605 |
+
|
606 |
+
```
|
607 |
+
@inproceedings{bassignana-plank-2022-crossre,
|
608 |
+
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
|
609 |
+
author = "Bassignana, Elisa and Plank, Barbara",
|
610 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
|
611 |
+
year = "2022",
|
612 |
+
publisher = "Association for Computational Linguistics"
|
613 |
+
}
|
614 |
+
```
|
615 |
+
|
616 |
+
### Contributions
|
617 |
+
|
618 |
+
Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.
|
cross_re.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""CrossRE is a cross-domain dataset for relation extraction"""
|
15 |
+
|
16 |
+
|
17 |
+
import json
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
|
21 |
+
_CITATION = """\
|
22 |
+
@inproceedings{bassignana-plank-2022-crossre,
|
23 |
+
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
|
24 |
+
author = "Bassignana, Elisa and Plank, Barbara",
|
25 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
|
26 |
+
year = "2022",
|
27 |
+
publisher = "Association for Computational Linguistics"
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes
|
33 |
+
multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and
|
34 |
+
artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain
|
35 |
+
dataset for NER which contains domain-specific entity types.
|
36 |
+
The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL,
|
37 |
+
GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and
|
38 |
+
RELATED-TO.
|
39 |
+
|
40 |
+
For details, see the paper: https://arxiv.org/abs/2210.09345
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://github.com/mainlp/CrossRE"
|
44 |
+
|
45 |
+
# TODO: Add the licence for the dataset here if you can find it
|
46 |
+
_LICENSE = ""
|
47 |
+
|
48 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
49 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
+
_URLS = {
|
51 |
+
"news": {
|
52 |
+
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-train.json",
|
53 |
+
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-dev.json",
|
54 |
+
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-test.json",
|
55 |
+
},
|
56 |
+
"politics": {
|
57 |
+
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-train.json",
|
58 |
+
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-dev.json",
|
59 |
+
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-test.json",
|
60 |
+
},
|
61 |
+
"science": {
|
62 |
+
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-train.json",
|
63 |
+
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-dev.json",
|
64 |
+
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-test.json",
|
65 |
+
},
|
66 |
+
"music": {
|
67 |
+
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-train.json",
|
68 |
+
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-dev.json",
|
69 |
+
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-test.json",
|
70 |
+
},
|
71 |
+
"literature": {
|
72 |
+
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-train.json",
|
73 |
+
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-dev.json",
|
74 |
+
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-test.json",
|
75 |
+
},
|
76 |
+
"ai": {
|
77 |
+
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-train.json",
|
78 |
+
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-dev.json",
|
79 |
+
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-test.json",
|
80 |
+
},
|
81 |
+
}
|
82 |
+
|
83 |
+
|
84 |
+
class CrossRE(datasets.GeneratorBasedBuilder):
|
85 |
+
"""CrossRE is a cross-domain dataset for relation extraction"""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0")
|
88 |
+
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
datasets.BuilderConfig(name="news", version=VERSION,
|
91 |
+
description="This part of CrossRE covers data from the news domain"),
|
92 |
+
datasets.BuilderConfig(name="politics", version=VERSION,
|
93 |
+
description="This part of CrossRE covers data from the politics domain"),
|
94 |
+
datasets.BuilderConfig(name="science", version=VERSION,
|
95 |
+
description="This part of CrossRE covers data from the science domain"),
|
96 |
+
datasets.BuilderConfig(name="music", version=VERSION,
|
97 |
+
description="This part of CrossRE covers data from the music domain"),
|
98 |
+
datasets.BuilderConfig(name="literature", version=VERSION,
|
99 |
+
description="This part of CrossRE covers data from the literature domain"),
|
100 |
+
datasets.BuilderConfig(name="ai", version=VERSION,
|
101 |
+
description="This part of CrossRE covers data from the AI domain"),
|
102 |
+
]
|
103 |
+
|
104 |
+
def _info(self):
|
105 |
+
features = datasets.Features(
|
106 |
+
{
|
107 |
+
"doc_key": datasets.Value("string"),
|
108 |
+
"sentence": datasets.Sequence(datasets.Value("string")),
|
109 |
+
"ner": [{
|
110 |
+
"id-start": datasets.Value("int32"),
|
111 |
+
"id-end": datasets.Value("int32"),
|
112 |
+
"entity-type": datasets.Value("string"),
|
113 |
+
}],
|
114 |
+
"relations": [{
|
115 |
+
"id_1-start": datasets.Value("int32"),
|
116 |
+
"id_1-end": datasets.Value("int32"),
|
117 |
+
"id_2-start": datasets.Value("int32"),
|
118 |
+
"id_2-end": datasets.Value("int32"),
|
119 |
+
"relation-type": datasets.Value("string"),
|
120 |
+
"Exp": datasets.Value("string"), # Explanation of the relation type assigned
|
121 |
+
"Un": datasets.Value("bool"), # Uncertainty of the annotator
|
122 |
+
"SA": datasets.Value("bool"), # Syntax Ambiguity which poses a challenge for the annotator
|
123 |
+
}]
|
124 |
+
}
|
125 |
+
)
|
126 |
+
return datasets.DatasetInfo(
|
127 |
+
# This is the description that will appear on the datasets page.
|
128 |
+
description=_DESCRIPTION,
|
129 |
+
# This defines the different columns of the dataset and their types
|
130 |
+
features=features, # Here we define them above because they are different between the two configurations
|
131 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
132 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
133 |
+
# supervised_keys=("sentence", "label"),
|
134 |
+
# Homepage of the dataset for documentation
|
135 |
+
homepage=_HOMEPAGE,
|
136 |
+
# License for the dataset if available
|
137 |
+
license=_LICENSE,
|
138 |
+
# Citation for the dataset
|
139 |
+
citation=_CITATION,
|
140 |
+
)
|
141 |
+
|
142 |
+
def _split_generators(self, dl_manager):
|
143 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
144 |
+
|
145 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
146 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
147 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
148 |
+
urls = _URLS[self.config.name]
|
149 |
+
downloaded_files = dl_manager.download_and_extract(urls)
|
150 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
|
151 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
152 |
+
|
153 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
154 |
+
def _generate_examples(self, filepath):
|
155 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
156 |
+
with open(filepath, encoding="utf-8") as f:
|
157 |
+
for row in f:
|
158 |
+
doc = json.loads(row)
|
159 |
+
doc_key = doc["doc_key"]
|
160 |
+
ner = []
|
161 |
+
for entity in doc["ner"]:
|
162 |
+
ner.append({
|
163 |
+
"id-start": entity[0],
|
164 |
+
"id-end": entity[1],
|
165 |
+
"entity-type": entity[2],
|
166 |
+
})
|
167 |
+
relations = []
|
168 |
+
for relation in doc["relations"]:
|
169 |
+
relations.append({
|
170 |
+
"id_1-start": relation[0],
|
171 |
+
"id_1-end": relation[1],
|
172 |
+
"id_2-start": relation[2],
|
173 |
+
"id_2-end": relation[3],
|
174 |
+
"relation-type": relation[4],
|
175 |
+
"Exp": relation[5],
|
176 |
+
"Un": relation[6],
|
177 |
+
"SA": relation[7],
|
178 |
+
})
|
179 |
+
yield doc_key, {
|
180 |
+
"doc_key": doc_key,
|
181 |
+
"sentence": doc["sentence"],
|
182 |
+
"ner": ner,
|
183 |
+
"relations": relations
|
184 |
+
}
|