Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
ArXiv:
Tags:
relation extraction
License:
# coding=utf-8 | |
# Copyright 2022 The current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The Google-IISc Distant Supervision (GIDS) dataset for distantly-supervised relation extraction""" | |
import csv | |
import datasets | |
_CITATION = """\ | |
@inproceedings{bassignana-plank-2022-crossre, | |
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction", | |
author = "Bassignana, Elisa and Plank, Barbara", | |
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022", | |
year = "2022", | |
publisher = "Association for Computational Linguistics" | |
} | |
""" | |
_DESCRIPTION = """\ | |
Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction. | |
GIDS is seeded from the human-judged Google relation extraction corpus. | |
""" | |
_HOMEPAGE = "" | |
_LICENSE = "" | |
# The HuggingFace dataset library don't host the datasets but only point to the original files | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLs = { | |
"train": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/train.tsv", | |
"validation": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/dev.tsv", | |
"test": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/test.tsv", | |
} | |
_VERSION = datasets.Version("1.0.0") | |
_CLASS_LABELS = [ | |
"NA", | |
"/people/person/education./education/education/institution", | |
"/people/person/education./education/education/degree", | |
"/people/person/place_of_birth", | |
"/people/deceased_person/place_of_death" | |
] | |
def replace_underscore_in_span(text, start, end): | |
cleaned_text = text[:start] + text[start:end].replace("_", " ") + text[end:] | |
return cleaned_text | |
class GIDS(datasets.GeneratorBasedBuilder): | |
"""Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction.""" | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="gids", version=_VERSION, description="GIDS dataset." | |
), | |
datasets.BuilderConfig( | |
name="gids_formatted", version=_VERSION, description="Formatted GIDS dataset." | |
), | |
] | |
DEFAULT_CONFIG_NAME = "gids" # type: ignore | |
def _info(self): | |
if self.config.name == "gids_formatted": | |
features = datasets.Features( | |
{ | |
"token": datasets.Sequence(datasets.Value("string")), | |
"subj_start": datasets.Value("int32"), | |
"subj_end": datasets.Value("int32"), | |
"obj_start": datasets.Value("int32"), | |
"obj_end": datasets.Value("int32"), | |
"relation": datasets.ClassLabel(names=_CLASS_LABELS), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"subj_id": datasets.Value("string"), | |
"obj_id": datasets.Value("string"), | |
"subj_text": datasets.Value("string"), | |
"obj_text": datasets.Value("string"), | |
"relation": datasets.ClassLabel(names=_CLASS_LABELS) | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
downloaded_files = dl_manager.download_and_extract(_URLs) | |
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]}) | |
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. | |
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset | |
# The key is not important, it's more here for legacy reason (legacy from tfds) | |
if self.config.name == "gids_formatted": | |
from spacy.lang.en import English | |
word_splitter = English() | |
else: | |
word_splitter = None | |
with open(filepath, encoding="utf-8") as f: | |
data = csv.reader(f, delimiter="\t") | |
for id_, example in enumerate(data): | |
text = example[5].strip()[:-9].strip() # remove '###END###' from text, | |
subj_text = example[2] | |
obj_text = example[3] | |
rel_type = example[4] | |
if self.config.name == "gids_formatted": | |
subj_char_start = text.find(subj_text) | |
assert subj_char_start != -1, f"Did not find <{subj_text}> in the text" | |
subj_char_end = subj_char_start + len(subj_text) | |
obj_char_start = text.find(obj_text) | |
assert obj_char_start != -1, f"Did not find <{obj_text}> in the text" | |
obj_char_end = obj_char_start + len(obj_text) | |
text = replace_underscore_in_span(text, subj_char_start, subj_char_end) | |
text = replace_underscore_in_span(text, obj_char_start, obj_char_end) | |
doc = word_splitter(text) | |
word_tokens = [t.text for t in doc] | |
subj_span = doc.char_span(subj_char_start, subj_char_end, alignment_mode="expand") | |
obj_span = doc.char_span(obj_char_start, obj_char_end, alignment_mode="expand") | |
yield id_, { | |
"token": word_tokens, | |
"subj_start": subj_span.start, | |
"subj_end": subj_span.end, | |
"obj_start": obj_span.start, | |
"obj_end": obj_span.end, | |
"relation": rel_type, | |
} | |
else: | |
yield id_, { | |
"sentence": text, | |
"subj_id": example[0], | |
"obj_id": example[1], | |
"subj_text": subj_text, | |
"obj_text": obj_text, | |
"relation": rel_type, | |
} | |