Datasets:

Languages:
English
ArXiv:
License:
gids / gids.py
phucdev's picture
Add loading script and README.md
23082db
# coding=utf-8
# Copyright 2022 The current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Google-IISc Distant Supervision (GIDS) dataset for distantly-supervised relation extraction"""
import csv
import datasets
_CITATION = """\
@inproceedings{bassignana-plank-2022-crossre,
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
author = "Bassignana, Elisa and Plank, Barbara",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
year = "2022",
publisher = "Association for Computational Linguistics"
}
"""
_DESCRIPTION = """\
Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction.
GIDS is seeded from the human-judged Google relation extraction corpus.
"""
_HOMEPAGE = ""
_LICENSE = ""
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"train": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/train.tsv",
"validation": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/dev.tsv",
"test": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/test.tsv",
}
_VERSION = datasets.Version("1.0.0")
_CLASS_LABELS = [
"NA",
"/people/person/education./education/education/institution",
"/people/person/education./education/education/degree",
"/people/person/place_of_birth",
"/people/deceased_person/place_of_death"
]
def replace_underscore_in_span(text, start, end):
cleaned_text = text[:start] + text[start:end].replace("_", " ") + text[end:]
return cleaned_text
class GIDS(datasets.GeneratorBasedBuilder):
"""Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="gids", version=_VERSION, description="GIDS dataset."
),
datasets.BuilderConfig(
name="gids_formatted", version=_VERSION, description="Formatted GIDS dataset."
),
]
DEFAULT_CONFIG_NAME = "gids" # type: ignore
def _info(self):
if self.config.name == "gids_formatted":
features = datasets.Features(
{
"token": datasets.Sequence(datasets.Value("string")),
"subj_start": datasets.Value("int32"),
"subj_end": datasets.Value("int32"),
"obj_start": datasets.Value("int32"),
"obj_end": datasets.Value("int32"),
"relation": datasets.ClassLabel(names=_CLASS_LABELS),
}
)
else:
features = datasets.Features(
{
"sentence": datasets.Value("string"),
"subj_id": datasets.Value("string"),
"obj_id": datasets.Value("string"),
"subj_text": datasets.Value("string"),
"obj_text": datasets.Value("string"),
"relation": datasets.ClassLabel(names=_CLASS_LABELS)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
downloaded_files = dl_manager.download_and_extract(_URLs)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
def _generate_examples(self, filepath):
"""Yields examples."""
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
if self.config.name == "gids_formatted":
from spacy.lang.en import English
word_splitter = English()
else:
word_splitter = None
with open(filepath, encoding="utf-8") as f:
data = csv.reader(f, delimiter="\t")
for id_, example in enumerate(data):
text = example[5].strip()[:-9].strip() # remove '###END###' from text,
subj_text = example[2]
obj_text = example[3]
rel_type = example[4]
if self.config.name == "gids_formatted":
subj_char_start = text.find(subj_text)
assert subj_char_start != -1, f"Did not find <{subj_text}> in the text"
subj_char_end = subj_char_start + len(subj_text)
obj_char_start = text.find(obj_text)
assert obj_char_start != -1, f"Did not find <{obj_text}> in the text"
obj_char_end = obj_char_start + len(obj_text)
text = replace_underscore_in_span(text, subj_char_start, subj_char_end)
text = replace_underscore_in_span(text, obj_char_start, obj_char_end)
doc = word_splitter(text)
word_tokens = [t.text for t in doc]
subj_span = doc.char_span(subj_char_start, subj_char_end, alignment_mode="expand")
obj_span = doc.char_span(obj_char_start, obj_char_end, alignment_mode="expand")
yield id_, {
"token": word_tokens,
"subj_start": subj_span.start,
"subj_end": subj_span.end,
"obj_start": obj_span.start,
"obj_end": obj_span.end,
"relation": rel_type,
}
else:
yield id_, {
"sentence": text,
"subj_id": example[0],
"obj_id": example[1],
"subj_text": subj_text,
"obj_text": obj_text,
"relation": rel_type,
}