|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ScienceIE is a dataset for the SemEval task of extracting key phrases and relations between them from scientific documents""" |
|
|
|
|
|
import glob |
|
import datasets |
|
|
|
from pathlib import Path |
|
from itertools import permutations |
|
from spacy.lang.en import English |
|
|
|
|
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/AugensteinDRVM17, |
|
author = {Isabelle Augenstein and |
|
Mrinal Das and |
|
Sebastian Riedel and |
|
Lakshmi Vikraman and |
|
Andrew McCallum}, |
|
title = {SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations |
|
from Scientific Publications}, |
|
journal = {CoRR}, |
|
volume = {abs/1704.02853}, |
|
year = {2017}, |
|
url = {http://arxiv.org/abs/1704.02853}, |
|
eprinttype = {arXiv}, |
|
eprint = {1704.02853}, |
|
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/AugensteinDRVM17.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
ScienceIE is a dataset for the SemEval task of extracting key phrases and relations between them from scientific documents. |
|
A corpus for the task was built from ScienceDirect open access publications and was available freely for participants, without the need to sign a copyright agreement. Each data instance consists of one paragraph of text, drawn from a scientific paper. |
|
Publications were provided in plain text, in addition to xml format, which included the full text of the publication as well as additional metadata. 500 paragraphs from journal articles evenly distributed among the domains Computer Science, Material Sciences and Physics were selected. |
|
The training data part of the corpus consists of 350 documents, 50 for development and 100 for testing. This is similar to the pilot task described in Section 5, for which 144 articles were used for training, 40 for development and for 100 testing. |
|
|
|
The dataset has three labels: Material, Process, Task |
|
""" |
|
|
|
_HOMEPAGE = "https://scienceie.github.io/resources.html" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
_URLS = { |
|
"train": "https://github.com/ScienceIE/scienceie.github.io/raw/master/resources/scienceie2017_train.zip", |
|
"validation": "https://github.com/ScienceIE/scienceie.github.io/raw/master/resources/scienceie2017_dev.zip", |
|
"test": "https://github.com/ScienceIE/scienceie.github.io/raw/master/resources/semeval_articles_test.zip" |
|
} |
|
|
|
|
|
def generate_relation(entities, arg1_id, arg2_id, relation, offset=0): |
|
arg1 = None |
|
arg2 = None |
|
for e in entities: |
|
if e["id"] == arg1_id: |
|
arg1 = e |
|
elif e["id"] == arg2_id: |
|
arg2 = e |
|
assert arg1 is not None and arg2 is not None, \ |
|
f"Did not find corresponding entities {arg1_id} & {arg2_id} in {entities}" |
|
return { |
|
"arg1_start": arg1["start"] - offset, |
|
"arg1_end": arg1["end"] - offset, |
|
"arg1_type": arg1["type"], |
|
"arg2_start": arg2["start"] - offset, |
|
"arg2_end": arg2["end"] - offset, |
|
"arg2_type": arg2["type"], |
|
"relation": relation |
|
} |
|
|
|
|
|
class ScienceIE(datasets.GeneratorBasedBuilder): |
|
"""ScienceIE is a dataset for the task of extracting key phrases and relations between them from scientific |
|
documents""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="subtask_a", version=VERSION, |
|
description="Subtask A of ScienceIE for tokens being outside, at the beginning, " |
|
"or inside a key phrase"), |
|
datasets.BuilderConfig(name="subtask_b", version=VERSION, |
|
description="Subtask B of ScienceIE for tokens being outside, or part of a material, " |
|
"process or task"), |
|
datasets.BuilderConfig(name="subtask_c", version=VERSION, |
|
description="Subtask C of ScienceIE for Synonym-of and Hyponym-of relations"), |
|
datasets.BuilderConfig(name="ner", version=VERSION, description="NER part of ScienceIE"), |
|
datasets.BuilderConfig(name="re", version=VERSION, description="Relation extraction part of ScienceIE"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ner" |
|
|
|
def _info(self): |
|
if self.config.name == "subtask_a": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence(datasets.features.ClassLabel(names=["O", "B", "I"])) |
|
} |
|
) |
|
elif self.config.name == "subtask_b": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence(datasets.features.ClassLabel(names=["O", "M", "P", "T"])) |
|
} |
|
) |
|
elif self.config.name == "subtask_c": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence(datasets.Sequence(datasets.features.ClassLabel(names=["O", "S", "H"]))) |
|
} |
|
) |
|
elif self.config.name == "re": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Value("string"), |
|
"arg1_start": datasets.Value("int32"), |
|
"arg1_end": datasets.Value("int32"), |
|
"arg1_type": datasets.Value("string"), |
|
"arg2_start": datasets.Value("int32"), |
|
"arg2_end": datasets.Value("int32"), |
|
"arg2_type": datasets.Value("string"), |
|
"relation": datasets.features.ClassLabel(names=["O", "Synonym-of", "Hyponym-of"]) |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-Material", |
|
"I-Material", |
|
"B-Process", |
|
"I-Process", |
|
"B-Task", |
|
"I-Task" |
|
] |
|
) |
|
) |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [datasets.SplitGenerator(name=i, gen_kwargs={"dir_path": downloaded_files[str(i)]}) |
|
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] |
|
|
|
|
|
def _generate_examples(self, dir_path): |
|
|
|
annotation_files = glob.glob(dir_path + "/**/*.ann", recursive=True) |
|
word_splitter = English() |
|
word_splitter.add_pipe('sentencizer') |
|
for f_anno_file in annotation_files: |
|
doc_example_idx = 0 |
|
f_anno_path = Path(f_anno_file) |
|
f_text_path = f_anno_path.with_suffix(".txt") |
|
doc_id = f_anno_path.stem |
|
with open(f_anno_path, mode="r", encoding="utf8") as f_anno, \ |
|
open(f_text_path, mode="r", encoding="utf8") as f_text: |
|
text = f_text.read().strip() |
|
doc = word_splitter(text) |
|
entities = [] |
|
synonym_groups = [] |
|
hyponyms = [] |
|
for line in f_anno: |
|
split_line = line.strip("\n").split("\t") |
|
identifier = split_line[0] |
|
annotation = split_line[1].split(" ") |
|
key_type = annotation[0] |
|
if key_type == "Synonym-of": |
|
synonym_ids = annotation[1:] |
|
synonym_groups.append(synonym_ids) |
|
else: |
|
if len(annotation) == 3: |
|
_, start, end = annotation |
|
else: |
|
_, start, _, end = annotation |
|
if key_type == "Hyponym-of": |
|
assert start.startswith("Arg1:") and end.startswith("Arg2:") |
|
hyponyms.append({ |
|
"id": identifier, |
|
"arg1_id": start[5:], |
|
"arg2_id": end[5:] |
|
}) |
|
else: |
|
|
|
|
|
keyphr_text_lookup = text[int(start):int(end)] |
|
keyphr_ann = split_line[2] |
|
if keyphr_text_lookup != keyphr_ann: |
|
print("Spans don't match for anno " + line.strip() + " in file " + f_anno_file) |
|
char_start = int(start) |
|
char_end = int(end) |
|
entity_span = doc.char_span(char_start, char_end, alignment_mode="expand") |
|
start = entity_span.start |
|
end = entity_span.end |
|
entities.append({ |
|
"id": identifier, |
|
"start": start, |
|
"end": end, |
|
"char_start": char_start, |
|
"char_end": char_end, |
|
"type": key_type |
|
}) |
|
|
|
synonym_groups_used = [False for _ in synonym_groups] |
|
hyponyms_used = [False for _ in hyponyms] |
|
for sent in doc.sents: |
|
token_offset = sent.start |
|
tokens = [token.text for token in sent] |
|
tags = ["O" for _ in tokens] |
|
sent_entities = [] |
|
sent_entity_ids = [] |
|
for entity in entities: |
|
if entity["start"] >= sent.start and entity["end"] <= sent.end: |
|
sent_entity = {k: v for k, v in entity.items()} |
|
sent_entity["start"] -= token_offset |
|
sent_entity["end"] -= token_offset |
|
sent_entities.append(sent_entity) |
|
sent_entity_ids.append(entity["id"]) |
|
for entity in sent_entities: |
|
tags[entity["start"]] = "B-" + entity["type"] |
|
for i in range(entity["start"] + 1, entity["end"]): |
|
tags[i] = "I-" + entity["type"] |
|
|
|
relations = [] |
|
entity_pairs_in_relation = [] |
|
for idx, synonym_group in enumerate(synonym_groups): |
|
if all(entity_id in sent_entity_ids for entity_id in synonym_group): |
|
synonym_groups_used[idx] = True |
|
for arg1_id, arg2_id in permutations(synonym_group, 2): |
|
relations.append( |
|
generate_relation(sent_entities, arg1_id, arg2_id, relation="Synonym-of")) |
|
entity_pairs_in_relation.append((arg1_id, arg2_id)) |
|
for idx, hyponym in enumerate(hyponyms): |
|
if hyponym["arg1_id"] in sent_entity_ids and hyponym["arg2_id"] in sent_entity_ids: |
|
hyponyms_used[idx] = True |
|
relations.append( |
|
generate_relation(sent_entities, hyponym["arg1_id"], hyponym["arg2_id"], |
|
relation="Hyponym-of")) |
|
|
|
entity_pairs_in_relation.append((arg1_id, arg2_id)) |
|
entity_pairs = [(arg1["id"], arg2["id"]) for arg1, arg2 in permutations(sent_entities, 2) |
|
if (arg1["id"], arg2["id"]) not in entity_pairs_in_relation] |
|
for arg1_id, arg2_id in entity_pairs: |
|
relations.append(generate_relation(sent_entities, arg1_id, arg2_id, relation="O")) |
|
|
|
if self.config.name == "subtask_a": |
|
doc_example_idx += 1 |
|
key = f"{doc_id}_{doc_example_idx}" |
|
|
|
yield key, { |
|
"id": key, |
|
"tokens": tokens, |
|
"tags": [tag[0] for tag in tags] |
|
} |
|
elif self.config.name == "subtask_b": |
|
doc_example_idx += 1 |
|
key = f"{doc_id}_{doc_example_idx}" |
|
|
|
key_phrase_tags = [] |
|
for tag in tags: |
|
if tag == "O": |
|
key_phrase_tags.append(tag) |
|
else: |
|
|
|
key_phrase_tags.append(tag[2]) |
|
yield key, { |
|
"id": key, |
|
"tokens": tokens, |
|
"tags": key_phrase_tags |
|
} |
|
elif self.config.name == "subtask_c": |
|
doc_example_idx += 1 |
|
key = f"{doc_id}_{doc_example_idx}" |
|
tag_vectors = [["O" for _ in tokens] for _ in tokens] |
|
for relation in relations: |
|
tag = relation["relation"][0] |
|
if tag != "O": |
|
tag_vectors[relation["arg1_start"]][relation["arg2_start"]] = tag |
|
|
|
yield key, { |
|
"id": key, |
|
"tokens": tokens, |
|
"tags": tag_vectors |
|
} |
|
elif self.config.name == "re": |
|
for relation in relations: |
|
doc_example_idx += 1 |
|
key = f"{doc_id}_{doc_example_idx}" |
|
|
|
example = { |
|
"id": key, |
|
"tokens": tokens |
|
} |
|
for k, v in relation.items(): |
|
example[k] = v |
|
yield key, example |
|
else: |
|
doc_example_idx += 1 |
|
key = f"{doc_id}_{doc_example_idx}" |
|
|
|
yield key, { |
|
"id": key, |
|
"tokens": tokens, |
|
"tags": tags |
|
} |
|
|
|
assert all(synonym_groups_used) and all(hyponyms_used), \ |
|
f"Annotations were lost: {len([e for e in synonym_groups_used if e])} synonym annotations," \ |
|
f"{len([e for e in hyponyms_used if e])} synonym annotations" |
|
|