Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
relation extraction
License:
File size: 11,829 Bytes
38c47e3 7879210 e6eb656 3783c46 e6eb656 3783c46 e6eb656 3783c46 e6eb656 4bbc35b 7879210 e6eb656 7879210 e6eb656 7879210 40d3755 7879210 4bbc35b 7879210 40d3755 3783c46 7879210 4bbc35b 7879210 4bbc35b 7879210 631667a 7879210 e6eb656 7879210 e6eb656 7879210 631667a 7879210 e6eb656 7879210 e6eb656 7a10d1c 7879210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# coding=utf-8
# Copyright 2022 The current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The TACRED dataset for English Relation Classification"""
import json
import os
import datasets
_CITATION = """\
@inproceedings{zhang-etal-2017-position,
title = "Position-aware Attention and Supervised Data Improve Slot Filling",
author = "Zhang, Yuhao and
Zhong, Victor and
Chen, Danqi and
Angeli, Gabor and
Manning, Christopher D.",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D17-1004",
doi = "10.18653/v1/D17-1004",
pages = "35--45",
}
@inproceedings{alt-etal-2020-tacred,
title = "{TACRED} Revisited: A Thorough Evaluation of the {TACRED} Relation Extraction Task",
author = "Alt, Christoph and
Gabryszak, Aleksandra and
Hennig, Leonhard",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.142",
doi = "10.18653/v1/2020.acl-main.142",
pages = "1558--1569",
}
"""
_DESCRIPTION = """\
TACRED is a large-scale relation extraction dataset with 106,264 examples built over newswire
and web text from the corpus used in the yearly TAC Knowledge Base Population (TAC KBP) challenges.
Examples in TACRED cover 41 relation types as used in the TAC KBP challenges (e.g., per:schools_attended
and org:members) or are labeled as no_relation if no defined relation is held. These examples are created
by combining available human annotations from the TAC KBP challenges and crowdsourcing.
Please see our EMNLP paper, or our EMNLP slides for full details.
Note: There is currently a label-corrected version of the TACRED dataset, which you should consider using instead of
the original version released in 2017. For more details on this new version, see the TACRED Revisited paper
published at ACL 2020.
Note 2: This Datasetreader changes the offsets of the following fields, to conform with standard Python usage (see
#_generate_examples()):
- subj_end to subj_end + 1 (make end offset exclusive)
- oj_end to oj_end + 1 (make end offset exclusive)
- stanford_head to stanford_head - 1 (make head offsets 0-based)
"""
_HOMEPAGE = "https://nlp.stanford.edu/projects/tacred/"
_LICENSE = "LDC"
_URL = "https://catalog.ldc.upenn.edu/LDC2018T24"
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_PATCH_URLs = {
"dev": "https://raw.githubusercontent.com/DFKI-NLP/tacrev/master/patch/dev_patch.json",
"test": "https://raw.githubusercontent.com/DFKI-NLP/tacrev/master/patch/test_patch.json",
}
_VERSION = datasets.Version("1.0.0")
_CLASS_LABELS = [
"no_relation",
"org:alternate_names",
"org:city_of_headquarters",
"org:country_of_headquarters",
"org:dissolved",
"org:founded",
"org:founded_by",
"org:member_of",
"org:members",
"org:number_of_employees/members",
"org:parents",
"org:political/religious_affiliation",
"org:shareholders",
"org:stateorprovince_of_headquarters",
"org:subsidiaries",
"org:top_members/employees",
"org:website",
"per:age",
"per:alternate_names",
"per:cause_of_death",
"per:charges",
"per:children",
"per:cities_of_residence",
"per:city_of_birth",
"per:city_of_death",
"per:countries_of_residence",
"per:country_of_birth",
"per:country_of_death",
"per:date_of_birth",
"per:date_of_death",
"per:employee_of",
"per:origin",
"per:other_family",
"per:parents",
"per:religion",
"per:schools_attended",
"per:siblings",
"per:spouse",
"per:stateorprovince_of_birth",
"per:stateorprovince_of_death",
"per:stateorprovinces_of_residence",
"per:title",
]
def convert_ptb_token(token: str) -> str:
"""Convert PTB tokens to normal tokens"""
return {
"-lrb-": "(",
"-rrb-": ")",
"-lsb-": "[",
"-rsb-": "]",
"-lcb-": "{",
"-rcb-": "}",
}.get(token.lower(), token)
class Tacred(datasets.GeneratorBasedBuilder):
"""TACRED is a large-scale relation extraction dataset with 106,264 examples built over newswire
and web text from the corpus used in the yearly TAC Knowledge Base Population (TAC KBP) challenges."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="original", version=_VERSION, description="The original TACRED."
),
datasets.BuilderConfig(
name="revised",
version=_VERSION,
description="The revised TACRED (corrected labels in dev and test split).",
),
]
DEFAULT_CONFIG_NAME = "original" # type: ignore
@property
def manual_download_instructions(self):
return (
"To use TACRED you have to download it manually. "
"It is available via the LDC at https://catalog.ldc.upenn.edu/LDC2018T24"
"Please extract all files in one folder and load the dataset with: "
"`datasets.load_dataset('DFKI-SLT/tacred', data_dir='path/to/folder/folder_name')`"
)
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"docid": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"subj_start": datasets.Value("int32"),
"subj_end": datasets.Value("int32"),
"subj_type": datasets.Value("string"),
"obj_start": datasets.Value("int32"),
"obj_end": datasets.Value("int32"),
"obj_type": datasets.Value("string"),
"pos_tags": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(datasets.Value("string")),
"stanford_deprel": datasets.Sequence(datasets.Value("string")),
"stanford_head": datasets.Sequence(datasets.Value("int32")),
"relation": datasets.ClassLabel(names=_CLASS_LABELS),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
patch_files = {}
if self.config.name == "revised":
patch_files = dl_manager.download_and_extract(_PATCH_URLs)
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('DFKI-SLT/tacred', data_dir=...)` that includes the unzipped files from the TACRED_LDC zip. Manual download instructions: {}".format(
data_dir, self.manual_download_instructions
)
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "train.json"),
"patch_filepath": None,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test.json"),
"patch_filepath": patch_files.get("test"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.json"),
"patch_filepath": patch_files.get("dev"),
},
),
]
def _generate_examples(self, filepath, patch_filepath):
"""Yields examples."""
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
patch_examples = {}
if patch_filepath is not None:
with open(patch_filepath, encoding="utf-8") as f:
patch_examples = {example["id"]: example for example in json.load(f)}
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for example in data:
id_ = example["id"]
if id_ in patch_examples:
example.update(patch_examples[id_])
yield id_, {
"id": example["id"],
"docid": example["docid"],
"tokens": [convert_ptb_token(token) for token in example["token"]],
"subj_start": example["subj_start"],
"subj_end": example["subj_end"] + 1, # make end offset exclusive
"subj_type": example["subj_type"],
"obj_start": example["obj_start"],
"obj_end": example["obj_end"] + 1, # make end offset exclusive
"obj_type": example["obj_type"],
"relation": example["relation"],
"pos_tags": example["stanford_pos"],
"ner_tags": example["stanford_ner"],
"stanford_deprel": example["stanford_deprel"],
"stanford_head": [
head - 1 for head in example["stanford_head"]
], # make offsets 0-based
}
|