Datasets:

Languages:
English
ArXiv:
License:
dfki-nlp commited on
Commit
83d3576
1 Parent(s): 631667a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +181 -1
README.md CHANGED
@@ -1,3 +1,183 @@
1
  ---
2
- license: other
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ - expert-generated
5
+ language:
6
+ - en
7
+ language_creators:
8
+ - found
9
+ license:
10
+ - other
11
+ multilinguality:
12
+ - monolingual
13
+ pretty_name: tacred
14
+ size_categories:
15
+ - 100K<n<1M
16
+ source_datasets:
17
+ - extended|other
18
+ tags:
19
+ - relation extraction
20
+ task_categories:
21
+ - text-classification
22
+ task_ids:
23
+ - multi-class-classification
24
  ---
25
+ # Dataset Card for "tacred"
26
+ ## Table of Contents
27
+ - [Table of Contents](#table-of-contents)
28
+ - [Dataset Description](#dataset-description)
29
+ - [Dataset Summary](#dataset-summary)
30
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
31
+ - [Languages](#languages)
32
+ - [Dataset Structure](#dataset-structure)
33
+ - [Data Instances](#data-instances)
34
+ - [Data Fields](#data-fields)
35
+ - [Data Splits](#data-splits)
36
+ - [Dataset Creation](#dataset-creation)
37
+ - [Curation Rationale](#curation-rationale)
38
+ - [Source Data](#source-data)
39
+ - [Annotations](#annotations)
40
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
41
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
42
+ - [Social Impact of Dataset](#social-impact-of-dataset)
43
+ - [Discussion of Biases](#discussion-of-biases)
44
+ - [Other Known Limitations](#other-known-limitations)
45
+ - [Additional Information](#additional-information)
46
+ - [Dataset Curators](#dataset-curators)
47
+ - [Licensing Information](#licensing-information)
48
+ - [Citation Information](#citation-information)
49
+ - [Contributions](#contributions)
50
+ ## Dataset Description
51
+ - **Homepage:** [https://nlp.stanford.edu/projects/tacred](https://nlp.stanford.edu/projects/tacred)
52
+ - **Paper:** [Position-aware Attention and Supervised Data Improve Slot Filling](https://aclanthology.org/D17-1004/)
53
+ - **Point of Contact:** See [https://nlp.stanford.edu/projects/tacred/](https://nlp.stanford.edu/projects/tacred/)
54
+ - **Size of downloaded dataset files:** 62.3 MB
55
+ - **Size of the generated dataset:** 145.8 MB
56
+ - **Total amount of disk used:** 198.1 MB
57
+ ### Dataset Summary
58
+ The TAC Relation Extraction Dataset (TACRED) is a large-scale relation extraction dataset with 106,264 examples built over newswire and web text from the corpus used in the yearly TAC Knowledge
59
+ Base Population (TAC KBP) challenges. Examples in TACRED cover 41 relation types as used in the TAC KBP challenges (e.g., per:schools_attended
60
+ and org:members) or are labeled as no_relation if no defined relation is held. These examples are created by combining available human annotations from the TAC
61
+ KBP challenges and crowdsourcing. Please see our EMNLP paper, or our EMNLP slides for full details.
62
+
63
+ Note: There is currently a label-corrected version of the TACRED dataset, which you should consider using instead of
64
+ the original version released in 2017. For more details on this new version, see the [TACRED Revisited paper](https://aclanthology.org/2020.acl-main.142/)
65
+ published at ACL 2020.
66
+
67
+ ### Supported Tasks and Leaderboards
68
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
69
+ ### Languages
70
+ The language in the dataset is English.
71
+ ## Dataset Structure
72
+ ### Data Instances
73
+ - **Size of downloaded dataset files:** 62.3 MB
74
+ - **Size of the generated dataset:** 145.8 MB
75
+ - **Total amount of disk used:** 198.1 MB
76
+
77
+ An example of 'train' looks as follows:
78
+ ```json
79
+ {
80
+ "id": "61b3a5c8c9a882dcfcd2",
81
+ "docid": "AFP_ENG_20070218.0019.LDC2009T13",
82
+ "relation": "org:founded_by",
83
+ "tokens": ["Tom", "Thabane", "resigned", "in", "October", "last", "year", "to", "form", "the", "All", "Basotho", "Convention", "-LRB-", "ABC", "-RRB-", ",", "crossing", "the", "floor", "with", "17", "members", "of", "parliament", ",", "causing", "constitutional", "monarch", "King", "Letsie", "III", "to", "dissolve", "parliament", "and", "call", "the", "snap", "election", "."],
84
+ "subj_start": 10,
85
+ "subj_end": 13,
86
+ "obj_start": 0,
87
+ "obj_end": 2,
88
+ "subj_type": "ORGANIZATION",
89
+ "obj_type": "PERSON",
90
+ "pos_tags": ["NNP", "NNP", "VBD", "IN", "NNP", "JJ", "NN", "TO", "VB", "DT", "DT", "NNP", "NNP", "-LRB-", "NNP", "-RRB-", ",", "VBG", "DT", "NN", "IN", "CD", "NNS", "IN", "NN", ",", "VBG", "JJ", "NN", "NNP", "NNP", "NNP", "TO", "VB", "NN", "CC", "VB", "DT", "NN", "NN", "."],
91
+ "ner_tags": ["PERSON", "PERSON", "O", "O", "DATE", "DATE", "DATE", "O", "O", "O", "O", "O", "O", "O", "ORGANIZATION", "O", "O", "O", "O", "O", "O", "NUMBER", "O", "O", "O", "O", "O", "O", "O", "O", "PERSON", "PERSON", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
92
+ "stanford_head": [2, 3, 0, 5, 3, 7, 3, 9, 3, 13, 13, 13, 9, 15, 13, 15, 3, 3, 20, 18, 23, 23, 18, 25, 23, 3, 3, 32, 32, 32, 32, 27, 34, 27, 34, 34, 34, 40, 40, 37, 3],
93
+ "stanford_deprel": ["compound", "nsubj", "ROOT", "case", "nmod", "amod", "nmod:tmod", "mark", "xcomp", "det", "compound", "compound", "dobj", "punct", "appos", "punct", "punct", "xcomp", "det", "dobj", "case", "nummod", "nmod", "case", "nmod", "punct", "xcomp", "amod", "compound", "compound", "compound", "dobj", "mark", "xcomp", "dobj", "cc", "conj", "det", "compound", "dobj", "punct"]
94
+ }
95
+ ```
96
+ ### Data Fields
97
+ The data fields are the same among all splits.
98
+
99
+ - `id`: the instance id of this sentence
100
+ - `docid`: the TAC KBP document id of this sentence
101
+ - `tokens`: the list of tokens of this sentence, obtained with the StanfordNLP toolkit.
102
+ - `relation`: the relation label of this instance.
103
+ - `subj_start`: the 0-based index of the start token of the relation subject mention.
104
+ - `subj_end`: the 0-based index of the end token of the relation subject mention, exclusive.
105
+ - `subj_type`: the NER type of the subject mention, among 23 fine-grained types used in the [Stanford NER system](https://stanfordnlp.github.io/CoreNLP/ner.html).
106
+ - `obj_start`: the 0-based index of the start token of the relation object mention.
107
+ - `obj_end`: the 0-based index of the end token of the relation object mention, exclusive.
108
+ - `obj_type`: the NER type of the object mention, among 23 fine-grained types used in the [Stanford NER system](https://stanfordnlp.github.io/CoreNLP/ner.html).
109
+ - `pos_tags`: the part-of-speech tag per token. the NER type of the subject mention, among 23 fine-grained types used in the [Stanford NER system](https://stanfordnlp.github.io/CoreNLP/ner.html).
110
+ - `ner_tags`: the NER tags of tokens (IO-Scheme), among 23 fine-grained types used in the [Stanford NER system](https://stanfordnlp.github.io/CoreNLP/ner.html).
111
+ - `stanford_deprel`: the Stanford dependency relation tag per token.
112
+ - `stanford_head`: the head (source) token index (0-based) for the dependency relation per token. The root token has a head index of -1.
113
+ ### Data Splits
114
+ To miminize dataset bias, TACRED is stratified across years in which the TAC KBP challenge was run:
115
+ | | Train | Dev | Test |
116
+ | ----- | ------ | ----- | ---- |
117
+ | TACRED | 68,124 (TAC KBP 2009-2012) | 22,631 (TAC KBP 2013) | 15,509 (TAC KBP 2014) |
118
+ ## Dataset Creation
119
+ ### Curation Rationale
120
+ [More Information Needed]
121
+ ### Source Data
122
+ #### Initial Data Collection and Normalization
123
+ [More Information Needed]
124
+ #### Who are the source language producers?
125
+ [More Information Needed]
126
+ ### Annotations
127
+ #### Annotation process
128
+ See the Stanford paper and the Tacred Revisited paper, plus their appendices.
129
+
130
+ To ensure that models trained on TACRED are not biased towards predicting false positives on real-world text,
131
+ all sampled sentences where no relation was found between the mention pairs were fully annotated to be negative examples. As a result, 79.5% of the examples
132
+ are labeled as no_relation.
133
+ #### Who are the annotators?
134
+ [More Information Needed]
135
+ ### Personal and Sensitive Information
136
+ [More Information Needed]
137
+ ## Considerations for Using the Data
138
+ ### Social Impact of Dataset
139
+ [More Information Needed]
140
+ ### Discussion of Biases
141
+ [More Information Needed]
142
+ ### Other Known Limitations
143
+ [More Information Needed]
144
+ ## Additional Information
145
+ ### Dataset Curators
146
+ [More Information Needed]
147
+ ### Licensing Information
148
+ To respect the copyright of the underlying TAC KBP corpus, TACRED is released via the
149
+ Linguistic Data Consortium ([LDC License](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf)).
150
+ You can download TACRED from the [LDC TACRED webpage](https://catalog.ldc.upenn.edu/LDC2018T24).
151
+ If you are an LDC member, the access will be free; otherwise, an access fee of $25 is needed.
152
+ ### Citation Information
153
+ The original dataset:
154
+ ```
155
+ @inproceedings{zhang2017tacred,
156
+ author = {Zhang, Yuhao and Zhong, Victor and Chen, Danqi and Angeli, Gabor and Manning, Christopher D.},
157
+ booktitle = {Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017)},
158
+ title = {Position-aware Attention and Supervised Data Improve Slot Filling},
159
+ url = {https://nlp.stanford.edu/pubs/zhang2017tacred.pdf},
160
+ pages = {35--45},
161
+ year = {2017}
162
+ }
163
+ ```
164
+
165
+ For the revised version, please also cite:
166
+ ```
167
+ @inproceedings{alt-etal-2020-tacred,
168
+ title = "{TACRED} Revisited: A Thorough Evaluation of the {TACRED} Relation Extraction Task",
169
+ author = "Alt, Christoph and
170
+ Gabryszak, Aleksandra and
171
+ Hennig, Leonhard",
172
+ booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
173
+ month = jul,
174
+ year = "2020",
175
+ address = "Online",
176
+ publisher = "Association for Computational Linguistics",
177
+ url = "https://www.aclweb.org/anthology/2020.acl-main.142",
178
+ doi = "10.18653/v1/2020.acl-main.142",
179
+ pages = "1558--1569",
180
+ }
181
+ ```
182
+ ### Contributions
183
+ #Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.