File size: 820 Bytes
dcd93ac
 
 
 
84a3fbf
dcd93ac
 
f3f157e
dcd93ac
 
 
 
41dd085
 
 
dcd93ac
 
 
 
 
84a3fbf
dcd93ac
 
 
84a3fbf
 
41dd085
84a3fbf
 
 
dcd93ac
 
 
 
 
 
 
 
 
 
 
d109e5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
from datasets import Dataset, DatasetDict, concatenate_datasets
import os

def load_data(csv_file):
    df = pd.read_csv(csv_file)
    # Update the image_path column to include the full path
    df['label'] = df['label'].astype(int)
    dataset = Dataset.from_pandas(df)
    return dataset

def load_dataset():



    # Define CSV files
    train_csv = 'train_labels.csv'
    test_csv = 'test_labels.csv'
    
    # Load datasets
    train_dataset = load_data(train_csv)
    
    
    
    # Combine datasets for training
   

    test_dataset = load_data(test_csv)


    # Create DatasetDict
    dataset_dict = DatasetDict({
        'train': train_dataset,
        'test': test_dataset
    })
    
    return dataset_dict

if __name__ == "__main__":
    dataset = load_dataset()
    print(dataset)