DipakBundheliya commited on
Commit
ce63295
1 Parent(s): c599f82

Delete convert_text_for_ner.py

Browse files
Files changed (1) hide show
  1. convert_text_for_ner.py +0 -128
convert_text_for_ner.py DELETED
@@ -1,128 +0,0 @@
1
-
2
- import datasets
3
- # coding=utf-8
4
- # Copyright 2024 HuggingFace Datasets Authors.
5
- # Lint as: python3
6
- """The Shipping label Dataset."""
7
-
8
- logger = datasets.logging.get_logger(__name__)
9
-
10
-
11
- _CITATION = """
12
- """
13
-
14
- _DESCRIPTION = """
15
- The goal of this task is to provide a dataset for name entity recognition."""
16
-
17
- _URL = "https://raw.githubusercontent.com/SanghaviHarshPankajkumar/shipping_label_project/main/NER/data/"
18
- _TRAINING_FILE = "train.txt"
19
- _VAL_FILE = "val.txt"
20
- _TEST_FILE = "test.txt"
21
-
22
-
23
- class shipping_labels_Config(datasets.BuilderConfig):
24
- """Shipping Label Dataset for ner"""
25
-
26
- def __init__(self, **kwargs):
27
- """BuilderConfig for Shipping Label data.
28
- Args:
29
- **kwargs: keyword arguments forwarded to super.
30
- """
31
- super(shipping_labels_Config, self).__init__(**kwargs)
32
-
33
-
34
- class shiping_label_ner(datasets.GeneratorBasedBuilder):
35
- """Shipping Label Dataset for ner"""
36
-
37
- BUILDER_CONFIGS = [
38
- shipping_labels_Config(
39
- name="shipping_label_ner", version=datasets.Version("1.0.0"), description="Shipping Label Dataset for ner"
40
- ),
41
- ]
42
-
43
- def _info(self):
44
- return datasets.DatasetInfo(
45
- description=_DESCRIPTION,
46
- features=datasets.Features(
47
- {
48
- "id": datasets.Value("string"),
49
- "tokens": datasets.Sequence(datasets.Value("string")),
50
- "ner_tags": datasets.Sequence(
51
- datasets.features.ClassLabel(
52
- names=[
53
- "O",
54
- "B-GCNUM",
55
- "I-GCNUM",
56
- "B-BGNUM",
57
- "I-BGNUM",
58
- "B-DATE",
59
- "I-DATE",
60
- "B-ORG",
61
- "I-ORG",
62
- "B-LOCATION",
63
- "I-LOCATION",
64
- "B-NAME",
65
- "I-NAME",
66
- "B-BARCODE",
67
- "I-BARCODE",
68
- ]
69
- )
70
- ),
71
- }
72
- ),
73
- supervised_keys=None,
74
- citation=_CITATION,
75
- )
76
-
77
- def _split_generators(self, dl_manager):
78
- """Returns SplitGenerators."""
79
- urls_to_download = {
80
- "train": f"{_URL}{_TRAINING_FILE}",
81
- "test": f"{_URL}{_TEST_FILE}",
82
- "val": f"{_URL}{_VAL_FILE}",
83
- }
84
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
85
-
86
- return [
87
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
88
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
89
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
90
- ]
91
-
92
- def _generate_examples(self, filepath):
93
- logger.info("⏳ Generating examples from = %s", filepath)
94
- with open(filepath, encoding="utf-8") as f:
95
- current_tokens = []
96
- current_labels = []
97
- sentence_counter = 0
98
- for row in f:
99
- row = row.rstrip()
100
- if row:
101
- token, label = row.split(" ")
102
- current_tokens.append(token)
103
- current_labels.append(label)
104
- else:
105
- # New sentence
106
- if not current_tokens:
107
- # Consecutive empty lines will cause empty sentences
108
- continue
109
- assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
110
- sentence = (
111
- sentence_counter,
112
- {
113
- "id": str(sentence_counter),
114
- "tokens": current_tokens,
115
- "ner_tags": current_labels,
116
- },
117
- )
118
- sentence_counter += 1
119
- current_tokens = []
120
- current_labels = []
121
- yield sentence
122
- # Don't forget last sentence in dataset 🧐
123
- if current_tokens:
124
- yield sentence_counter, {
125
- "id": str(sentence_counter),
126
- "tokens": current_tokens,
127
- "ner_tags": current_labels,
128
- }