|
import pandas as pd
|
|
import openai
|
|
import logging
|
|
import time
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
API_BASE_URL = "https://llama.us.gaianet.network/v1"
|
|
MODEL_NAME = "llama"
|
|
API_KEY = "GAIA"
|
|
|
|
client = openai.OpenAI(base_url=API_BASE_URL, api_key=API_KEY)
|
|
|
|
def summarize_code(code, path):
|
|
try:
|
|
start_time = time.time()
|
|
response = client.chat.completions.create(
|
|
messages=[
|
|
{
|
|
"role": "system",
|
|
"content": "You are an expert software engineer. Your task is to analyze the provided code and generate a concise, coherent summary that captures the purpose, functionality, and key components of the code. Additionally, highlight any potential issues or areas for improvement."
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": f"Code from {path}:\n\n{code}",
|
|
}
|
|
],
|
|
model=MODEL_NAME,
|
|
stream=False,
|
|
)
|
|
logging.info(f"API call took {time.time() - start_time} seconds.")
|
|
return response.choices[0].message.content
|
|
except Exception as e:
|
|
logging.error(f"Error in summarizing code: {e}")
|
|
return "Error: Could not summarize"
|
|
|
|
|
|
def summarize_csv_content(input_csv_file, output_csv_file):
|
|
try:
|
|
df = pd.read_csv(input_csv_file)
|
|
if 'Content' not in df.columns or 'Path' not in df.columns:
|
|
raise ValueError("'Content' or 'Path' column not found in the input CSV file.")
|
|
|
|
logging.info("Starting summarization...")
|
|
df['Summary'] = df.apply(lambda row: summarize_code(row['Content'], row['Path']) if pd.notnull(row['Content']) else "", axis=1)
|
|
|
|
df.to_csv(output_csv_file, index=False)
|
|
logging.info(f"Summaries have been generated and saved to {output_csv_file}")
|
|
except Exception as e:
|
|
logging.error(f"Error processing CSV: {e}")
|
|
|
|
if __name__ == "__main__":
|
|
input_csv_file = '/home/aru/Desktop/Github_analyser/Output/main_repos/wasmedge_shorten.csv'
|
|
output_csv_file = '/home/aru/Desktop/Github_analyser/Output/summary/wasmedge_summary.csv'
|
|
|
|
summarize_csv_content(input_csv_file, output_csv_file)
|
|
|