import requests import csv import mimetypes from io import BytesIO from PIL import Image from surya.ocr import run_ocr from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor def get_github_contents(repo_url): parts = repo_url.rstrip('/').split('/') user = parts[-2] repo = parts[-1] api_url = f"https://api.github.com/repos/{user}/{repo}/contents/" response = requests.get(api_url) response.raise_for_status() return response.json() def process_contents(contents, paths=[], parent_path=""): langs = ["en"] det_processor, det_model = load_det_processor(), load_det_model() rec_model, rec_processor = load_rec_model(), load_rec_processor() for item in contents: path = parent_path + item['name'] if item['type'] == 'dir': dir_contents = requests.get(item['url']).json() process_contents(dir_contents, paths, path + "/") else: mime_type, _ = mimetypes.guess_type(item['name']) if mime_type and mime_type.split('/')[0] == 'image': image_content = requests.get(item['download_url']).content image = Image.open(BytesIO(image_content)) predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor) paths.append({"path": path, "content": ""}) return paths def write_to_csv(data, output_file): if data: with open(output_file, 'w', newline='', encoding='utf-8') as csvfile: fieldnames = ['path', 'content'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in data: writer.writerow(row) else: print("No data to write to CSV.") if __name__ == "__main__": repo_url = input("Enter GitHub repository URL: ") contents = get_github_contents(repo_url) paths = process_contents(contents) write_to_csv(paths, "repo_ocr.csv") print(f"CSV file 'repo_ocr.csv' generated successfully with {len(paths)} entries.")