import pandas as pd df = pd.read_csv('Output/summary/eth_md_summary.csv') def truncate_content(content, max_tokens=7000): words = content.split() return ' '.join(words[:max_tokens]) df['Content'] = df['Content'].apply(lambda x: truncate_content(x)) df['Summary and Q&A'] = df['Summary and Q&A'].apply(lambda x: truncate_content(x)) df.to_csv('Output/summary/eth_md_summary_trun.csv', index=False) ''' import pandas as pd df = pd.read_csv('input_file.csv') def split_content(row, max_words=5000): content = row['Content'] words = content.split() chunks = [words[i:i + max_words] for i in range(0, len(words), max_words)] return [{'Path': row['Path'], 'Content': ' '.join(chunk)} for chunk in chunks] new_rows = [] for index, row in df.iterrows(): new_rows.extend(split_content(row)) new_df = pd.DataFrame(new_rows) new_df.to_csv('output_file.csv', index=False) '''