import pandas as pd # Read the CSV, forcing it into a single column by specifying an unusual separator df = pd.read_csv(r'C:\Users\91745\OneDrive\Desktop\Github_analyser\output\local_repo\final_repo\llamaedge_repopack.csv', sep='\n', header=None) # Rename the column to 'Content' df.columns = ['Content'] # Define the word count function def count_words(text): if isinstance(text, str): return len(text.split()) else: return 0 # Apply the word count function and add the result as a new column df['Content_Word_Count'] = df['Content'].apply(count_words) # Write to a new CSV without headers df.to_csv('wasmedge_quickjs.csv', index=False, header=False) ''' import pandas as pd from transformers import AutoModel model = AutoModel.from_pretrained("Xenova/gpt-4") tokenizer = GPT2TokenizerFast.from_pretrained('Xenova/gpt-4') df = pd.read_csv('/home/aru/Desktop/Github_analyser/Output/summary/eth_md_summary.csv') def count_words(text): return len(text.split()) def count_tokens(text): tokens = tokenizer.encode(text) return len(tokens) df['Content_Word_Count'] = df['Content'].apply(count_words) df['Summary_QnA_Word_Count'] = df['Summary and Q&A'].apply(count_words) df['Content_Token_Count'] = df['Content'].apply(count_tokens) df['Summary_QnA_Token_Count'] = df['Summary and Q&A'].apply(count_tokens) df.to_csv('output_file.csv', index=False) '''