Francesco commited on
Commit
c91f414
1 Parent(s): faac726

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -28,19 +28,115 @@ dataset_info:
28
  '3': bodyunder
29
  '4': umpire
30
  '5': white-hat
31
- splits:
32
- - name: train
33
- num_bytes: 41061325.0
34
- num_examples: 673
35
- - name: validation
36
- num_bytes: 5814070.0
37
- num_examples: 96
38
- - name: test
39
- num_bytes: 10533490.0
40
- num_examples: 177
41
- download_size: 57124678
42
- dataset_size: 57408885.0
 
 
 
 
 
 
 
 
43
  ---
44
- # Dataset Card for "aerial-pool"
45
 
46
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  '3': bodyunder
29
  '4': umpire
30
  '5': white-hat
31
+ annotations_creators:
32
+ - crowdsourced
33
+ language_creators:
34
+ - found
35
+ language:
36
+ - en
37
+ license:
38
+ - cc
39
+ multilinguality:
40
+ - monolingual
41
+ size_categories:
42
+ - 1K<n<10K
43
+ source_datasets:
44
+ - original
45
+ task_categories:
46
+ - object-detection
47
+ task_ids: []
48
+ pretty_name: aerial-pool
49
+ tags:
50
+ - rf100
51
  ---
 
52
 
53
+ # Dataset Card for aerial-pool
54
+
55
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
56
+
57
+ ## Dataset Description
58
+
59
+ - **Homepage:** https://universe.roboflow.com/object-detection/aerial-pool
60
+ - **Point of Contact:** francesco.zuppichini@gmail.com
61
+
62
+ ### Dataset Summary
63
+
64
+ aerial-pool
65
+
66
+ ### Supported Tasks and Leaderboards
67
+
68
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
69
+
70
+ ### Languages
71
+
72
+ English
73
+
74
+ ## Dataset Structure
75
+
76
+ ### Data Instances
77
+
78
+ A data point comprises an image and its object annotations.
79
+
80
+ ```
81
+ {
82
+ 'image_id': 15,
83
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
84
+ 'width': 964043,
85
+ 'height': 640,
86
+ 'objects': {
87
+ 'id': [114, 115, 116, 117],
88
+ 'area': [3796, 1596, 152768, 81002],
89
+ 'bbox': [
90
+ [302.0, 109.0, 73.0, 52.0],
91
+ [810.0, 100.0, 57.0, 28.0],
92
+ [160.0, 31.0, 248.0, 616.0],
93
+ [741.0, 68.0, 202.0, 401.0]
94
+ ],
95
+ 'category': [4, 4, 0, 0]
96
+ }
97
+ }
98
+ ```
99
+
100
+ ### Data Fields
101
+
102
+ - `image`: the image id
103
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
104
+ - `width`: the image width
105
+ - `height`: the image height
106
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
107
+ - `id`: the annotation id
108
+ - `area`: the area of the bounding box
109
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
110
+ - `category`: the object's category.
111
+
112
+
113
+ #### Who are the annotators?
114
+
115
+ Annotators are Roboflow users
116
+
117
+ ## Additional Information
118
+
119
+ ### Licensing Information
120
+
121
+ See original homepage https://universe.roboflow.com/object-detection/aerial-pool
122
+
123
+ ### Citation Information
124
+
125
+ ```
126
+ @misc{ aerial-pool,
127
+ title = { aerial pool Dataset },
128
+ type = { Open Source Dataset },
129
+ author = { Roboflow 100 },
130
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-pool } },
131
+ url = { https://universe.roboflow.com/object-detection/aerial-pool },
132
+ journal = { Roboflow Universe },
133
+ publisher = { Roboflow },
134
+ year = { 2022 },
135
+ month = { nov },
136
+ note = { visited on 2023-03-29 },
137
+ }"
138
+ ```
139
+
140
+ ### Contributions
141
+
142
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.