Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -28,19 +28,115 @@ dataset_info:
|
|
28 |
'3': bodyunder
|
29 |
'4': umpire
|
30 |
'5': white-hat
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
---
|
44 |
-
# Dataset Card for "aerial-pool"
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
'3': bodyunder
|
29 |
'4': umpire
|
30 |
'5': white-hat
|
31 |
+
annotations_creators:
|
32 |
+
- crowdsourced
|
33 |
+
language_creators:
|
34 |
+
- found
|
35 |
+
language:
|
36 |
+
- en
|
37 |
+
license:
|
38 |
+
- cc
|
39 |
+
multilinguality:
|
40 |
+
- monolingual
|
41 |
+
size_categories:
|
42 |
+
- 1K<n<10K
|
43 |
+
source_datasets:
|
44 |
+
- original
|
45 |
+
task_categories:
|
46 |
+
- object-detection
|
47 |
+
task_ids: []
|
48 |
+
pretty_name: aerial-pool
|
49 |
+
tags:
|
50 |
+
- rf100
|
51 |
---
|
|
|
52 |
|
53 |
+
# Dataset Card for aerial-pool
|
54 |
+
|
55 |
+
** The original COCO dataset is stored at `dataset.tar.gz`**
|
56 |
+
|
57 |
+
## Dataset Description
|
58 |
+
|
59 |
+
- **Homepage:** https://universe.roboflow.com/object-detection/aerial-pool
|
60 |
+
- **Point of Contact:** francesco.zuppichini@gmail.com
|
61 |
+
|
62 |
+
### Dataset Summary
|
63 |
+
|
64 |
+
aerial-pool
|
65 |
+
|
66 |
+
### Supported Tasks and Leaderboards
|
67 |
+
|
68 |
+
- `object-detection`: The dataset can be used to train a model for Object Detection.
|
69 |
+
|
70 |
+
### Languages
|
71 |
+
|
72 |
+
English
|
73 |
+
|
74 |
+
## Dataset Structure
|
75 |
+
|
76 |
+
### Data Instances
|
77 |
+
|
78 |
+
A data point comprises an image and its object annotations.
|
79 |
+
|
80 |
+
```
|
81 |
+
{
|
82 |
+
'image_id': 15,
|
83 |
+
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
|
84 |
+
'width': 964043,
|
85 |
+
'height': 640,
|
86 |
+
'objects': {
|
87 |
+
'id': [114, 115, 116, 117],
|
88 |
+
'area': [3796, 1596, 152768, 81002],
|
89 |
+
'bbox': [
|
90 |
+
[302.0, 109.0, 73.0, 52.0],
|
91 |
+
[810.0, 100.0, 57.0, 28.0],
|
92 |
+
[160.0, 31.0, 248.0, 616.0],
|
93 |
+
[741.0, 68.0, 202.0, 401.0]
|
94 |
+
],
|
95 |
+
'category': [4, 4, 0, 0]
|
96 |
+
}
|
97 |
+
}
|
98 |
+
```
|
99 |
+
|
100 |
+
### Data Fields
|
101 |
+
|
102 |
+
- `image`: the image id
|
103 |
+
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
|
104 |
+
- `width`: the image width
|
105 |
+
- `height`: the image height
|
106 |
+
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
|
107 |
+
- `id`: the annotation id
|
108 |
+
- `area`: the area of the bounding box
|
109 |
+
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
|
110 |
+
- `category`: the object's category.
|
111 |
+
|
112 |
+
|
113 |
+
#### Who are the annotators?
|
114 |
+
|
115 |
+
Annotators are Roboflow users
|
116 |
+
|
117 |
+
## Additional Information
|
118 |
+
|
119 |
+
### Licensing Information
|
120 |
+
|
121 |
+
See original homepage https://universe.roboflow.com/object-detection/aerial-pool
|
122 |
+
|
123 |
+
### Citation Information
|
124 |
+
|
125 |
+
```
|
126 |
+
@misc{ aerial-pool,
|
127 |
+
title = { aerial pool Dataset },
|
128 |
+
type = { Open Source Dataset },
|
129 |
+
author = { Roboflow 100 },
|
130 |
+
howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-pool } },
|
131 |
+
url = { https://universe.roboflow.com/object-detection/aerial-pool },
|
132 |
+
journal = { Roboflow Universe },
|
133 |
+
publisher = { Roboflow },
|
134 |
+
year = { 2022 },
|
135 |
+
month = { nov },
|
136 |
+
note = { visited on 2023-03-29 },
|
137 |
+
}"
|
138 |
+
```
|
139 |
+
|
140 |
+
### Contributions
|
141 |
+
|
142 |
+
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|