Francesco commited on
Commit
29888d7
1 Parent(s): a54a421

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -42,19 +42,115 @@ dataset_info:
42
  '17': taki
43
  '18': tara baim
44
  '19': telapiya
45
- splits:
46
- - name: train
47
- num_bytes: 835150025.2
48
- num_examples: 14180
49
- - name: validation
50
- num_bytes: 70083961.644
51
- num_examples: 1202
52
- - name: test
53
- num_bytes: 182368659.628
54
- num_examples: 3116
55
- download_size: 1087619663
56
- dataset_size: 1087602646.4720001
 
 
 
 
 
 
 
 
57
  ---
58
- # Dataset Card for "fish-market-ggjso"
59
 
60
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  '17': taki
43
  '18': tara baim
44
  '19': telapiya
45
+ annotations_creators:
46
+ - crowdsourced
47
+ language_creators:
48
+ - found
49
+ language:
50
+ - en
51
+ license:
52
+ - cc
53
+ multilinguality:
54
+ - monolingual
55
+ size_categories:
56
+ - 1K<n<10K
57
+ source_datasets:
58
+ - original
59
+ task_categories:
60
+ - object-detection
61
+ task_ids: []
62
+ pretty_name: fish-market-ggjso
63
+ tags:
64
+ - rf100
65
  ---
 
66
 
67
+ # Dataset Card for fish-market-ggjso
68
+
69
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
70
+
71
+ ## Dataset Description
72
+
73
+ - **Homepage:** https://universe.roboflow.com/object-detection/fish-market-ggjso
74
+ - **Point of Contact:** francesco.zuppichini@gmail.com
75
+
76
+ ### Dataset Summary
77
+
78
+ fish-market-ggjso
79
+
80
+ ### Supported Tasks and Leaderboards
81
+
82
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
83
+
84
+ ### Languages
85
+
86
+ English
87
+
88
+ ## Dataset Structure
89
+
90
+ ### Data Instances
91
+
92
+ A data point comprises an image and its object annotations.
93
+
94
+ ```
95
+ {
96
+ 'image_id': 15,
97
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
98
+ 'width': 964043,
99
+ 'height': 640,
100
+ 'objects': {
101
+ 'id': [114, 115, 116, 117],
102
+ 'area': [3796, 1596, 152768, 81002],
103
+ 'bbox': [
104
+ [302.0, 109.0, 73.0, 52.0],
105
+ [810.0, 100.0, 57.0, 28.0],
106
+ [160.0, 31.0, 248.0, 616.0],
107
+ [741.0, 68.0, 202.0, 401.0]
108
+ ],
109
+ 'category': [4, 4, 0, 0]
110
+ }
111
+ }
112
+ ```
113
+
114
+ ### Data Fields
115
+
116
+ - `image`: the image id
117
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
118
+ - `width`: the image width
119
+ - `height`: the image height
120
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
121
+ - `id`: the annotation id
122
+ - `area`: the area of the bounding box
123
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
124
+ - `category`: the object's category.
125
+
126
+
127
+ #### Who are the annotators?
128
+
129
+ Annotators are Roboflow users
130
+
131
+ ## Additional Information
132
+
133
+ ### Licensing Information
134
+
135
+ See original homepage https://universe.roboflow.com/object-detection/fish-market-ggjso
136
+
137
+ ### Citation Information
138
+
139
+ ```
140
+ @misc{ fish-market-ggjso,
141
+ title = { fish market ggjso Dataset },
142
+ type = { Open Source Dataset },
143
+ author = { Roboflow 100 },
144
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/fish-market-ggjso } },
145
+ url = { https://universe.roboflow.com/object-detection/fish-market-ggjso },
146
+ journal = { Roboflow Universe },
147
+ publisher = { Roboflow },
148
+ year = { 2022 },
149
+ month = { nov },
150
+ note = { visited on 2023-03-29 },
151
+ }"
152
+ ```
153
+
154
+ ### Contributions
155
+
156
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.