import from S3
Browse files- mnist-text-small.py +174 -0
mnist-text-small.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""Compressed MNIST text dataset."""
|
3 |
+
|
4 |
+
from __future__ import absolute_import, division, print_function
|
5 |
+
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import math
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
|
14 |
+
_DESCRIPTION = """\
|
15 |
+
MNIST dataset adapted to a text-based representation.
|
16 |
+
|
17 |
+
*Modified images to be ~1/4 the original area.*
|
18 |
+
Done by taking a max pool.
|
19 |
+
|
20 |
+
This allows testing interpolation quality for Transformer-VAEs.
|
21 |
+
|
22 |
+
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM
|
23 |
+
|
24 |
+
Works by quantising each MNIST pixel into one of 64 characters.
|
25 |
+
Every sample has an up & down version to encourage the model to learn rotation invarient features.
|
26 |
+
|
27 |
+
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data.
|
28 |
+
|
29 |
+
Data format:
|
30 |
+
- text: (16 x 14 tokens, 224 tokens total): Textual representation of MNIST digit, for example:
|
31 |
+
```
|
32 |
+
00 down ! ! ! ! ! ! ! ! ! ! ! ! ! !
|
33 |
+
01 down ! ! ! ! ! ! ! ! ! ! ! ! ! !
|
34 |
+
02 down ! ! ! ! ! ! % % C L a ^ ! !
|
35 |
+
03 down ! ! ! - ` ` ` ` ` Y ` Q ! !
|
36 |
+
04 down ! ! ! % ` ` ` R ^ ! ! ! ! !
|
37 |
+
05 down ! ! ! ! $ G ` ! ! ! ! ! ! !
|
38 |
+
06 down ! ! ! ! ! # ` Y < ! ! ! ! !
|
39 |
+
07 down ! ! ! ! ! ! 5 ` ` F ! ! ! !
|
40 |
+
08 down ! ! ! ! ! ! ! % ` ` 1 ! ! !
|
41 |
+
09 down ! ! ! ! ! ! F ` ` ` ! ! ! !
|
42 |
+
10 down ! ! ! ! 1 ` ` ` ` 4 ! ! ! !
|
43 |
+
11 down ! ! L ` ` ` ` 5 ! ! ! ! ! !
|
44 |
+
12 down ! ! ` ` V B ! ! ! ! ! ! ! !
|
45 |
+
13 down ! ! ! ! ! ! ! ! ! ! ! ! ! !
|
46 |
+
```
|
47 |
+
- label: Just a number with the texts matching label.
|
48 |
+
|
49 |
+
"""
|
50 |
+
|
51 |
+
_CITATION = """\
|
52 |
+
@dataset{dataset,
|
53 |
+
author = {Fraser Greenlee},
|
54 |
+
year = {2021},
|
55 |
+
month = {1},
|
56 |
+
pages = {},
|
57 |
+
title = {MNIST small text dataset.},
|
58 |
+
doi = {}
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
|
62 |
+
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-small/train.json.zip"
|
63 |
+
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-small/test.json"
|
64 |
+
|
65 |
+
LABELS = list(range(10))
|
66 |
+
CUSTOM_METHODS = ['array_to_text', 'text_to_array']
|
67 |
+
IMG_SIZE = (16, 14)
|
68 |
+
|
69 |
+
|
70 |
+
class MnistTextSmall(datasets.GeneratorBasedBuilder):
|
71 |
+
"""MNIST represented by text."""
|
72 |
+
|
73 |
+
def as_dataset(self, *args, **kwargs):
|
74 |
+
f"""
|
75 |
+
Return a Dataset for the specified split.
|
76 |
+
|
77 |
+
Modified to add custom methods {CUSTOM_METHODS} to the dataset.
|
78 |
+
This allows rendering the text as images & vice versa.
|
79 |
+
"""
|
80 |
+
a_dataset = super().as_dataset(*args, **kwargs)
|
81 |
+
for method in CUSTOM_METHODS:
|
82 |
+
setattr(a_dataset, f'custom_{method}', getattr(self, method))
|
83 |
+
return a_dataset
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def array_to_text(pixels: np.array):
|
87 |
+
'''
|
88 |
+
Takes a 2D array of pixel brightnesses and converts them to text.
|
89 |
+
Uses 64 tokens to represent all brightness values.
|
90 |
+
'''
|
91 |
+
width = pixels.shape[0]
|
92 |
+
height = pixels.shape[1]
|
93 |
+
|
94 |
+
lines = []
|
95 |
+
|
96 |
+
for y in range(height):
|
97 |
+
split = ['%02d down' % y]
|
98 |
+
|
99 |
+
for x in range(width):
|
100 |
+
brightness = pixels[y, x]
|
101 |
+
|
102 |
+
mBrightness = math.floor(brightness * 64)
|
103 |
+
s = chr(mBrightness + 33)
|
104 |
+
|
105 |
+
split.append(s)
|
106 |
+
|
107 |
+
lines.append(' '.join(split))
|
108 |
+
|
109 |
+
reversed = []
|
110 |
+
for line in lines:
|
111 |
+
reversed.insert(0, (line.replace(' down ', ' up ', 1)))
|
112 |
+
|
113 |
+
return ['\n'.join(lines), '\n'.join(reversed)]
|
114 |
+
|
115 |
+
@staticmethod
|
116 |
+
def text_to_array(text: str):
|
117 |
+
'''
|
118 |
+
Takes a text sequences and tries to convert it into a 2D numpy array of brightnesses.
|
119 |
+
If parts of the text don't match the format they will be skipped.
|
120 |
+
'''
|
121 |
+
lines = text.split('\n')
|
122 |
+
pixels = np.zeros((IMG_SIZE[1], IMG_SIZE[0] - 2))
|
123 |
+
|
124 |
+
tokens = None
|
125 |
+
for y, line in enumerate(lines):
|
126 |
+
tokens = line.split(' ')
|
127 |
+
for i in range(2, min(IMG_SIZE[0], len(tokens))):
|
128 |
+
token = tokens[i]
|
129 |
+
if len(token) == 1:
|
130 |
+
tkn_v = (ord(token) - 33)
|
131 |
+
if tkn_v >= 0 and tkn_v <= 64:
|
132 |
+
pixels[y, i - 2] = (ord(token) - 33) / 64
|
133 |
+
|
134 |
+
if not lines:
|
135 |
+
return pixels
|
136 |
+
|
137 |
+
if tokens and len(tokens) > 1 and tokens[1] == 'up':
|
138 |
+
pixels = pixels[::-1]
|
139 |
+
|
140 |
+
return pixels
|
141 |
+
|
142 |
+
def _info(self):
|
143 |
+
return datasets.DatasetInfo(
|
144 |
+
description=_DESCRIPTION,
|
145 |
+
features=datasets.Features(
|
146 |
+
{
|
147 |
+
'label': datasets.features.ClassLabel(names=LABELS),
|
148 |
+
'text': datasets.Value("string"),
|
149 |
+
}
|
150 |
+
),
|
151 |
+
homepage="https://github.com/Fraser-Greenlee/my-huggingface-datasets",
|
152 |
+
citation=_CITATION,
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_generators(self, dl_manager):
|
156 |
+
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
157 |
+
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
158 |
+
return [
|
159 |
+
datasets.SplitGenerator(
|
160 |
+
name=datasets.Split.TRAIN,
|
161 |
+
gen_kwargs={"filepath": os.path.join(train_path, 'train.json')}
|
162 |
+
),
|
163 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
164 |
+
]
|
165 |
+
|
166 |
+
def _generate_examples(self, filepath):
|
167 |
+
"""Generate examples."""
|
168 |
+
with open(filepath, encoding="utf-8") as json_lines_file:
|
169 |
+
data = []
|
170 |
+
for line in json_lines_file:
|
171 |
+
data.append(json.loads(line))
|
172 |
+
|
173 |
+
for id_, row in enumerate(data):
|
174 |
+
yield id_, row
|