Datasets:

Modalities:
Text
Formats:
json
Languages:
Chinese
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,382 Bytes
89dad06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9c5ca
89dad06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9c5ca
89dad06
 
 
b405173
89dad06
 
 
8d9c5ca
89dad06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9c5ca
89dad06
 
 
8758037
89dad06
 
8758037
89dad06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee2154b
89dad06
 
 
 
 
 
 
 
8758037
89dad06
 
8758037
89dad06
 
 
 
 
 
 
 
 
 
 
 
 
ee2154b
89dad06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8758037
89dad06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8758037
89dad06
 
 
 
 
 
 
 
8d9c5ca
89dad06
 
 
 
 
 
 
 
8758037
89dad06
5ec3651
89dad06
 
 
 
 
 
 
 
8758037
5ec3651
89dad06
 
 
 
 
 
 
 
 
 
8758037
 
89dad06
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""The Chinese Medical Benchmark (CMB)"""

import csv
import os
import sys
import json
import io
import textwrap

import numpy as np

import datasets

_CMB_CITATION = """\
coming soon~
"""

_CMB_DESCRIPTION = """\

Chinese Medical Benchmark

"""

_DATASETS_FILE = "https://huggingface.co/datasets/FreedomIntelligence/CMB/resolve/main/CMB-datasets.zip"


class CMBConfig(datasets.BuilderConfig):
    """BuilderConfig for CMB"""

    def __init__(
            self,
            features,
            data_url,
            data_dir,
            citation,
            url,
            **kwargs,
    ):


        super(CMBConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.features = features
        self.data_url = data_url
        self.data_dir = data_dir
        self.citation = citation
        self.url = url


class CMB(datasets.GeneratorBasedBuilder):
    """The Chinese Medical Benchmark (CMB)"""

    BUILDER_CONFIGS = [
        CMBConfig(
            name="exam",
            description=textwrap.dedent(
                """\
            全方位多层次注入和测评模型医疗知识,包含 train val test 三个组成部分."""
            ),
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "exam_type": datasets.Value("string"),
                    "exam_class": datasets.Value("string"),
                    "exam_subject": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "question_type": datasets.Value("string"),
                    "option": datasets.Value("string"),
                    "answer": datasets.Value("string"),
                    "explanation": datasets.Value("string")

                }
            ),
            data_url=_DATASETS_FILE,
            data_dir="CMB-Exam",
            citation=textwrap.dedent(
                """\

            }"""
            ),
            url="https://github.com/FreedomIntelligence/CMB",
        ),
        CMBConfig(
            name="clin",
            description=textwrap.dedent(
                """\
            测评复杂临床问诊能力
            """
            ),
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "description": datasets.Value("string"),
                    "QA_pairs": datasets.Value("string")

                }
            ),

            data_url=_DATASETS_FILE,
            data_dir="CMB-Clin",
            citation=textwrap.dedent(
                """\

            }"""
            ),
            url="https://github.com/FreedomIntelligence/CMB",
        ),

    ]

    def _info(self):

        return datasets.DatasetInfo(
            description=_CMB_DESCRIPTION,
            features=self.config.features,
            homepage=self.config.url,
            citation=self.config.citation + "\n" + _CMB_CITATION,
        )

    def _split_generators(self, dl_manager):
        if self.config.name == "exam":
            data_file = dl_manager.extract(self.config.data_url)
            main_data_dir = os.path.join(data_file, self.config.data_dir)

            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "data_file": os.path.join(main_data_dir, 'CMB-train', 'CMB-train-merge.json'),
                        "split": "train",
                    },
                )
                ,
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "data_file": os.path.join(main_data_dir, 'CMB-val', 'CMB-val-merge.json'),
                        "split": "val",
                    },
                )
                ,
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "data_file": os.path.join(main_data_dir, 'CMB-test', 'CMB-test-choice-question-merge.json'),
                        "split": "test",
                    },
                )
            ]

        if self.config.name == "clin":
            data_file = dl_manager.extract(self.config.data_url)
            main_data_dir = os.path.join(data_file, self.config.data_dir)
            return [


                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "data_file": os.path.join(main_data_dir, 'CMB-Clin-qa.json'),
                        "split": "test",
                    },
                )
            ]


    def _generate_examples(self, data_file, split, mrpc_files=None):

        if self.config.name == 'exam':

            examples = json.loads(io.open(data_file, 'r', encoding='utf-8').read())

            for idx in range(len(examples)):
                vals = examples[idx]
                vals['explanation'] = vals.get('explanation','')
                vals['answer'] = vals.get('answer','')
                vals['id'] = vals.get('id',idx)
                yield idx, vals

        if self.config.name == 'clin':
            examples = json.loads(io.open(data_file, 'r', encoding='utf-8').read())
            for idx in range(len(examples)):
                vals = examples[idx]
                vals['id'] = vals.get('id',idx)
                yield idx, vals



if __name__ == '__main__':
    from datasets import load_dataset

    dataset = load_dataset('CMB.py', 'exam')
    # dataset = load_dataset('CMB.py', 'clin')

    print()