File size: 7,623 Bytes
25bfee2 d32cc51 25bfee2 d32cc51 03b1a85 25bfee2 d32cc51 002de1f d32cc51 002de1f d32cc51 002de1f 54013c1 25bfee2 9d0d843 25bfee2 b1809b6 25bfee2 0cf4a82 25bfee2 d32cc51 25bfee2 9d0d843 b1809b6 25bfee2 9d0d843 b1809b6 9d0d843 25bfee2 d6b4ca4 25bfee2 002de1f 25bfee2 54013c1 25bfee2 54013c1 25bfee2 d32cc51 25bfee2 d32cc51 25bfee2 002de1f 25bfee2 9d0d843 b1809b6 03b1a85 9d0d843 d32cc51 b1809b6 d32cc51 0cf4a82 9d0d843 d32cc51 c9583e3 d32cc51 9d0d843 25bfee2 d32cc51 25bfee2 d32cc51 25bfee2 d32cc51 25bfee2 d32cc51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
_REPO_NAME = 'Fsoft-AIC/the-vault'
_LANG_TO_TEXT = {
"python": "python",
"c": "c",
"c#": "c_sharp",
"c++": "cpp",
"go": "go",
"Java": "java",
"javascript": "javascript",
"php": "php",
"ruby": "ruby",
"rust": "rust",
}
_DESCRIPTION = """The Vault"""
_HOMEPAGE = "https://huggingface.co/Fsoft-AIC"
_TEXT_TO_LANG = {}
for lang in _LANG_TO_TEXT:
_TEXT_TO_LANG[_LANG_TO_TEXT[lang]] = lang
_LANG_CONFIGS = ["all"] + list(_TEXT_TO_LANG.keys())
num_shard_split = {
'train/small/python': 1,
'train/medium/python': 1,
'train/small/c': 1,
'train/medium/c': 1
}
_SPLIT_CONFIGS = ["all", "train/small", "train/medium"]
class TheVaultFunctionConfig(datasets.BuilderConfig):
"""BuilderConfig for The Vault dataset."""
def __init__(self, *args, languages=["all"], split_set= ["all"], **kwargs):
"""BuilderConfig for the GitHub Code dataset.
Args:
split_set (:obj:`List[str]`): List of split set to load.
languages (:obj:`List[str]`): List of languages to load.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name= "+".join([split.replace("/", "_") for split in split_set]) + "-" + "+".join(languages),
**kwargs,
)
languages = set([lang.lower() for lang in languages])
split_set = set([split.lower() for split in split_set])
assert all([language in _LANG_CONFIGS for language in languages]), f"languages {languages} contains language not in {_LANG_CONFIGS}."
assert all([split in _SPLIT_CONFIGS for split in split_set]), f"split_set {split_set} contains element not in {_SPLIT_CONFIGS}."
if "all" in split_set:
assert len(split_set)==1, f"Passed 'all' together with other split sets. {split_set}"
elif "train" in split_set:
for split in split_set:
if "train" in split and split != "train":
raise f"Split set 'train' already contains '{split}'. Please only include one."
if "all" in languages:
assert len(languages)==1, f"Passed 'all' together with other languages. {languages}"
# self.filter_languages = False
# else:
# self.filter_languages = True
self.languages = set(languages)
self.split_set= split_set
class TheVaultFunction(datasets.GeneratorBasedBuilder):
"""The Vault dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = TheVaultFunctionConfig
BUILDER_CONFIGS = [TheVaultFunctionConfig(languages=[lang], split_set=[spl]) for lang in _LANG_CONFIGS for spl in _SPLIT_CONFIGS]
DEFAULT_CONFIG_NAME = "all-all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
# "original_string": datasets.Value("string"),
"original_docstring": datasets.Value("string"),
"code": datasets.Value("string"),
"docstring": datasets.Value("string"),
"code_tokens": datasets.Value("string"),
"docstring_tokens": datasets.Value("string"),
"short_docstring": datasets.Value("string"),
"short_docstring_tokens": datasets.Value("string"),
"comment": datasets.Value("string"),
"return_type": datasets.Value("string"),
"identifier": datasets.Value("string"),
"repo": datasets.Value("string"),
"path": datasets.Value("string"),
"language": datasets.Value("string"),
}),
supervised_keys=None,
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
print(self.config.split_set)
generators = []
split_set = list(self.config.split_set)
languages = list(self.config.languages)
if "all" in split_set:
split_set = _SPLIT_CONFIGS[1:]
if "train" in split_set:
split_set.remove('train')
split_set.extend(["train/small", "train/medium"])
if "all" in languages:
languages = _LANG_CONFIGS[1:]
for split in split_set:
for language in languages:
num_shards = num_shard_split[f"{split}/{language}"]
data_files = [
f"data/{split}/{language}-{_index:05d}-of-{num_shards:05d}.parquet"
for _index in range(num_shards)
]
files = dl_manager.download(data_files)
generators.append(
datasets.SplitGenerator(
name=split.replace("/", "_"),
gen_kwargs={
"files": files,
},
),
)
return generators
def _generate_examples(self, files):
key = 0
for file_idx, file in enumerate(files):
with open(file, "rb") as f:
parquet_file = pq.ParquetFile(f)
for batch_idx, record_batch in enumerate(parquet_file.iter_batches(batch_size=10_000)):
pa_table = pa.Table.from_batches([record_batch])
for row_index in range(pa_table.num_rows):
row = pa_table.slice(row_index, 1).to_pydict()
# lang = row['language'][0]
# if self.config.filter_languages and not lang in self.config.languages:
# continue
yield key, {
"repo": row['repo'][0],
"path": row['path'][0],
"language": row['language'][0],
"identifier": row['identifier'][0],
"return_type": row['return_type'][0],
# "original_string": row['original_string'][0],
"original_docstring": row['original_docstring'][0],
"docstring": row['docstring'][0],
"docstring_tokens": row['docstring_tokens'][0],
"code": row['code'][0],
"code_tokens": row['code_tokens'][0],
"short_docstring": row['short_docstring'][0],
"short_docstring_tokens": row['short_docstring_tokens'][0],
"comment": row['comment'][0]
}
key += 1
# def lang_from_name(name):
# for extension in _EXTENSION_TO_LANG:
# if name.endswith(extension):
# return _EXTENSION_TO_LANG[extension] |