File size: 11,487 Bytes
0c72583 36680c8 0c72583 9ddbcc3 e1e0cfb 0c72583 36680c8 0c72583 a1fdc0c 29e66d7 a1fdc0c 0c72583 f201292 2b8d7a2 f201292 2b8d7a2 0c72583 9ddbcc3 0c72583 5d75097 0c72583 a43e67d 0c72583 a43e67d 0c72583 a6fb909 0c72583 0d5862e 0c72583 10b24c3 0c72583 10b24c3 a6fb909 10b24c3 0c72583 10b24c3 0c72583 8bdeb79 edc339a 02421de 0c72583 d02771e 0c72583 02421de b3495f4 54142b6 0c72583 fb124e7 0c72583 fb124e7 0c72583 062e4ba fb124e7 0c72583 38896f7 24c171a 38896f7 1252c62 0c72583 654abad 10b24c3 0c72583 a6fb909 57a2830 0c72583 9b5b4f3 0c72583 c459c15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
language:
- code
- en
multilinguality:
- multiprogramming languages
task_categories:
- text-generation
license: mit
dataset_info:
features:
- name: identifier
dtype: string
- name: return_type
dtype: string
- name: repo
dtype: string
- name: path
dtype: string
- name: language
dtype: string
- name: code
dtype: string
- name: code_tokens
dtype: string
- name: original_docstring
dtype: string
- name: comment
dtype: string
- name: docstring_tokens
dtype: string
- name: docstring
dtype: string
- name: original_string
dtype: string
pretty_name: The Vault Function
viewer: false
---
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Statistics](#dataset-statistics)
- [Usage](#usage)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault)
- **Paper:** [The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation](https://arxiv.org/abs/2305.06156)
- **Contact:** support.ailab@fpt.com
- **Website:** https://www.fpt-aicenter.com/ai-residency/
<p align="center">
<img src="https://raw.githubusercontent.com/FSoft-AI4Code/TheVault/main/assets/the-vault-4-logo-png.png" width="300px" alt="logo">
</p>
<div align="center">
# The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
</div>
## Dataset Summary
The Vault is a multilingual code-text dataset with over 34 million pairs ìn function-level covering 10 popular programming languages. It is the largest corpus containing parallel code-text data. By building upon [The Stack](https://huggingface.co/datasets/bigcode/the-stack), a massive raw code sample collection, the Vault offers a comprehensive and clean resource for advancing research in code understanding and generation. It provides a high-quality dataset that includes code-text pairs at multiple levels, such as class and inline-level, in addition to the function level. The Vault can serve many purposes at multiple levels.
## Supported Tasks
The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks related to code understanding and geneartion can be constructed using The Vault such as *code summarization*, *text-to-code generation* and *code search*.
## Languages
The natural language text (docstring) is in English.
10 programming languages are supported in The Vault: `Python`, `Java`, `JavaScript`, `PHP`, `C`, `C#`, `C++`, `Go`, `Ruby`, `Rust`
## Dataset Structure
### Data Instances
```
{
"hexsha": "5c47f0b4c173a8fd03e4e633d9b3dd8211e67ad0",
"repo": "neumanna94/beepboop",
"path": "js/scripts.js",
"license": [
"MIT"
],
"language": "JavaScript",
"identifier": "beepBoopSelector",
"return_type": "<not_specific>",
"original_string": "function beepBoopSelector(inputString, bbFunction){\n if(bbFunction==1){\n return beepBoop(inputString);\n } else if(bbFunction==2){\n return beepBoop2(inputString);\n } else if(bbFunction==3){\n return beepBoop3(inputString);\n } else {\n }\n}",
"original_docstring": "//Determines what beepBoop function to use",
"docstring": "Determines what beepBoop function to use",
"docstring_tokens": [
"Determines",
"what",
"beepBoop",
"function",
"to",
"use"
],
"code": "function beepBoopSelector(inputString, bbFunction){\n if(bbFunction==1){\n return beepBoop(inputString);\n } else if(bbFunction==2){\n return beepBoop2(inputString);\n } else if(bbFunction==3){\n return beepBoop3(inputString);\n } else {\n }\n}",
"code_tokens": [
"function",
"beepBoopSelector",
"(",
"inputString",
",",
"bbFunction",
")",
"{",
"if",
"(",
"bbFunction",
"==",
"1",
")",
"{",
"return",
"beepBoop",
"(",
"inputString",
")",
";",
"}",
"else",
"if",
"(",
"bbFunction",
"==",
"2",
")",
"{",
"return",
"beepBoop2",
"(",
"inputString",
")",
";",
"}",
"else",
"if",
"(",
"bbFunction",
"==",
"3",
")",
"{",
"return",
"beepBoop3",
"(",
"inputString",
")",
";",
"}",
"else",
"{",
"}",
"}"
],
"short_docstring": "Determines what beepBoop function to use",
"short_docstring_tokens": [
"Determines",
"what",
"beepBoop",
"function",
"to",
"use"
],
"comment": [],
"parameters": [
{
"param": "inputString",
"type": null
},
{
"param": "bbFunction",
"type": null
}
],
"docstring_params": {
"returns": [],
"raises": [],
"params": [
{
"identifier": "inputString",
"type": null,
"docstring": null,
"docstring_tokens": [],
"default": null,
"is_optional": null
},
{
"identifier": "bbFunction",
"type": null,
"docstring": null,
"docstring_tokens": [],
"default": null,
"is_optional": null
}
],
"outlier_params": [],
"others": []
}
}
```
### Data Fields
Data fields for function level:
- **hexsha** (string): the unique git hash of file
- **repo** (string): the owner/repo
- **path** (string): the full path to the original file
- **license** (list): licenses in the repo
- **language** (string): the programming language
- **identifier** (string): the function or method name
- **return_type** (string): the type returned by the function
- **original_string** (string): original version of function/class node
- **original_docstring** (string): the raw string before tokenization or parsing
- **code** (string): the part of the original that is code
- **code_tokens** (list): tokenized version of `code`
- **short_docstring** (string): short, brief summarization (first line of the docstring)
- **short_docstring_tokens** (list): tokenized version of `short_docstring
- **docstring** (string): the top-level comment or docstring (docstring version without param’s doc, return, exception fields, etc)
- **docstring_tokens** (list): tokenized version of docstring
- **comment** (list): list of comments (line) inside the function/class
- **parameters** (list): List of parameters and its type (type can be None)
- **docstring_params** (dict): Dictionary of the parsed information from docstring
See [here](https://github.com/FSoft-AI4Code/TheVault/blob/main/data/README.md) for more details and examples.
### Data Splits
In this repo, The Vault is divided into 5 subsets, where three training versions are split based on size of the full training set, and the remains are validation set and test set (approximate 20,000 samples in each). The statistic for languages in each split set is illustrated in the following section.
Before split, the dataset is deduplicated. There are 3 versions of training set that are small (5%), medium (20%) and large (100%).
## Dataset Statistics
- Compare to other benchmarks
| Dataset | #Language | #Code-text pair |
|:--------------------------|----------:|-----------------:|
| PyMT5 | 1 | ≈ 7,700,000 |
| CoDesc | 1 | 4,211,516 |
| CodeSearchNet | 6 | 2,326,976 |
| CodeSearchNet (CodeXGLUE) | 6 | 1,005,474 |
| Deepcom | 1 | 424,028 |
| CONCODE | 1 | 2,184,310 |
| Funcom | 1 | 2,149,121 |
| CodeT5 | 8 | 3,158,313 |
| **The Vault** | **10** | **34,098,775** |
- Statistic for split sets
| | train/small | train/medium | train/full | validation | test | total |
|:-----------|------------:|-------------:|-----------:|-----------:|-------:|--------------:|
|Python | 370,657 | 1,952,110 | 7,772,647 | 30,992 | 21,652 | 7,825,291 |
|Java | 351,213 | 1,612,366 | 6,629,193 | 22,677 | 15,552 | 6,667,422 |
|JavaScript | 82,931 | 404,729 | 1,640,416 | 22,044 | 21,108 | 1,683,568 |
|PHP | 236,638 | 1,155,476 | 4,656,371 | 21,375 | 19,010 | 4,696,756 |
|C | 105,978 | 381,207 | 1,639,319 | 27,525 | 19,122 | 1,685,966 |
|C# | 141,090 | 783,166 | 3,305,891 | 24,787 | 19,638 | 3,350,316 |
|C++ | 87,420 | 410,907 | 1,671,268 | 20,011 | 18,169 | 1,709,448 |
|Go | 267,535 | 1,319,547 | 5,109,020 | 19,102 | 25,314 | 5,153,436 |
|Ruby | 23,921 | 112,574 | 424,339 | 17,338 | 19,908 | 461,585 |
|Rust | 35,367 | 224,015 | 825,130 | 16,716 | 23,141 | 864,987 |
|TOTAL | 1,702,750 | 8,356,097 |33,673,594 |222,567 |202,614 |**34,098,775** |
## Usage
You can load The Vault dataset using datasets library: ```pip install datasets```
```python
from datasets import load_dataset
# Load full function level dataset (40M samples)
dataset = load_dataset("Fsoft-AIC/the-vault-function")
# Load function level train/validation/test set
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"])
# Load "small" (or "medium", "full") version of function level training set
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train/small"])
# specific language (e.g. Python)
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"], languages=['Python'])
# dataset streaming
data = load_dataset("Fsoft-AIC/the-vault-function", split_set= ["train"], streaming= True)
for sample in iter(data['train']):
print(sample)
```
A back up dataset can be downloaded in azure storage. See [Download The Vault from Azure blob storage](https://github.com/FSoft-AI4Code/TheVault#download-via-link).
## Additional information
### Licensing Information
MIT License
### Citation Information
```
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}
```
### Contributions
This dataset is developed by [FSOFT AI4Code team](https://github.com/FSoft-AI4Code). |