Datasets:

ArXiv:
License:
File size: 14,504 Bytes
25bfee2
 
 
 
 
 
b1c8a8d
 
daa61b9
25bfee2
b1c8a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32cc51
 
 
6bb305c
 
 
 
 
 
 
 
b1c8a8d
 
25bfee2
d32cc51
 
03b1a85
25bfee2
002de1f
1c3d0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb305c
002de1f
54013c1
25bfee2
 
9d0d843
dd46d4f
25bfee2
b1809b6
25bfee2
 
 
 
 
6bb305c
25bfee2
 
 
d32cc51
 
25bfee2
9d0d843
b1809b6
6bb305c
9d0d843
 
6bb305c
b1809b6
6bb305c
 
9d0d843
25bfee2
 
6bb305c
 
25bfee2
6bb305c
 
25bfee2
 
54013c1
25bfee2
 
6bb305c
25bfee2
54013c1
 
25bfee2
 
 
 
 
 
d32cc51
6bb305c
8248680
 
2aef2c4
8248680
 
 
1c3d0ef
8248680
 
2aef2c4
8248680
2aef2c4
8248680
2aef2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb305c
2aef2c4
 
 
 
 
 
 
 
 
6bb305c
2aef2c4
 
 
 
 
 
 
 
 
 
 
 
25bfee2
 
 
b1c8a8d
 
25bfee2
 
 
 
9d0d843
03b1a85
9d0d843
6bb305c
b1809b6
 
 
53ac333
d32cc51
 
 
0cf4a82
6bb305c
9d0d843
2cd1240
d32cc51
c9583e3
d32cc51
 
 
 
 
2cd1240
 
6bb305c
 
 
 
9ff26ff
 
6bb305c
9ff26ff
 
 
 
 
 
6bb305c
 
9ff26ff
 
9d0d843
25bfee2
 
 
 
 
 
 
 
 
 
 
 
6bb305c
d32cc51
 
21d0652
d32cc51
 
 
1c3d0ef
d32cc51
 
 
 
 
 
 
2aef2c4
 
 
25bfee2
aa36ffa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os

import pyarrow as pa
import pyarrow.parquet as pq
import datasets


# Meta infomation
_REPO_NAME = 'Fsoft-AIC/the-vault-function'

_DESCRIPTION = """The Vault is a multilingual code-text dataset with over 40 million pairs covering 10 popular programming languages. 
It is the largest corpus containing parallel code-text data. By building upon The Stack, a massive raw code sample collection, 
the Vault offers a comprehensive and clean resource for advancing research in code understanding and generation. It provides a 
high-quality dataset that includes code-text pairs at multiple levels, such as class and inline-level, in addition to the function level. 
The Vault can serve many purposes at multiple levels."""

_HOMEPAGE = "https://huggingface.co/Fsoft-AIC"
_LICENSE = "MIT License"
_CITATION = """
@article{manh2023vault,
  title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
  author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
  journal={arXiv preprint arXiv:2305.06156},
  year={2023}
}
"""
###


_LANG_TO_TEXT = {
    "python": "python",
    "c": "c",
    "c#": "c_sharp",
    "c++": "cpp",
    "go": "go",
    "Java": "java",
    "javascript": "javascript",
    "php": "php",
    "ruby": "ruby",
    "rust": "rust",
}       
_LANG_CONFIGS = ["all"] + list(_LANG_TO_TEXT.keys())

_TEXT_TO_LANG = {}
for lang in _LANG_TO_TEXT:
    _TEXT_TO_LANG[_LANG_TO_TEXT[lang]] = lang

num_shard_split = {
    "train/small/ruby": 1,
    "train/small/c": 1,
    "train/small/c_sharp": 1,
    "train/small/cpp": 1,
    "train/small/go": 1,
    "train/small/java": 2,
    "train/small/javascript": 1,
    "train/small/php": 1,
    "train/small/python": 2,
    "train/small/rust": 1,

    "train/medium/c": 2,
    "train/medium/c_sharp": 3,
    "train/medium/cpp": 2,
    "train/medium/go": 4,
    "train/medium/java": 6,
    "train/medium/javascript": 2,
    "train/medium/php": 4,
    "train/medium/python": 9,
    "train/medium/ruby": 1,
    "train/medium/rust": 1,

    "train/full/c": 7,
    "train/full/c_sharp": 12,
    "train/full/cpp": 7,
    "train/full/go": 13,
    "train/full/java": 24,
    "train/full/javascript": 7,
    "train/full/php": 13,
    "train/full/python": 9,
    "train/full/ruby": 1,
    "train/full/rust": 1,

    "validation/ruby": 1,
    "validation/c": 1,
    "validation/c_sharp": 1,
    "validation/cpp": 1,
    "validation/go": 1,
    "validation/java": 1,
    "validation/javascript": 1,
    "validation/php": 1,
    "validation/python": 1,
    "validation/rust": 1,

    "test/ruby": 1,
    "test/c": 1,
    "test/c_sharp": 1,
    "test/cpp": 1,
    "test/go": 1,
    "test/java": 1,
    "test/javascript": 1,
    "test/php": 1,
    "test/python": 1,
    "test/rust": 1

}
_SPLIT_CONFIGS = ["all", "train", "train/small", "train/medium", "train/full", "validation", "test"]

class TheVaultFunctionConfig(datasets.BuilderConfig):
    """BuilderConfig for The Vault dataset."""

    def __init__(self, *args, languages=["all"], split_set= ["all"], **kwargs):
        """BuilderConfig for the The Vault dataset.
        Args:
            split_set (:obj:`List[str]`): List of split set to load.
            languages (:obj:`List[str]`): List of languages to load.
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name= "+".join([split.replace("/", "_") for split in split_set]) + "-" + "+".join([_LANG_TO_TEXT[lang] for lang in languages]),
            **kwargs,
        )
        
        languages = set([lang.lower() for lang in languages])
        split_set = set([split.lower() for split in split_set]) 
        
        assert all([language in _LANG_CONFIGS for language in languages]), f"languages {languages} contains language not in {_LANG_CONFIGS}."
        assert all([split in _SPLIT_CONFIGS for split in split_set]), f"split_set {split_set} contains element not in {_SPLIT_CONFIGS}."

        if "all" in split_set:
            assert len(split_set)==1, f"Passed 'all' together with other split sets. {split_set}"
        elif "train" in split_set or "train/full" in split_set:
            for split in split_set:
                if ("train" in split and split != "train") or ("train" in split and split != "train/full"):
                    raise ValueError(f"Split set 'train' (or 'train/full) already contains '{split}'. Please only include one.")

        if "all" in languages:
            assert len(languages)==1, f"Passed 'all' together with other languages. {languages}"
        else:
            languages = [_LANG_TO_TEXT[lang] for lang in languages] # Convert to text name
        
        self.languages = list(languages)
        self.split_set= list(split_set)


class TheVaultFunction(datasets.GeneratorBasedBuilder):
    """The Vault dataset."""

    VERSION = datasets.Version("1.0.0")
    
    BUILDER_CONFIG_CLASS = TheVaultFunctionConfig
    BUILDER_CONFIGS = [TheVaultFunctionConfig(languages=[lang], split_set=[spl]) for lang in _LANG_CONFIGS for spl in _SPLIT_CONFIGS]
    DEFAULT_CONFIG_NAME = "all-all"

    
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                                            "hexsha": datasets.Value("string"),
                                            "repo": datasets.Value("string"),
                                            "path": datasets.Value("string"), 
                                            "license": datasets.Sequence(datasets.Value("string")),
                                            "language": datasets.Value("string"),
                                            "identifier": datasets.Value("string"),
                                            "return_type": datasets.Value("string"),
                                            "original_string": datasets.Value("string"),
                                            "original_docstring": datasets.Value("string"),
                                            "docstring": datasets.Value("string"),
                                            "docstring_tokens": datasets.Sequence(datasets.Value("string")),
                                            "code": datasets.Value("string"),
                                            "code_tokens": datasets.Sequence(datasets.Value("string")),
                                            "short_docstring": datasets.Value("string"),
                                            "short_docstring_tokens": datasets.Sequence(datasets.Value("string")),
                                            "comment": datasets.Sequence(datasets.Value("string")),
                                            "parameters": [
                                                {
                                                    "param": datasets.Value("string"),
                                                    "type": datasets.Value("string"),
                                                }
                                            ],
                                            "docstring_params": [
                                                {
                                                    "returns": [
                                                        {
                                                            "docstring": datasets.Value("string"),
                                                            "docstring_tokens": datasets.Sequence(datasets.Value("string")),
                                                            "type": datasets.Value("string")
                                                        }
                                                    ],
                                                    "raises": [
                                                        {
                                                            "docstring": datasets.Value("string"),
                                                            "docstring_tokens": datasets.Sequence(datasets.Value("string")),
                                                            "type": datasets.Value("string")
                                                        }
                                                    ],
                                                    "params": [
                                                        {
                                                            "identifier": datasets.Value("string"),
                                                            "type": datasets.Value("string"),
                                                            "docstring": datasets.Value("string"),
                                                            "docstring_tokens": datasets.Sequence(datasets.Value("string")),
                                                            "default": datasets.Value("string"),
                                                            "is_optional": datasets.Value("bool")
                                                        }
                                                    ],
                                                    "outlier_params": [
                                                        {
                                                            "identifier": datasets.Value("string"),
                                                            "type": datasets.Value("string"),
                                                            "docstring": datasets.Value("string"),
                                                            "docstring_tokens": datasets.Sequence(datasets.Value("string")),
                                                            "default": datasets.Value("string"),
                                                            "is_optional": datasets.Value("bool")
                                                        }
                                                    ],
                                                    "others": [
                                                        {
                                                            "identifier": datasets.Value("string"),
                                                            "docstring": datasets.Value("string"),
                                                            "docstring_tokens": datasets.Sequence(datasets.Value("string"))
                                                        }
                                                    ]
                                                }
                                            ],
                                        }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            
        )

    def _split_generators(self, dl_manager):
        generators = []

        if "all" in split_set:
            split_set = ["train/full", "validation", "test"]

        if "train" in split_set:
            split_set.remove('train')
            split_set  = ["train/full"] + split_set
        
        if "all" in languages:
            languages = _LANG_CONFIGS[1:]

        # train_split_files = []
        for split in split_set:
            split_files = []
            for language in languages:
                num_shards = num_shard_split[f"{split}/{language}"]
                data_files = [
                    f"data/{split}/{language}-{_index:05d}-of-{num_shards:05d}.parquet"
                    for _index in range(num_shards)
                ]
                files = dl_manager.download(data_files)
                split_files.extend(files)

            # if load_full_train and "train" in split:
            #     train_split_files.extend(split_files)
            # else:

                generators.append(
                    datasets.SplitGenerator(
                        name="train" if split == "train/full" else split.replace("/", "_"),
                        gen_kwargs={
                            "files": split_files,
                        },
                    ),
                )
                
        # if load_full_train and train_split_files:
        #     generators = [datasets.SplitGenerator(name="train", gen_kwargs={"files": train_split_files})] + generators


        return generators

    def _generate_examples(self, files):
        key = 0
        for file_idx, file in enumerate(files):
            with open(file, "rb") as f:
                parquet_file = pq.ParquetFile(f)
                for batch_idx, record_batch in enumerate(parquet_file.iter_batches(batch_size=10_000)):
                    pa_table = pa.Table.from_batches([record_batch])
                    for row_index in range(pa_table.num_rows):
                        row = pa_table.slice(row_index, 1).to_pydict()
                        
                        yield key, {
                                        "hexsha": row['hexsha'][0],
                                        "repo": row['repo'][0],
                                        "path": row['path'][0], 
                                        "license": row['license'][0], 
                                        "language": row['language'][0],
                                        "identifier": row['identifier'][0],
                                        "return_type": row['return_type'][0],
                                        "original_string": row['original_string'][0],
                                        "original_docstring": row['original_docstring'][0],
                                        "docstring": row['docstring'][0],
                                        "docstring_tokens": row['docstring_tokens'][0],
                                        "code": row['code'][0],
                                        "code_tokens": row['code_tokens'][0],
                                        "short_docstring": row['short_docstring'][0],
                                        "short_docstring_tokens": row['short_docstring_tokens'][0],
                                        "comment": row['comment'][0],
                                        "parameters": row['parameters'][0],
                                        "docstring_params": row['docstring_params'][0],
                                    } 
                        key += 1