Datasets:

ArXiv:
License:
the-vault-function / README.md
NamCyan's picture
Update README.md
5c9419e
|
raw
history blame
8.56 kB
---
language:
- code
- en
multilinguality:
- multiprogramming languages
task_categories:
- text-generation
dataset_info:
features:
- name: identifier
dtype: string
- name: return_type
dtype: string
- name: repo
dtype: string
- name: path
dtype: string
- name: language
dtype: string
- name: code
dtype: string
- name: code_tokens
dtype: string
- name: original_docstring
dtype: string
- name: comment
dtype: string
- name: docstring_tokens
dtype: string
- name: docstring
dtype: string
- name: original_string
dtype: string
splits:
- name: python
num_bytes: 30797754227
num_examples: 9893858
- name: java
num_bytes: 23130202517
num_examples: 7886299
- name: javascript
num_bytes: 6833869001
num_examples: 2562158
- name: php
num_bytes: 13072500520
num_examples: 5455989
- name: c_sharp
num_bytes: 11144245789
num_examples: 4011467
- name: c
num_bytes: 6205820571
num_examples: 1978551
- name: cpp
num_bytes: 6228306797
num_examples: 1934958
- name: go
num_bytes: 11339059495
num_examples: 5649158
- name: rust
num_bytes: 2661037428
num_examples: 1076588
- name: ruby
num_bytes: 1224195690
num_examples: 544867
download_size: 26404353470
dataset_size: 112636992035
pretty_name: The Vault
viewer: true
---
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Statistics](#dataset-statistics)
- [Usage](#usage)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault)
- **Paper:** The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
- **Contact:** support.ailab@fpt.com
- **Website:** https://www.fpt-aicenter.com/ai-residency/
![thevault-logo](https://raw.githubusercontent.com/FSoft-AI4Code/TheVault/main/assets/thevault-title.png)
## Dataset Summary
The Vault is a multilingual code-text dataset with over 40 million pairs covering 10 popular programming languages. It is the largest corpus containing parallel code-text data. By building upon [The Stack](https://huggingface.co/datasets/bigcode/the-stack), a massive raw code sample collection, the Vault offers a comprehensive and clean resource for advancing research in code understanding and generation. It also addresses these issues by providing a large, high-quality dataset that includes code-text pairs at multiple levels, such as class and inline-level, in addition to the function level. The Vault can serve many purpose at multiple levels.
## Supported Tasks
The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks can be constructed using The Vault such as *code summarization*, *text-to-code generation* and *code search*.
## Languages
The natural language text (docstring) is in English.
10 programming languages are supported in The Vault: `Python`, `Java`, `JavaScript`, `PHP`, `C`, `C#`, `C++`, `Go`, `Ruby`, `Rust`
## Dataset Structure
### Data Instances
*a. Function-level and Class-level*
```
{
"identifier": "REDUCE",
"return_type": "<not_specify>"
"repo": "irshadbhat/sndpcs",
"path": "arc_eager.py",
"language": "Python",
"code": "def REDUCE(self, configuration, label=None):\n b0 = configuration.b0\n configuration.stack.pop()",
"code_tokens": "def REDUCE ( self , configuration , label = None ) : b0 = configuration . b0 configuration . stack . pop ( )",
"original_docstring": "\n pops the top of the stack if it has got its head.\n ",
"comment": "\"\"\"\n pops the top of the stack if it has got its head.\n \"\"\"",
"docstring_tokens": "pops the top of the stack if it has got its head .",
"docstring": "pops the top of the stack if it has got its head."
}
```
### Data Fields
Data fields for function level:
- **repo** (string): the owner/repo
- **path** (string): the full path to the original file
- **language** (string): the programming language
- **identifier** (string): the function or method name
- **return_type** (string): the type returned by the function
- **original_string** (string): original version of function/class node
- **original_docstring** (string): the raw string before tokenization or parsing
- **code** (string): the part of the original that is code
- **code_tokens** (string): tokenized version of `code`, separated by whitespace
- **short_docstring** (string): short, brief summarization (first line of the docstring)
- **short_docstring_tokens** (string): tokenized version of `short_docstring`, separated by whitespace
- **docstring** (string): the top-level comment or docstring (docstring version without param’s doc, return, exception, etc)
- **docstring_tokens** tokenized version of docstring, separated by whitespace
- **comment** (string): comment (line) inside the function/class, separated by `$SEP$` token
- **parameters** (dict): Dictionary of parameters and its type (type can be None)
- **docstring_params** (dict): Dictionary of the parsed information from docstring
Due to the limitation of the huggingface data structure, we do not contain **parameters** and **docstring_params** field in this repo. The detail of data fields can be found in [The Vault data format](https://github.com/FSoft-AI4Code/TheVault/blob/main/data/README.md) and the full dataset version can be downloaded [here](https://github.com/FSoft-AI4Code/TheVault/)
### Data Splits
In this repo, The Vault is divided into 5 subsets, where three training versions are split based on dataset size, and the remains are validation set and test set. The statistic for each language is illustrated in the following section.
## Dataset Statistics
- Compare to other benchmarks
| Dataset | #Language | #Code-text pair |
|:--------------------------|----------:|-----------------:|
| PyMT5 | 1 | ≈ 7,700,000 |
| CoDesc | 1 | 4,211,516 |
| CodeSearchNet | 6 | 2,326,976 |
| CodeSearchNet (CodeXGLUE) | 6 | 1,005,474 |
| Deepcom | 1 | 424,028 |
| CONCODE | 1 | 2,184,310 |
| Funcom | 1 | 2,149,121 |
| CodeT5 | 8 | 3,158,313 |
| **The Vault** | **10** | **40,993,893** |
- Statistic for each language in The Vault
| Language | #Code-text pair | #Repository |
|:-----------|-----------------:|------------:|
| Python | 9,893,858 | 628,069 |
| PHP | 5,455,989 | 439,514 |
| JavaScript | 2,562,158 | 355,761 |
| Java | 7,886,299 | 321,129 |
| C# | 4,011,467 | 150,657 |
| C++ | 1,934,958 | 116,897 |
| C | 1,978,551 | 88,556 |
| Go | 5,649,158 | 241,238 |
| Rust | 1,076,588 | 68,615 |
| Ruby | 544,867 | 61,804 |
## Usage
You can load The Vault dataset using datasets library: ```pip install datasets```
```python
from datasets import load_dataset
# Load full function level dataset (40M samples)
ds = load_dataset("Fsoft-AIC/the-vault-function")
# Load function level train/validation/test set
ds = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"])
# Load "small" (or "medium", "large") function level training set
ds = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train/small"])
# specific language (e.g. Golang)
ds = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"], languages=['Go'])
```
## Additional information
### Licensing Information
### Citation Information
```
@misc{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Dung Nguyen Manh and Nam Le Hai and Anh T. V. Dau and Anh Minh Nguyen and Khanh Nghiem and Jin Guo and Nghi D. Q. Bui},
year={2023},
}
```
### Contributions