File size: 5,346 Bytes
b225482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os.path as osp
import numpy as np
import mmcv, os
# import cv2
#from PIL import Image


''' 
--------------------------------------------------------------------------------
This script modifies the original Rellis 3D dataset from 20 labels to 5 labels

# Original classes
# Labels ID = ["void", "dirt", "grass", "tree", "pole", "water", "sky", "vehicle", 
#              "object", "asphalt", "building", "log", "person", "fence", "bush", 
#              "concrete", "barrier", "puddle", "mud", "rubble"]

# Grouped classes
#   New IDs
#         0 -- background: void, sky
#         1 -- obstacle: tree, bush, person, rubble, barrier, log, fence, vehicle, object, pole, building
#         2 -- withwater: mud, puddle, water
#         3 -- unstable: grass, dirt
#         4 -- stable: concrete, asphalt

--------------------------------------------------------------------------------

   Python environment requirements
install: pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html




 Download original Rellis 3D:
    - RGB images: Rellis_3D_pylon_camera_node.zip (11GB)
        Link: https://drive.google.com/file/d/1F3Leu0H_m6aPVpZITragfreO_SGtL2yV/view
    - ID Masks : Rellis_3D_pylon_camera_node_label_id.zip (117MB)
        Link: https://drive.google.com/file/d/16URBUQn_VOGvUqfms-0I8HHKMtjPHsu5/view

1. Create the following folders in data/rellis folder
    - image
    - masks_id
2. Copy Rellis_3D_pylon_camera_node.zip in data/rellis/images folder
3. Copy Rellis_3D_pylon_camera_node_label_id.zip in data/rellis/masks_id folder
4. Rellis_3D_pylon_camera_node_label_color.zip (not used in GanAV model)
5. Unzip Rellis_3D_pylon_camera_node.zip in the data/rellis/images folder
   - data/rellis/images/Rellis-3D\00000
   - data/rellis/images/Rellis-3D\00001
   ...
6. Move the content of data/rellis/images/Rellis-3D folder to data/rellis/images folder
7. Delete Rellis-3D folder (data/rellis/images/Rellis-3D)
8. Unzip Rellis_3D_pylon_camera_node_label_id.zip in the data/rellis/masks_id folder
   - data/rellis/masks_id/Rellis-3D\00000
   - data/rellis/masks_id/Rellis-3D\00001
   ...
9. Move the content of data/rellis/masks_id/Rellis-3D folder to data/rellis/masks_id folder
10. Delete Rellis-3D folder (data/rellis/masks_id/Rellis-3D)
11. Detele zip files
12. Copy the files inside the each pylon_camera_node_label_id folder of masks_id folder to masks_id/0000x folder
13. Delete all empty pylon_camera_node_label_id folders


'''
rellis_dir=os.getcwd()
#rellis_dir = "./rellis/"
annotation_folder = "/Rellis-3D/masks_id/"

IDs =    [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 18, 19, 23, 27, 31, 33, 34]
Groups = (0, 3, 3, 1, 1, 2, 0, 1, 1,  4,  1,  1,  1,  1,  1,  4,  1,  2,  2,  1)

ID_seq = {}
ID_group = {}
for n, label in enumerate(IDs):
    ID_seq[label] = n
    ID_group[label] = Groups[n]


def raw_to_seq(seg):
    h, w = seg.shape
    out1 = np.zeros((h, w))
    out2 = np.zeros((h, w))
    for i in IDs:
        out1[seg==i] = ID_seq[i]
        out2[seg==i] = ID_group[i]

    return out1, out2


with open(osp.join(rellis_dir, 'train.txt'), 'r') as r:
    i = 0
    for l in r:
        print("train: {}".format(i))
        # w.writelines(l[:-5] + "\n")
        # w.writelines(l.split(".")[0] + "\n")
        file_client_args=dict(backend='disk')
        file_client = mmcv.FileClient(**file_client_args)
        img_bytes = file_client.get(rellis_dir + annotation_folder + l.strip() + '.png')
        gt_semantic_seg = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow').squeeze().astype(np.uint8)
        out1, out2 = raw_to_seq(gt_semantic_seg)

        #mmcv.imwrite(out1, rellis_dir + annotation_folder + l.strip() + "_orig.png")
        mmcv.imwrite(out2, rellis_dir + annotation_folder + l.strip() + "_5.png")

        i += 1


with open(osp.join(rellis_dir, 'val.txt'), 'r') as r:
    i = 0
    for l in r:
        print("val: {}".format(i))
        # w.writelines(l[:-5] + "\n")
        # w.writelines(l.split(".")[0] + "\n")
        file_client_args=dict(backend='disk')
        file_client = mmcv.FileClient(**file_client_args)
        img_bytes = file_client.get(rellis_dir + annotation_folder + l.strip() + '.png')
        gt_semantic_seg = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow').squeeze().astype(np.uint8)
        out1, out2 = raw_to_seq(gt_semantic_seg)
        
        #mmcv.imwrite(out1, rellis_dir + annotation_folder + l.strip() + "_orig.png")
        mmcv.imwrite(out2, rellis_dir + annotation_folder + l.strip() + "_5.png")

        i += 1



with open(osp.join(rellis_dir, 'test.txt'), 'r') as r:
    i = 0
    for l in r:
        print("test: {}".format(i))
        # w.writelines(l[:-5] + "\n")
        # w.writelines(l.split(".")[0] + "\n")
        file_client_args=dict(backend='disk')
        file_client = mmcv.FileClient(**file_client_args)
        img_bytes = file_client.get(rellis_dir + annotation_folder + l.strip() + '.png')
        gt_semantic_seg = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow').squeeze().astype(np.uint8)
        out1, out2 = raw_to_seq(gt_semantic_seg)

        #mmcv.imwrite(out1, rellis_dir + annotation_folder + l.strip() + "_orig.png")
        mmcv.imwrite(out2, rellis_dir + annotation_folder + l.strip() + "_5.png")

        i += 1




print("successful")