File size: 5,864 Bytes
d2d323b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# -*- coding: utf-8 -*-
"""

Created on Wed Sep 21 08:17:42 2022



----------------------------------------------------------------------------------

 This script split the rellis 3D dataset into train val and test folders

----------------------------------------------------------------------------------



1. Create train, val and test folders in data/rellis folder

2. Create a new empty folder named as images and masks_id in train and val folders.

3. Create a new empty foldr named as images inside test folder.

4. Execute this script to copy images and masks_id to train folder.

5. Execute this script to copy images and masks_id to val folder.

6. Execute this script to copy images to test folder.





Output:

    Coping images, please wait...

    Total number of copied images:  3302

    Images stored saved in:  ./train//images

    Coping masks_id, please wait...

    Total number of copied masks:  3302

    Images stored saved in:  ./train/masks_id

    

    Coping images, please wait...

    Total number of copied images:  983

    Images stored saved in:  ./val//images

    Coping masks_id, please wait...

    Total number of copied masks:  983

    Images stored saved in:  ./val/masks_id

    

    Coping images, please wait...

    Total number of copied images:  1672

    Images stored saved in:  ./test//images



_-----------------------------------------------------------------------------

Mask_color images to instance segmentation



1. Create train, val and test folders in data/rellis folder

2. Create a new empty folder named as images and masks_color in train and val folders.

3. Create a new empty foldr named as images inside test folder.

4. Execute this script to copy masks_colors to train folder.

5. Execute this script to copy masks_colors to val folder.

6. Execute this script to copy masks_colors to test folder.

 

   Output:

       Coping images, please wait...

       Total number of copied images:  3302

       Images stored saved in:  ./train//masks_colors

       

       Coping images, please wait...

       Total number of copied images:  983

       Images stored saved in:  ./val//masks_colors



'''



"""

import os
import pandas as pd
from shutil import copy

def search_image(count, imagename, path, DEST_PATH):
    error=0
    for filename in os.listdir(path):    
        if (filename.endswith(".bmp")) and (filename.startswith(imagename)): 
            copy(path +'/'+ filename, DEST_PATH+'/'+filename)
            count+=1
            error=0
            #print(count)
            break
        else:
            error=1
    return count, error


DEST_PATH='train'
#DEST_PATH='val'
#DEST_PATH='test'

# Rellis 5 categories
pd_card_images = pd.read_csv('train5.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('val5.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('test5.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)

# Rellis 6 categories
#pd_card_images = pd.read_csv('train.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('val.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('test.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)

# Rellis 20 labels
#pd_card_images = pd.read_csv('train20.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('val20.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('test20.csv',sep=";", names=['images','masks_id'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('test_maskcolors.csv',sep=";", names=['maskcolors'], encoding ='latin1', low_memory=False)

# Rellis 20 masks_colors for instance segmentation
#pd_card_images = pd.read_csv('train_color20.csv',sep=";", names=['images', 'masks_colors'], encoding ='latin1', low_memory=False)
#¶pd_card_images = pd.read_csv('val_color20.csv',sep=";", names=['images', 'masks_colors'], encoding ='latin1', low_memory=False)
#pd_card_images = pd.read_csv('test_color20.csv',sep=";", names=['images', 'masks_colors'], encoding ='latin1', low_memory=False)


pd_card_images = pd_card_images.drop(labels=0, axis=0)
rpd_card_images=pd_card_images.reset_index(drop=True)

image_path=rpd_card_images['images']
mask_path=rpd_card_images['masks_id']
#maskcolors_path=rpd_card_images['masks_colors']

print('Coping images, please wait...')
count=0

for im in image_path: 
    filename = str(im).split("/") 
    txt_filename=str(filename[1])
    #print(im)
    copy('images/'+ im, DEST_PATH +'/images/'+txt_filename)
    count+=1
    
print('Total number of copied images: ', count)               
print('Images stored saved in: ', DEST_PATH+'/images')

# for idx, im in enumerate(maskcolors_path):
#     filename = str(im).split("/") 
#     txt_filename=str(filename[1])
#     orig_image = image_path[idx]

#     copy('./maskscolors/' + orig_image, DEST_PATH +txt_filename)
        
#     count+=1

# print('Total number of copied images: ', count)               
# print('Images stored saved in: ', DEST_PATH+'/masks_colors')


## Only for train and val **************************************
print('Coping masks_id, please wait...')
count=0
for mask in mask_path:    
    filename = str(mask).split("/") 
    txt_filename=str(filename[1])
    #print(mask)
    copy('masks_id/'+ mask, DEST_PATH+'/masks_id/'+txt_filename)
    count+=1

print('Total number of copied masks: ', count)               
print('Images stored saved in: ', DEST_PATH+'masks_id')