File size: 5,346 Bytes
b225482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os.path as osp
import numpy as np
import mmcv, os
# import cv2
#from PIL import Image
'''
--------------------------------------------------------------------------------
This script modifies the original Rellis 3D dataset from 20 labels to 5 labels
# Original classes
# Labels ID = ["void", "dirt", "grass", "tree", "pole", "water", "sky", "vehicle",
# "object", "asphalt", "building", "log", "person", "fence", "bush",
# "concrete", "barrier", "puddle", "mud", "rubble"]
# Grouped classes
# New IDs
# 0 -- background: void, sky
# 1 -- obstacle: tree, bush, person, rubble, barrier, log, fence, vehicle, object, pole, building
# 2 -- withwater: mud, puddle, water
# 3 -- unstable: grass, dirt
# 4 -- stable: concrete, asphalt
--------------------------------------------------------------------------------
Python environment requirements
install: pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
Download original Rellis 3D:
- RGB images: Rellis_3D_pylon_camera_node.zip (11GB)
Link: https://drive.google.com/file/d/1F3Leu0H_m6aPVpZITragfreO_SGtL2yV/view
- ID Masks : Rellis_3D_pylon_camera_node_label_id.zip (117MB)
Link: https://drive.google.com/file/d/16URBUQn_VOGvUqfms-0I8HHKMtjPHsu5/view
1. Create the following folders in data/rellis folder
- image
- masks_id
2. Copy Rellis_3D_pylon_camera_node.zip in data/rellis/images folder
3. Copy Rellis_3D_pylon_camera_node_label_id.zip in data/rellis/masks_id folder
4. Rellis_3D_pylon_camera_node_label_color.zip (not used in GanAV model)
5. Unzip Rellis_3D_pylon_camera_node.zip in the data/rellis/images folder
- data/rellis/images/Rellis-3D\00000
- data/rellis/images/Rellis-3D\00001
...
6. Move the content of data/rellis/images/Rellis-3D folder to data/rellis/images folder
7. Delete Rellis-3D folder (data/rellis/images/Rellis-3D)
8. Unzip Rellis_3D_pylon_camera_node_label_id.zip in the data/rellis/masks_id folder
- data/rellis/masks_id/Rellis-3D\00000
- data/rellis/masks_id/Rellis-3D\00001
...
9. Move the content of data/rellis/masks_id/Rellis-3D folder to data/rellis/masks_id folder
10. Delete Rellis-3D folder (data/rellis/masks_id/Rellis-3D)
11. Detele zip files
12. Copy the files inside the each pylon_camera_node_label_id folder of masks_id folder to masks_id/0000x folder
13. Delete all empty pylon_camera_node_label_id folders
'''
rellis_dir=os.getcwd()
#rellis_dir = "./rellis/"
annotation_folder = "/Rellis-3D/masks_id/"
IDs = [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 18, 19, 23, 27, 31, 33, 34]
Groups = (0, 3, 3, 1, 1, 2, 0, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 2, 2, 1)
ID_seq = {}
ID_group = {}
for n, label in enumerate(IDs):
ID_seq[label] = n
ID_group[label] = Groups[n]
def raw_to_seq(seg):
h, w = seg.shape
out1 = np.zeros((h, w))
out2 = np.zeros((h, w))
for i in IDs:
out1[seg==i] = ID_seq[i]
out2[seg==i] = ID_group[i]
return out1, out2
with open(osp.join(rellis_dir, 'train.txt'), 'r') as r:
i = 0
for l in r:
print("train: {}".format(i))
# w.writelines(l[:-5] + "\n")
# w.writelines(l.split(".")[0] + "\n")
file_client_args=dict(backend='disk')
file_client = mmcv.FileClient(**file_client_args)
img_bytes = file_client.get(rellis_dir + annotation_folder + l.strip() + '.png')
gt_semantic_seg = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow').squeeze().astype(np.uint8)
out1, out2 = raw_to_seq(gt_semantic_seg)
#mmcv.imwrite(out1, rellis_dir + annotation_folder + l.strip() + "_orig.png")
mmcv.imwrite(out2, rellis_dir + annotation_folder + l.strip() + "_5.png")
i += 1
with open(osp.join(rellis_dir, 'val.txt'), 'r') as r:
i = 0
for l in r:
print("val: {}".format(i))
# w.writelines(l[:-5] + "\n")
# w.writelines(l.split(".")[0] + "\n")
file_client_args=dict(backend='disk')
file_client = mmcv.FileClient(**file_client_args)
img_bytes = file_client.get(rellis_dir + annotation_folder + l.strip() + '.png')
gt_semantic_seg = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow').squeeze().astype(np.uint8)
out1, out2 = raw_to_seq(gt_semantic_seg)
#mmcv.imwrite(out1, rellis_dir + annotation_folder + l.strip() + "_orig.png")
mmcv.imwrite(out2, rellis_dir + annotation_folder + l.strip() + "_5.png")
i += 1
with open(osp.join(rellis_dir, 'test.txt'), 'r') as r:
i = 0
for l in r:
print("test: {}".format(i))
# w.writelines(l[:-5] + "\n")
# w.writelines(l.split(".")[0] + "\n")
file_client_args=dict(backend='disk')
file_client = mmcv.FileClient(**file_client_args)
img_bytes = file_client.get(rellis_dir + annotation_folder + l.strip() + '.png')
gt_semantic_seg = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow').squeeze().astype(np.uint8)
out1, out2 = raw_to_seq(gt_semantic_seg)
#mmcv.imwrite(out1, rellis_dir + annotation_folder + l.strip() + "_orig.png")
mmcv.imwrite(out2, rellis_dir + annotation_folder + l.strip() + "_5.png")
i += 1
print("successful") |