File size: 12,009 Bytes
06ba0d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# -*- coding: utf-8 -*-
import os
import sys
import json
import random
import argparse
import xml.etree.ElementTree as ET
def load_xml_file(path):
""" Load an xml file.
Args:
path (:obj:`float`): Path where the XML file is stored.
Returns:
tree (:obj:`ElementTree`): Parsed tree structure of the XML file.
"""
tree = ET.parse(path)
return tree
def save_json(data, path):
""" Save data as json file.
Args:
data (:obj:`list`): Data to store as json.
path (:obj:`str`): Path where data will be stored.
Returns:
None
"""
json.dump(data, open(path, 'w+', encoding='utf-8'))
def get_types(xml):
""" Extract the different transformation types.
Args:
xml (:obj:`ElementTree`): XML as tree.
Returns:
transformations_types (:obj:`dict`): Mapping of transformations ids to their type
Example:
>>assert transformations_types[34] == 'Transformation - Noun to Verb' # True
"""
transformations_types = {}
root = xml.getroot()
types = root[0]
for curr_type in types:
transformations_types[int(curr_type.attrib['id'])] = curr_type.text
return transformations_types
def create_pair(text, simplified_text, transformation_id, transformation_type, source_dataset):
""" Instanciate pair given parameters.
Args:
text (:obj:`str`): Raw text.
simplified_text (:obj:`str`): Simplified text.
transformation_id (:obj:`int`): Transformation ID
transformation_type (:obj:`str`): Transformation Category
source_dataset (:obj:`str`): Source dataset from which the pair comes from.
Returns:
pair (:obj:`dict`): Complex-Simplified Text pair with corresponding information.
"""
pair = {}
pair['transformation_id'] = transformation_id
pair['transformation_type'] = transformation_type
pair['source_dataset'] = source_dataset
pair['text'] = text
pair['simplified_text'] = simplified_text
return pair
def fill_pairs_by_transformation(pairs_by_transformation, pair):
""" This function adds a pair to the pairs_by_transformation dict. (into corresponding field).
Args:
pairs_by_transformation (:obj:`dict`): Dictionnary where pairs are organized by their
transformation types.
pair (:obj:`dict`): Complex-Simplified Text pair with corresponding information.
Returns:
None
"""
transformation_id = pair['transformation_id']
if transformation_id not in pairs_by_transformation.keys():
pairs_by_transformation[transformation_id] = [pair]
else:
pairs_by_transformation[transformation_id].append(pair)
def fill_pairs_by_source_dataset(pairs_by_source_dataset, pair):
""" This function adds a pair to the pairs_by_source_dataset dict. to corresponding field.
Args:
pairs_by_source_dataset (:obj:`dict`): Dictionnary where pairs are organized by their
source dataset.
pair (:obj:`dict`): Complex-Simplified Text pair with corresponding information.
Returns:
None
"""
source_dataset = pair['source_dataset']
if source_dataset not in pairs_by_source_dataset.keys():
pairs_by_source_dataset[source_dataset] = [pair]
else:
pairs_by_source_dataset[source_dataset].append(pair)
def get_pairs(xml, types):
""" This function returns Complex-Simplified pairs from XML.
Args:
xml (:obj:`ElementTree`): XML simplifications pairs as tree structure.
types (:obj:`dict`): Mapping of transformations ID to their transformations category.
Returns:
pairs (:obj:`list`): List of pairs (:obj:`dict`) without any ordering.
pairs_by_transformation (:obj:`dict`): Pairs clustered by their transformation type.
pairs_by_source_dataset (:obj:`dict`): Pairs clustered by their source dataset.
"""
root = xml.getroot()
simplifications = root[1]
pairs = []
pairs_by_transformation = {}
pairs_by_source_dataset = {}
for simplification in simplifications:
transformation_id = int(simplification.attrib['type'])
source = simplification.attrib['origin']
raw_text = simplification[0].text
simplified_text = simplification[1].text
curr_pair = create_pair(raw_text, simplified_text, transformation_id, types[transformation_id], source)
pairs.append(curr_pair)
fill_pairs_by_transformation(pairs_by_transformation, curr_pair)
fill_pairs_by_source_dataset(pairs_by_source_dataset, curr_pair)
return pairs, pairs_by_transformation, pairs_by_source_dataset
def random_split(pairs, training_ratio):
""" This function randomly splits pairs as train/val/test subsets.
Args:
pairs (:obj:`list`): List of pairs (:obj:`dict`) without any ordering.
training_ratio (:obj:`float`): Ratio of training data (0<training_ratio<1).
Returns:
train (:obj:`list`): Training set
validation (:obj:`list`): Validation set
test (:obj:`list`): Testing set
"""
random.shuffle(pairs)
size = len(pairs)
train_limit = int(size * training_ratio)
val_limit = train_limit + int(size*(1-training_ratio)/2)
train = pairs[:train_limit]
val = pairs[train_limit:val_limit]
test = pairs[val_limit:]
return train, val, test
def challenge_seen_unseen_transformation_split(pairs_by_transformation, training_ratio):
""" This function splits pairs s.t. evaluation can be done on seen and unseen
transformations for more challenging robustness/generalization evaluation.
Args:
pairs_by_transformation (:obj:`dict`): Pairs organized by their transformation ID.
training_ratio (:obj:`float`): Ratio of training data (0<training_ratio<1).
Returns:
train (:obj:`list`): Training set
validation (:obj:`list`): Validation set
seen_transformations_test (:obj:`list`): Seen Transformations testing set
unseen_transformations_test (:obj:`list`): Unseen transformations testing set
"""
# TODO transformations are hard-coded for now --> add argument in parser to specify them.
seen_transformations_ids = [1, 2, 3, 11, 13, 23, 31, 32, 33, 34, 37]
unseen_transformations_ids = [12, 22, 32, 35, 36]
train = []
val = []
seen_transformations_test = []
unseen_transformations_test = []
for transf_id in seen_transformations_ids:
curr_len = len(pairs_by_transformation[transf_id])
train_limit = int(curr_len * training_ratio)
val_limit = train_limit + int(curr_len * (1-training_ratio)/2.0)
train += pairs_by_transformation[transf_id][:train_limit]
val += pairs_by_transformation[transf_id][train_limit:val_limit]
seen_transformations_test += pairs_by_transformation[transf_id][val_limit:]
for transf_id in unseen_transformations_ids:
unseen_transformations_test += pairs_by_transformation[transf_id]
return train, val, seen_transformations_test, unseen_transformations_test
def challenge_seen_unseen_source_dataset_split(pairs_by_source_dataset, training_ratio):
""" This function splits pairs s.t. evaluation can be done on seen and unseen
source dataset for more challenging robustness/generalization evaluation.
Args:
pairs_by_source_dataset (:obj:`dict`): Pairs organized by their source dataset.
training_ratio (:obj:`float`): Ratio of training data (0<training_ratio<1).
Returns:
train (:obj:`list`): Training set
validation (:obj:`list`): Validation set
seen_source_test (:obj:`list`): Seen source dataset testing set
unseen_source_test (:obj:`list`): Unseen source dataset testing set
"""
# TODO source dataset for training hard-coded --> add argument in parser.
seen_source = ['itwiki'] # semi-supervised
unseen_source = ['tn'] # manually annotated
train = []
val = []
seen_source_test = []
unseen_source_test = []
for source in seen_source:
random.shuffle(pairs_by_source_dataset[source])
curr_len = len(pairs_by_source_dataset[source])
train_limit = int(curr_len * training_ratio)
val_limit = train_limit + int(curr_len * (1-training_ratio)/2.0)
train += pairs_by_source_dataset[source][:train_limit]
val += pairs_by_source_dataset[source][train_limit:val_limit]
seen_source_test += pairs_by_source_dataset[source][val_limit:]
for source in unseen_source:
unseen_source_test += pairs_by_source_dataset[source]
return train, val, seen_source_test, unseen_source_test
def split(args):
"""This function splits the XML file to produce specified subsets according to args.
Args:
args (:obj:`argparse.Namespace`): Parsed arguments.
Returns:
None
"""
xml = load_xml_file(args.data_path)
version = args.data_path[-6:-4]
transformations_types = get_types(xml)
pairs, pairs_by_transformation, pairs_by_source_dataset = get_pairs(xml, transformations_types)
if args.split_criteria == 'random':
train, val, test = random_split(pairs, args.training_ratio)
os.makedirs(f'{args.out_dir}/{version}/random_split/', exist_ok=True)
save_json(train, f'{args.out_dir}/{version}/random_split/train.json')
save_json(val, f'{args.out_dir}/{version}/random_split/val.json')
save_json(test, f'{args.out_dir}/{version}/random_split/test.json')
elif args.split_criteria == 'transformations':
seen_transformations_train, seen_transformations_val, seen_transformations_test, unseen_transformations_test = challenge_seen_unseen_transformation_split(pairs_by_transformation, args.training_ratio)
os.makedirs(f'{args.out_dir}/{version}/transformations_split/', exist_ok=True)
save_json(seen_transformations_train, f'{args.out_dir}/{version}/transformations_split/train.json')
save_json(seen_transformations_val, f'{args.out_dir}/{version}/transformations_split/val.json')
save_json(seen_transformations_test, f'{args.out_dir}/{version}/transformations_split/seen_transformations_test.json')
save_json(unseen_transformations_test, f'{args.out_dir}/{version}/transformations_split/unseen_transformations_test.json')
elif args.split_criteria == 'source_dataset':
itwiki_train, itwiki_val, itwiki_test, tn_test = challenge_seen_unseen_source_dataset_split(pairs_by_source_dataset, args.training_ratio)
os.makedirs(f'{args.out_dir}/{version}/source_dataset_split/', exist_ok=True)
save_json(itwiki_train, f'{args.out_dir}/{version}/source_dataset_split/itwiki_train.json')
save_json(itwiki_val, f'{args.out_dir}/{version}/source_dataset_split/itwiki_val.json')
save_json(itwiki_test, f'{args.out_dir}/{version}/source_dataset_split/itwiki_test.json')
save_json(tn_test, f'{args.out_dir}/{version}/source_dataset_split/tn_test.json')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Creating Train/Val/Test files")
parser.add_argument('--data_path', type=str, required=True, help='path to (single) data file')
parser.add_argument('--out_dir', type=str, required=True, help='output dir to store files')
parser.add_argument('--training_ratio', type=float, required=True, help='training ratio (e.g. 0.8). Remaining will be divided for val and test EQUALLY.')
parser.add_argument('--split_criteria', type=str, required=True, choices=['random', 'transformations', 'source_dataset'], help='split criteria')
args = parser.parse_args()
split(args)
sys.exit(0)
|